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ABSTRACT

Low-to-medium resolution analog vector-by-matrix multipliers
(VMMs) offer a remarkable energy/area efficiency as compared to
their digital counterparts. Still, the maximum attainable
performance in analog VMMs is often bounded by the overhead of
the peripheral circuits. The main contribution of this paper is the
design of novel sensing circuitry which improves energy-efficiency
and density of analog multipliers. The proposed circuit is based on
translinear Gilbert cell, which is topologically combined with a
floating nonlinear resistor and a low-gain amplifier. Several
compensation techniques are employed to ensure reliability with
respect to process, temperature, and supply voltage variations. As
a case study, we consider implementation of couple-gate current-
mode VMM with embedded split-gate NOR flash memory. Our
simulation results show that a 4-bit 100x100 VMM circuit designed
in 55 nm CMOS technology achieves the record-breaking
performance of 3.63 POps/J.
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1. Introduction

Numerous experimental results [1-3] as well as theoretical studies
[4, 5] show that analog computing could be extremely energy
efficient at low to medium precision of operation. Recent work
showed that even accounting for input/output data conversion,
mixed-signal computing can be very energy efficient for at least 6-
bit operation precision [6]. This creates opportunity for seamlessly
integrating analog accelerators into conventional digital computing
circuits to improve system’s energy efficiency. Analog computing
is also enabling some new types of in-memory computing, and
hence can address grand challenges of today’s digital computers.

Naturally, analog computing is less robust to various nonidealities
such as process variations, noise, and nonlinearities and, hence,
cannot compete with digital computing at higher (> ~8 bit)
precision. There are, however, plenty of important applications,
e.g., in machine learning, signal processing, and scientific
computing, relying on low-to-medium precision arithmetic, that are
serving now as a motivation behind development of efficient purely
analog and mixed-signal computing circuits.

Vector-by-matrix multiplication is typically the most frequent
operation in many algorithms and computational tasks, most
importantly including various types of artificial neural networks.
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Analog VMMs have been designed in various flavors and
topologies utilizing both CMOS and post-CMOS technologies [7].
The most prospective analog VMM circuits are perhaps based on
current-mode designs employing metal-oxide memristors [3] due
to the excellent scalability, analog properties, and non-volatility of
such devices. Yet, memristor fabrication technology is not
advanced enough for very large-scale integration. Therefore, some
of the research is now focused on more mature, but less dense
nonvolatile memories (NVMs), such as floating gate memories [8-
11]. For example, an experimentally tested analog neuromorphic
chip [2] performed high-fidelity classification with record-breaking
speed, density, and energy efficiency, and featured negligible chip-
to-chip variations.

Interestingly, numerous papers have been published on the analysis
of crossbar array circuits and devices, but little work has been done
on optimizing the peripheral circuits. Yet, some prior works
claimed that peripheral (sensing) circuitry is the most energy and
area demanding component of current-mode VMMs. For example,
the power consumption of the peripheral circuitry exceeded 90% in
[2] and 83% in [3] of the total budget. The reported area overhead
was crudely 95% and more than 55%, correspondingly, for these
two studies. This is why the major goal of this work is the
development of a high-performance peripheral circuitry for
current-mode NVM-based VMM. Our specific focus is on sensing
circuit, which is the most important VMM peripheral component.
Other peripheral circuits can be typically shared among multiple
VMM blocks and have rather negligible overhead. In the context of
artificial neural networks, the periphery (neurons) may include
activation function circuits, whose overhead is also typically
negligible as compared to sensing circuits.

2. Previous Work
2.1 Mixed-Signal VMM Circuits

A number of different VMM topologies, some implemented with
unique peripheral circuits, have been proposed in analog and
mixed-signal domains [12-15]. For example, time-based [12,13,15]
and switch-capacitor [14] multipliers use charge to encode data.
The former approach, designed to operate in very low voltages, is
based on charge integration from digitally programmable current
sources. One of its challenges is process-voltage-temperature
(PVT) variations that may limit the smallest integration delay and
hence the circuit performance. In addition, a large capacitor (e.g.,
25 pF in [12]) might be needed to minimize charge injection issues
and increase the signal-to-noise ratio.

In the second approach, precisely-fabricated fringe capacitors are
employed to implement active multipliers with a moderate
precision (> 4-bit) [14]. Its main issue is large and power hungry
active amplifiers. Passive switched-capacitor circuits could in
principle address this problem though at the expense of having
more leakage, capacitive coupling, and charge injection issues,
which in turn limits computing precision to < 4-bit [1].



