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Abstract—Analog-to-digital converters (ADCs) are a major
contributor to the power consumption of multiple-input multiple-
output (MIMO) communication systems with large number of
antennas. Use of low resolution ADCs has been proposed as
a means to decrease power consumption in MIMO receivers.
However, reducing the ADC resolution leads to performance loss
in terms of achievable transmission rates. In order to mitigate
the rate-loss, the receiver can perform analog processing of the
received signals before quantization. Prior works consider one-
shot analog processing where at each channel-use, analog linear
combinations of the received signals are fed to a set of one-
bit threshold ADCs. In this paper, a receiver architecture is
proposed which uses a sequence of delay elements to allow for
blockwise linear combining of the received analog signals. In the
high signal to noise ratio regime, it is shown that the proposed
architecture achieves the maximum achievable transmission rate
given a fixed number of one-bit ADCs. Furthermore, a tradeoff
between transmission rate and the number of delay elements is
identified which quantifies the increase in maximum achievable
rate as the number of delay elements is increased.

I. Introduction

One of the most significant challenges in the development of
5G cellular communication technologies is energy consump-
tion. The use of large antenna arrays leads to energy demands
which are inconsistent with the limited power budget available
in mobile devices and small-cell access points [1]. Analog
to digital converters (ADCs) are a major contributor to the
power consumption in multiple-input multiple-output (MIMO)
receivers. In conventional MIMO systems with digital beam-
forming, it is assumed that each receiver antenna is connected
to a high resolution ADC [2]. In standard ADC design,
the power consumption is proportional to the number of
quantization bins and hence grows exponentially in the number
of output bits [3], [4]. One method which has been proposed to
address high power consumption in MIMO systems with large
number of antennas is to use low resolution ADCs (e.g. one-bit
threshold ADCs) at each receiver antenna [5]–[12]. Reducing
the ADC resolution decreases power consumption, however,
it also results in lower transmission rates. This suggests a
tradeoff between transmission rate and power consumption
which is controlled by the number and resolution of the ADCs
at the receiver.

This work is supported by National Science Foundation grant SpecEES-
1824434 and NYU WIRELESS Industrial Affiliates.

In classical information theory, it is well-known that in order
to achieve optimal transmission rates, communication must
be performed over asymptotically large blocks of data [13].
More precisely, an optimal decoder performs a possibly non-
linear operation on an asymptotically large block of channel
outputs. In MIMO systems using high resolution ADCs, the
discretization loss is negligible due to the fine quantization
grid. Simultaneous blockwise decoding is made possible by
storing the digital output and performing the decoding opera-
tion over large blocklengths in the digital domain. However,
when low resolution ADCs are used, discretizing the individ-
ual channel outputs prior to blockwise decoding leads to loss
of information and suboptimal performance [6]. In particular,
restricting to one-bit ADCs leads to large quantization noise,
and a significant reduction in achievable rates [8], [10].

Rate-loss due to low resolution quantization can be at-
tributed to two constituents which we call intrinsic and extrin-
sic rate-loss. To elaborate, consider the MIMO communication
system shown in Fig. 1. Assume that the receiver is equipped
with nq one-bit threshold ADCs. An upper-bound on the
channel capacity is given by min(nq,C) bits per channel use,
where C is the capacity of the MIMO channel when using
ADCs with very high resolution. In other words, due to the
restriction on the number of ADCs, the channel capacity is
decreased by at least C−min(nq,C) bits per channel-use. This
intrinsic rate-loss cannot be reduced by improving the receiver
architecture design without the use of additional one-bit ADCs.
Considering the receiver architecture in Fig. 1(b), in practice
only a limited set of analog operations illustrated as fa(·) in
the figure may be implemented. Prior works have studied the
use of one-shot analog linear combiners and threshold ADCs
[8]–[12]. It has been shown that the maximum rate achievable
using the architecture in Fig. 1 is less than min(nq,C) due to
practical limitations in analog processing [8]. More precisely,
the communication system suffers an additional extrinsic rate-
loss of min(nq,C) − R∗ bits per channel-use, where R∗ is the
maximum achievable rate when these practical limitations are
taken into account. In theory, the extrinsic rate-loss may be
reduced by improving the receiver architecture design.