In current-mode approach, multiplication and addition are
performed with fundamental Ohm and Kirchhoff’s laws (Fig. 1).
Here, the j-th output (current in Fig. 1), is given
by

b= S W,

where Wj;, are the matrix weights (crosspoint conductances) and V;
is the i element of the input (voltage) vector. In general, depending
on the choice of utilized crosspoint devices and peripheral circuits,
both input and output vectors can be presented in terms of either
voltage or current. Weights are encoded as conductances in
resistive crossbar memories [3], subthreshold currents in floating
gate memories [2], or transistor widths in pure CMOS designs [16].

For example, cascode current mirror structure was used in [16] to
implement a fully current-mode VMM, i.e. with both input and
output vectors encoded via currents. Weights are realized by a set
of transistors whose widths are scaled according to the
predetermined values. The main caveat of such design is an area
(and hence energy) overhead for weight implementation, which
exponentially increases with weight precision. A more promising
solution is to implement matrix weights with NVMs, such as
programmable conductance crosspoint devices.  Especially
encouraging is a recent work on VMMs based on metal-oxide
memristors [3] and floating-gate memories [8-10].
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Fig. 1. A general idea of MxN current-mode all-analog VMM circuit.
The inset shows several options for crosspoint device implementation.

2.2 Flash-based VMM design

Implementations of neuromorphic circuits with floating gate
memories have a long history [6]. The most prominent examples
are circuits based on so-called “synaptic transistor”, which is a type
of floating gate memory implemented with standard CMOS
process. Even though many efficient systems have been built using
synaptic transistors, the main caveat of that approach is bulky
memory cells, with ~103 F2 footprint per memory device, where F
is the process minimum feature size [6]. In another, more recent
work, industrial-grade memory cells, that have ~25 F? footprint per
cell, were modified to for analog circuit applications [10]. The
redesign allowed for precise tuning of the individual cells, which is
a necessary functionality for analog-mode VMMs. The effective
area of redesigned cell was tripled though it was still an order of
magnitude denser than that of synaptic devices.

Some of the results presented in this paper are based on such
redesigned 55-nm ESF3 NOR flash memory (Fig. 2a-c). Due to its
split-gate structure, ESF3 devices offer very high output
impedance. For example, the experimentally measured output
resistance is about 100 GQ in subthreshold regime for the targeted
current range, which is useful for the considered analog

applications. Also, the cell’s compact structure results in a very low
capacitance, of the order of ~75 aF/cell on average, during
subthreshold operation. (More details on the various aspects of this
technology, including /-V characteristics, erasure and programming
operation, cycling endurance, retention, noise are discussed in

[10].)

Figure 2d shows the most common design for floating gate memory
VMMs based the gate-couple topology. In such design, the input
current vector is applied to an array of diode-connected floating
gate memory cells. The two-quadrant multiplication is
implemented by dedicating two rows per output and using the
conventional differential weight scheme.
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Fig. 2. Current-mode VMM implementation with split-gate NOR flash
memory: (a) Schematics and (b) TEM image of SST’s ESF3 supercell; (c)
Drain-source current as a function of control-gate voltage under typical
read conditions (Ve = 1 V, Vwr = 1.2 V, Vg = 0 V) for various
programmed states. The unshaded area shows typical low-voltage
operating region; (d) Example of a 2x2 VMM circuit, inluding two rows of
peripheral cells, and the key equations governing its operation.

2.3 Sensing Circuits for Current-Mode VMMs

The peripheral sensing circuit is typically designed to provide low
input impedance on a shared bitline, i.e. the horizontal lines in Fig.
1, and sink/source the current flowing in it. The simplest approach
for sensing the current is to use a low-voltage cascode current
mirror. Its main challenges are nonlinearities in the transfer
function and voltage variation on the virtual bias, which can
significantly deteriorate the precision. In addition, current mirrors
are susceptible to process variations, which mandates large devices.
The upshot is low-speed and high-power consumption.