In this work, we consider communication over MIMO chan-
nels where one-bit threshold ADCs are used at the receiver.
We propose a blockwise analog processing module in which
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Fig. 1. The top figure shows a MIMO channel with nt transmit antennas and
nr receive antennas. The bottom figure is the receiver architecture consisting
of analog processing module fa(·), nq one-bit ADCs Qnq (·), and a digital
processing module fd(·). The function fa(·) may have causal memory.

delay elements are used to reduce the extrinsic rate-loss due
to one-bit ADCs. We show that for a large class of MIMO
channels, in the high signal to noise ratio (SNR) regime, the
proposed architecture completely eliminates the extrinsic rate-
loss and achieves the maximum transmission rate among all
receiver architectures with a fixed number of one-bit ADCs.
We show the existence of a fundamental tradeoff between the
number of delay elements and the maximum achievable rate
for the proposed architecture. In addition, we show that given
a fixed number of one-bit ADCs and delay elements, non-zero
thresholds are necessary to achieve optimal transmission rates;
whereas, using asymptotically large numbers of delay elements
leads to optimal rates without requiring non-zero thresholds.

In the receiver architecture proposed in this paper, the ADC
thresholds are chosen according to the channel gain matrix and
are assumed to be fixed throughout the transmission block. In
a companion paper [14], we propose a class of adaptive thresh-
old receiver architectures, where the quantization thresholds at
each channel-use are dependent on the channel outputs in the
previous channel-uses. While the fixed threshold architecture
in this paper is simpler to implement, the adaptive threshold
architecture in [14] is more amiable to analysis for point-
to-point (PtP) communication in the low SNR regime and
multiterminal communications.

The rest of the paper is organized as follows. Section II
describes the system model. Section III includes the proposed
receiver architecture along with an analysis of the resulting
achievable rate region. Section IV concludes the paper.

Notation: The random variable 1E is the indicator function
of the event E. The set of numbers {1, 2, · · · , n}, n ∈ N is
represented by [n]. For a given n ∈ N, the n-length vector
(x1, x2, . . . , xn) is written as xn. The subvector (xk, xk+1, · · · , xn)
is denoted by xn

k . We write ||xn||2 to denote the L2-norm of
xn. An n × m matrix is written as hn×m = [hi, j]i, j∈[n]×[m],
and [hn×m]† is the transpose of hn×m. Let hnt

(i), i ∈ [m] be a
sequence of column vectors; the notation [hn

(1), h
n
(2), · · · , h

n
(m)]

†

represents the column vector of length mn consisting of the
concatenation of the original vectors. The n × n identity
matrix is shown by In. We write an×m ⊗ bn′×m′ to denote the
Kronecker product of matrices. The value of i modulo k is

represented by modk(i), i, k ∈ N. The binary entropy function
is hb(x) = −x log x − (1 − x) log(1 − x).

II. SystemModel and Preliminaries
A. System Model

We consider a PtP communication system characterized by
the triple (nt, nr, hnr×nt ), where nt is the number of transmitter
antennas, nr is the number of receiver antennas, and hnr×nt

is the channel gain matrix. The matrix hnr×nt is assumed
to be fixed over the transmission block, and known at the
transmitter and receiver. The channel input and output vector
pair (Xnt ,Ynr ) is related through

Ynr = hnr×nt Xnt + Nnr , (1)

where Nnr is a vector of independent and identically distributed
Gaussian variables with unit variance and zero mean, and
the channel input has average power constraint P. It is as-
sumed that nq one-bit threshold ADCs are available at the
receiver. The receiver uses the architecture shown in Fig. 1(b)
which consists of an analog signal processing step prior to
quantization and a digital signal processing step afterwards.
The channel output is processed in the analog domain and
the resulting vector is input to the ADCs. The output of the
ADCs is processed in the digital domain to reconstruct the
message. In its most general form, the analog processor may
have causal memory. More precisely, the output of fa(·) at
time i, may depend on the matrix of received channel outputs
Y i×nr , where the jth row of Y i×nr is the channel output at time
j, j ≤ i. Let n ∈ N be the length of the transmission block
and define Ga = { fa : Rn×nr → Rnnq } as the space of all
functions with causal memory. Due to practical considerations,
only a subset of the functions in Ga are implementable. We
denote the space of implementable functions by Fa. The set of
implementable functions Fa which are considered in this paper
will be discussed in Section III. The communication problem
is formalized below.

Definition 1 (QMIMO). A PtP MIMO system with
one-bit ADCs (QMIMO) is characterized by the tuple
(nt, nr, hnr×nt , nq,Fa), where nq is the number of one-bit ADCs,
and Fa ⊆ Ga.

Let n,Θ ∈ N be a pair of natural numbers, fa ∈ Fa an imple-
mentable analog function and tnnq ∈ Rnnq a vector of quantiza-
tion thresholds, where tinq

inq−nq+1, i ∈ [n] is the threshold vector
in the ith channel use. An (n,Θ, fa, tnnq )-transmission system
consists of a pair of encoding and decoding functions (e, d)
where Xn×nt = e(M) is the channel input over n channel uses
and M̂ = d(Yn×nr ) = fd(Qnnq ( fa(Yn×nr ) + tnnq )) is the message
reconstruction, fd : {0, 1}nnq → [Θ] is a vector of Boolean func-
tions, Qnnq (xnnq ) = (1{x1≥0},1{x2≥0}, · · · ,1{xnnq≥0}), xnnq ∈ Rnnq is
a sequence of one-bit ADCs. Achievability is defined in the
standard Shannon sense. The capacity maximized over all im-
plementable analog functions is denoted by CQ(hnr×nt , nq,Fa).

In [8], a receiver architecture is considered where the analog
processing module consists of linear combiners along with
non-zero threshold ADCs. The architecture is shown in Fig.
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2. The linear combiner matrix vnq×nr is applied to the received
signals at each channel-use. This receiver architecture does not
allow for temporal processing of the received signals in the
analog domain. More precisely, the set Fa considered in [8]
consists of all memoryless and linear analog processors:

Fa = { fa| fa(Yn×nr ) = (vnq×nr ⊗ In)Ỹnnr },

where Ỹ (k+1)n
kn+1 , k ∈ {0, 1, · · · , nr − 1} is equal to the kth row of

Yn×nr . We call this receiver architecture one-shot. The channel
capacity using this one-shot architecture maximized over all
input distributions, threshold vectors and linear combining
matrices is denoted by COS (hnr×nt , nq).

It is known that one-shot processing of the analog signals
leads to a significant extrinsic rate-loss [8], [10]. In fact, the
one-shot capacity is shown to grow at most logarithmically
in the number of one-bit ADCs. Consequently, in the high
SNR regime, the extrinsic rate-loss due to the application of
one-shot receiver architectures is at least1 nq − O(log nq) and
becomes arbitrarily large as the number of ADCs is increased.

In Section III, we introduce blockwise analog processing
architectures which use delay elements to allow for temporal
processing of the analog signals before quantization. We show
in Theorem 1 that this allows us to completely eliminate
the extrinsic rate-loss in a large class of MIMO systems
in the high SNR regime including MIMO systems where
the number of one-bit ADCs is at least twice the number
of transmitter antennas and receiver antennas. To analyze
the performance of the proposed architectures, we utilize a
geometric interpretation introduced in [8], [10]. The geometric
interpretation is especially helpful in analyzing the set of
achievable rates in the high SNR regime.

The geometric interpretation and combinatorial background
is briefly described in the next subsection.

B. Combinatorial Background

Loosely speaking, as the SNR is increased, the effect of
noise in Equation (1) becomes negligible and the channel
output is almost equal to hnr×nt Xnt . In fact, in the absence
of noise, the channel output space is Im(hnr×nt ) the image of
the channel gain matrix hnr×nt . In the following, we describe
the relation between partitions of the subspace Im(hnr×nt )
and the maximum transmission rate when one-shot receiver
architectures are used.

Consider the one-shot architecture described in Fig. 2. For a
given channel output vector ynr , let ji = Q(wi), i ∈ [nq], where
wnq = vnq×nr ynr + tnq is the input vector to the one-bit ADCs.
The binary vector jnq is the vector of ADC outputs. The set of
all channel output vectors ynr which result in the ADC output
vector jnq is

B j1, j2,··· , jnq
= {ynr ∈ Im(hnr×nt )|Q(wi) = ji, i ∈ [nq]}.