Conventional transimpedance amplifiers (TIAs) have been used in
both nanodevice computing engines [3] and flash-based dot-
product circuits [10] to pin the virtual bias needed for linear
operation and for /-7 conversion. The area overhead of operational
amplifiers has been disregarded in favor of excellent linearity. In
addition, the amplifiers are often designed to work in a certain
“operating point” rather than dealing with a large-signal input. This
requires a huge overdesign cost in terms of power and area for
proper functionality. There are other drawbacks including the



requirement of high gain amplifier in a TIA, the dependence of
bandwidth on feedback resistor, the need for compensation, and the
circuit slews for a significant period of time.

All-analog current-mode designs could potentially allow for a
much better performance/cost. Indeed, another implementation
approach is to use a second-generation current conveyor (CCII).
The idea was originally introduced in [17], where CCII has been
used to build current summers featuring low input impedance.
Since then, various CMOS implementations were proposed [18],
utilizing either open-loop and close-loop structures, with the former
preferred for a better speed and dynamic behavior. It is also worth
mentioning that CCII designs based on the topology introduced in
[19] are not limited by slew-limited transient response and the gain-
bandwidth product tradeoff and hence, in principle, achieve higher
speed compared to TIAs. However, their overall energy
consumption and circuit area are still very high (see, e.g., [20]).
Also, the designs based on operational amplifiers are not appealing
for obvious reasons.

In light of the aforementioned shortcomings, we have designed a
compact current-mode peripheral circuitry based on Gilbert
translinear loop, which provides a relatively low-input impedance
and a wide range of gain control and temperature insensitivity. The
design unique features ultimately enable excellent linearity and
high-speed and low-energy operation.

3. Proposed Sensing Circuit

The proposed circuit is shown in Fig. 3. The array bitline is
connected to node “Q”, while array current is supplied by M3a.. Due
to the local feedback loop, the increase in the input current leads to
decrease in . and, as a result, differential voltage between X and
Y nodes, which is then converted to current by the following low-
gain amplifier.

Mi, M2, and M4 pairs are designed in weak inversion and M3 pair
is velocity saturated. The rest of the devices are operated in the
saturation regime. When biased in weak inversion, M4 pairs form
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Fig. 3. The proposed sensing circuit for current-mode VMM (not
including biasing circuitry).

a translinear loop, which has an excellent wideband current-
following behavior.

When the input current is zero, i.e. fin = 0, [3:=I3b, the symmetrical
structure of the circuit imposes 3. = lv/2, where Iy is the bias current
provided by Ms. Since /in is supplied by M., the circuit analysis
yields

Lia= Uy = 1Iin)/2, Ly =Up+1in)/2 .
Since M1 4 pairs are biased in subthreshold, Vxy is expressed as
Vxy = nVrIn(Uy + lin) /Uy — Iin))

where V't and n are thermal voltage and subthreshold slope factor,
respectively. Furthermore, a simple analysis shows that

14_3 — Iy+Iin

Ly Ip=Iin’
Assuming that [r = lsat+l4b is the bias provided by Mo, the output
current, i.e. the sensing circuit transfer characteristic, is given by

I
lout = (I_F) [ip. (€Y
b

To improve the performance, one can use low- Vi devices for M13.4
pairs (though this is not mandatory for proper functionality). As we
show later, in 55 nm process, this allows reaching the same
nonlinearity performance with crudely 15% less power
consumption.

4. Circuit Analysis
4.1 Nonlinearity

Closed-loop high-gain amplifiers provide excellent linearity as
long as the gain requirements are met. For current processing
circuits, nonlinearity becomes challenging in part due to the short
channel effects in sub-deca-nm technologies. Both deterministic
and random factors result in deviation from the ideal behavior given
by Eq. 1.

Specifically, the main intrinsic nonlinearity originates from
unequal source drain voltages across M. and Msb. The maximum
relative error, defined as ()max = ( [out-Lou'®®)/ Tou¥®! Ymax due to
only this factor is shown in Figure 4a. Reducing (dr)max is related
to minimizing J = [32/I3b, which in turn, is a function of /in and I,
and is achieved by designing M3 in the deep velocity saturated
region. For example, (Jr)max could be made as low as 0.1% by
properly adjusting the bias current.