For a given pair (tnq , vnq×nr ), the collection of sets
B(tnq , vnq×nr ) = {B j1, j2,··· , jnq

| ji ∈ {0, 1}, i ∈ [nq]}, is a partition
of Im(hnr×nt ). The number of non-empty partition elements

1We write f (x) = O(g(x)) if limx→∞
f (x)
g(x) < ∞.

Y1
W1 J1

Quantizer

Digital
Processor

Wnq
Jnq

dM

Ynr

vnq×nr

t1

tnq

Fig. 2. A one-shot receiver architecture, where the linear combiner is charac-
terized by the matrix vnr×nq , and the ADC thresholds are tnq = (t1, t2, · · · , tnq ).

corresponds to the number of messages which can be trans-
mitted reliably as the SNR is taken to be asymptotically large.
Note that for some binary vectors jnq , the set B j1, j2,··· , jnq

may
be empty. For instance, let nt = nr = 1, nq = 2, hnr×nt = 1,

vnq×nt =

[
1
1

]
, and tnq =

[
0
0

]
. Then B0,1 = {y|Q(y) = 0,Q(y) =

1} = ∅, similarly, B1,0 = ∅. As a result, the number of
partition elements may be less than 2nq . In order to increase
the transmission rate, it is desirable to choose (tnq , vnq×nr ) such
that the number of non-empty partition elements is maximized.

We use the following proposition throughout the paper.

Proposition 1. ([15]) The maximum number of non-empty
partition elements is given by

max
tnq ,vnq×nr

|B(tnq , vnq×nr ) − {∅}| =
rank(hnr×nt )∑

i=0

(
nq

i

)
. (2)

Additionally , if the threshold vector is taken to be the all-zero
vector, then:

max
vnq×nr
|B(0nq , vnq×nr ) − {∅}| = 2

rank(hnr×nt )−1∑
i=0

(
nq − 1

i

)
. (3)

The maximum number of non-empty partition regions grows
exponentially in nq since log

(
n
k

)
= nhb( k

n ) + O(log n) [13].

III. Blockwise Receiver Architectures

We propose blockwise receiver architectures in which delay
elements are used to perform blockwise temporal processing
of the received signals before quantization. Communication is
performed in n = `b channel-uses, where n, ` and b are called
the blocklength, inner blocklength, and outer blocklength,
respectively. The blockwise receiver architecture uses a delay
network consisting of 2` delay elements as shown in Fig. 3,
where each delay element Dnr (·) takes the vector of received
signals at the ith channel-use Ynr (i) and outputs Ynr (i − 1). In
other words, Dnr (·) delays the received analog vector by one
channel-use. The stored analog signals are combined using the
linear combining matrix v`nq×`nr over ` channel-uses.

To clarify the linear combination process, let us describe the
first 3` channel-uses. In the first ` channel-uses the received
signals Ynr (i), i ∈ [`] are stored in the delay network. In
the next ` channel-uses, the second batch of received signals
Ynr (i), ` + 1 ≤ i ≤ 2` are stored in the delay network while
the linear combiner operates on the previously stored signals
Ynr (i), i ∈ [`]. More precisely, for the ith channel-use where
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Dnr(·) Dnr(·) Dnr(·)
Y nr(i)

Y nr(i− 1) Y nr(i− 2) Y nr(i− 2l)

eY inr
(i−2`)nr+1

Fig. 3. Delay network in the ith channel-use where Ỹ inr
(i−2`)nr+1 = (Ynr (i−2`+

1),Ynr (i − 2` + 2), · · · ,Ynr (i − 1),Ynr (i)) and i ≥ 2`.

` + 1 ≤ i ≤ 2`, the linear combiner outputs Y
(i−`)nq

(i−`−1)nq+1, where

Y
`nq

= v`nq×`nr Ỹ`nr , and

Ỹ`nr = (Ynr (1),Ynr (2), · · · ,Ynr (` − 1),Ynr (`)).

In the third ` channel-uses, the third batch of received signals
Ynr (i), 2` + 1 ≤ i ≤ 3` are stored in the delay network while
the linear combiner operates on the previously stored signals
Ynr (i), i ∈ [`]. This process continues for b blocks of length `
until the nth channel-use, where n is the blocklength. The out-
put of the linear combiner is given to the nq one-bit threshold
ADCs. The threshold vector used in the one-bit ADCs changes
periodically with a period of ` channel-uses. More precisely,
let t`nq ∈ R`nq and define t̃nq (k) = tknq

knq−nq+1, k ∈ [`]. For the
first ` channel-uses, the threshold vector t̃nq (i) is used in the
ith channel-use. For the second ` channel-uses, the threshold
vector t̃nq (i − `) is used in the ith channel-use. Generally, for
i ∈ [n], let k = mod`(i), the vector tnq (k) is used as the threshold
vector for the one-bit ADCs at the ith channel-use.

We call the resulting communication system a D-QMIMO
system, where D refers to delay. The set of implementable
analog functions for this architecture is:

Fa
` = { fa| fa(Yn×nr ) = (v`nq×`nr ⊗ Ib)Ỹnnr , b ∈ N},

where

Ỹ jnr
( j−2`)nr+1 = (Ynr ( j−2`+1),Ynr ( j−2`+2), · · · ,Ynr ( j−1),Ynr ( j)),

where 2` ≤ j ≤ n. The channel capacity optimized over all
analog combining matrices, and threshold vectors is denoted
by C`(hnr×nt , nq) for a given delay `.

Note that D-QMIMO systems are a special class of QMIMO
systems where the analog processing is restricted to linear
operations. Furthermore, the one-shot setup described in Fig.
2 is a special case of D-QMIMO where the length of each
inner-block is equal to one (i.e. ` = 1). As a result,

COS (hnr×nt , nq) = C1(hnr×nt , nq) ≤ C`(hnr×nt , nq),

where ` ≥ 2.
We derive the bounds provided in Theorem 1 below on the

performance of the following proposed coding strategy. Con-
sider a D-QMIMO communication system where (t`nq , v`nq×`nr )
are taken so that the partition B(t`nq , v`nq×`nr ) has the maximum
number of non-empty elements as described in Proposition 1.

In other words, (t`nq , v`nq×`nr ) are chosen such that the number
of non-empty partitions is equal to

∑`rank(hnr×nt )
i=0

(
`nq

i

)
. We use the

fact that log
(

n
k

)
= nhb( k

n )+O(log n) [13] and perform a second
order analysis of the number of non-empty partition elements
as the number of delay elements ` is increased asymptotically
to characterize the set of achievable rates for high SNRs.

Theorem 1. For the D-QMIMO communication system with
nq one-bit ADCs, the capacity C` satisfies the following

nqhb(α) −
log(`)

2`
+ O

(
1
`

)
≤ C` ≤ nqhb(β) −

log(`)
2`

+ O
(

1
`

)
,

as SNR→ ∞, where α = min{ rank(hnr×nt )
nq

, 1
2 }, β = min{ nr

nq
, 1

2 }.
Particularly, if rank(hnr×nt ) = nr, then

C` → nqhb(β) as ` → ∞.

An outline of the proof is provided in the Appendix, where
a general coding strategy for arbitrary SNRs is presented.
The resulting rate is analyzed in the high SNR regime. The
complete proof is given in [16].

The following observations follow from Theorem 1:
I) The capacity approaches nq as ` → ∞ if nq ≤ 2rank(hnr×nt ).
Consequently, the extrinsic rate-loss is completely eliminated.
This is in contrast with prior works (e.g. [8], [10]), where the
high SNR capacity grows logarithmically in nq.
II) The maximum achievable rate due to using non-zero
threshold ADCs is 1

`
log

∑`rank(hnr×nt )
i=0

(
`nq

i

)
, whereas when

zero threshold ADCs are used, the maximum rate is
1
`

log
∑`rank(hnr×nt )

i=0 2
(
`nq−1

i

)
. The two values converge to each

other as ` → ∞. This shows that when long delays ` can
be tolerated, zero threshold ADCs can be used in scenarios
where non-zero thresholds are costly to implement without
any loss in transmission rate.
III) For a fixed number of transmitters nt and receivers nr, as
the number of one-bit ADCs nq is increased, the maximum
achievable rate increases linearly when nq ≤ 2rank(hnr×nt )
since hb(α) = hb( 1

2 ) = 1. The maximum achievable rate
increases logarithmically when nq � 2rank(hnr×nt ) since

nqhb

(
rank(hnr×nt )

nq

)
= rank(hnr×nt )(log nq − O(log nq)).

This is shown in Fig. 4, where for a MIMO system with nr =

10, the achievable rate in Theorem 1 is plotted as a function
of nq for nt ∈ {2, 4, 6, 8} as the number of delay elements is
taken to be asymptotically large.

IV. Conclusion

We have considered point-to-point communication over
MIMO systems when a limited number of one-bit ADCs
are available at the receiver. We have proposed a receiver
architecture which uses a sequence of delay elements to allow
for blockwise linear combining of the received analog signals.
In the high SNR regime, given a fixed number of one-bit
ADCs, we have shown that the proposed architecture achieves
the maximum transmission rate among all receiver architec-
tures. Furthermore, we have characterized a tradeoff between
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Fig. 4. The figure shows the maximum achievable high SNR rate when the
number of delay elements ` is taken to be asymptotically large for the MIMO
system with nr = 10 and nt ∈ {2, 4, 6, 8}. The red full line is the R = nq line
which is achievable if nt , nr are asymptotically large. The channel is assumed
to be full-rank.

transmission rate and the number of delay elements which
quantifies the increase in maximum achievable rate as the
number of delay elements is increased. In a companion paper
[14] we propose a class of adaptive threshold architectures
analyze their performance in PtP communications in the low
SNR regime and broadcast channel communications.
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Proof of Theorem 1

To prove the achievability (lower bound on C`), we describe
an outline of the coding strategy for arbitrary SNRs, where the
average transmission power constraint is E(||Xnt ||22) ≤ P. The
resulting communication rate is then analyzed as SNR→ ∞.
Fix ` and b, where b is the outer code blocklength.

Consider the pair (t`nq , v`nq×`nr ) which achieve the maximum
number of non-empty sets in Proposition 1. For a given rate
R, define Θn = 2nR, where n = b`. The message M ∈ [Θn] is
transmitted over b + 1 transmission blocks each of ` symbols,
where each symbol is in Rnt . Let B(t`nq , v`nq×`nr ) = {B j`nq | ji ∈
{0, 1}, i ∈ [`nq]} be the partition corresponding to the pair
(v`nq×`nr , t`nq ) as defined in Section II. Define J = { j`nq ∈

{0, 1}`nq |B jnq , ∅}, and let ŷ`nr

j`nq ∈ B j`nq , j`nq ∈ J be a set of
representatives for the partition elements. We define the input
vector corresponding to ŷ`nr

j`nq as

x̂`nt

j`nq = argminŷ`nr
j`nq

=(hnr×nt⊗I`)x`nt ‖x
`nt‖2, (4)

and the cost associated with ŷ`nr

j`nq as:

c(ŷ`nr

j`nq ) = minŷ`nr
j`nq

=(hnr×nt⊗I`)x`nt ‖x
`nt‖2.

We define the random vector Z`nr through the transition
probability PZ`nr |Ŷ`nt , where:

PZ`nr |Ŷ`nt (ŷ
`nr

k`nq |ŷ
`nr

j`nq ) = P
(
v`nq×`nr (ŷ`nr

j`nq + N`nr ) + t`nq ∈ Bk`nq

)
,

where j`nq , k`nq ∈ J . Let Couter be the capacity of the
PtP channel with the transition probability PZ`nr |Ŷ`nr subject
to the average power constraint E(c(Ŷ`nr )) ≤ `P. We first
construct a family of capacity achieving codes for this channel
using standard random coding methods. Each symbol Ŷ`nr

J`nq

in the randomly generated codewords has alphabet R`nr . In
order to transmit the symbol Ŷ`nr

J`nq , the transmitter finds the
corresponding input X`nt (Equation (4)) and transmits the
vector over ` channel uses. As the SNR goes to infinity, the
channel PZ`nr |Ŷ`nt becomes noiseless. It can be shown that the
capacity is equal to 1

`
H(Ŷ`nr ) = 1

`
log

∑`rank(hnr×nt )
i=0

(
`nq

i

)
. We

use the fact that log
(

n
k

)
= nhb( k

n ) + O(log n) to show that
the expression converges to the achievable rate in Theorem
1. The converse follows by using the Fano’s inequality along
with Proposition 1 and is omitted due to space limitations. The
complete proof is given in [16].
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