The second issue is process induced variations. For example,
mismatch between [3a and b creates an offset in the transfer
characteristics. One straightforward solution is to adjust
accordingly memory cells’ conductances. Indeed, /3a - [3b offset can
be compensated by properly tuning conductances in two additional
auxiliary columns of memory cells, i.e. with two extra devices per
each bitline. After measuring the input-referred offset, one of the
devices of a pair, based on the sign of the offset current, is set to
either sink or source the desired current, while the other one is fully
turned off. This approach allows avoiding scaling transistors in the
sensing circuit, with minimal power/area overhead. Process-
induced variations also impact (dr)max, since 0 depends on the
matching of the M3 pair. Additionally, a mismatch in the voltage
threshold of M4 pairs could result in deviations from ideal output
current. The solution here again is to compensate total resultant
offset by fine-tuning crossbar devices.

To evaluate the impact of process variations, we use statistical
simulations over all corners to find the worst-case nonlinearity. As
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Fig. 4. The impact of nonideal transistor behaviour, process variations, and finite condutance on the circuit linearity as a function of bias current: (a) Error
due to source voltage variations across Ms, and M3, assuming [y, = (Zin)max in TT corner, (b) total realtive error at the output due to device mismatches, and

(c) virtual bias variations. For all panels, (Zi)max =1 pA and Vpp=1.2 V.

shown in Fig. 4b, both mean and variance of the total nonlinearity
error could be as low as 0.26%. This can be improved even further
by increasing the area of the circuit (discussed below). It is worth
mentioning that the discussed techniques raise energy
consumption, naturally yielding a precision-energy trade-off. Also,
in practice, the nonlinearity error is expected to be less, by a factor
of ~5 according to our estimates, when accounting for symmetric
layout mismatch reduction techniques, which were not considered
in this work.

Finite input conductance of the sensing circuit contributes to the
nonlinearity of VMM operation rather than sensing. Intuitively,
when the input current increases, 12 decreases and so does the M2a
source voltage. The maximum change in M2.’s source-gate voltage
is given by —nVr In[1-(Zi/lv)max]. However, the negative local
feedback, formed by Mio and M1, decreases Mza’s gate voltage,
and therefore compensates for source-gate voltage change.
Additonally, proper sizing of M1 and controlling the bias current
allow controling virtual bias swing for a given maximum input
current (Fig. 4c). The impact of this swing on computing precision
depends on the type of memory cell used in the array and will be
discussed in Sect. 5.2 for the case of floating gate memory.

Finally, it is noteworthy that all nonlinearity terms reduce
simultaneously with respect to the bias current (Fig. 4). Therefore,
in a typical design, the minimum bias current could be determined
by the precision requirements.

4.2 Noise

The proposed circuit has a relatively low input impedance so that
input-referred current noise scales linearly with bias current (Fig.
5a). It should be noted however, that for the case of sub-deca-
nanometer memory technologies and, in particular, floating-gate
memories, low-frequency noise of these devices would dominate
the noise power [10] — see Sect. 5.2 for more discussion.

4.3 Settling Time

In general, transfer function linearity requirement determines
determine the transistor sizing, and, in particular, the smallest /b,
and capacitances Cx, and Cy. With these values fixed, the settling
time, and, as a result, energy consumption, can be further optimized
by finding the optimal output pole location. The output pole can be
relocated by adjusting the output current, e.g., by changing /r. For
a certain translinear loop size, initially increasing /r improves the
settling time (Fig. 5Sb). However, at some point, the overshoot in
time response becomes excessive and deteriorates the settling time.
Increasing the output current is no longer helpful since the
dominant pole is no longer attributed to the output pole. To
summarize, the optimum settling time is obtained by adjusting /r
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Fig. 5. Analysis of noise, settling time, and PVT variations: (a) Total
integrated input-referred current noise for several /r as a function of bias
currents at /;, = 0 and 100 MHz bandwidth; (b) Settling time as a function
of translinear loop size and /r current at /, = 1.75 pA; (c) Temperature
dependence of virtual bias variation (AV), slope, and total worst-case
nonlinearity error; (d) Impact of supply voltage variations on AV, transfer
function slope, and total worst-case nonlinearity error. For all panels,
Fmax =1 pA, CL=7.5 F.

based on given Iy, Cx, and Cy, i.e. the location of the first pole, and
Ci, i.e. corresponding dimensions of the load array.

4.4 Temperature and Supply Variations

Figure 5c shows the temperature dependence of the considered
nonlinearities. In general, virtual bias is sensitive to temperature
variations because V; is a function of temperature. To bound the
worst-case AV below the desired value, across all temperatures, Iv
is supplied from a PTAT (proportional to absolute temperature)
current source. Fig. 5¢ shows that this compensation scheme allows
to limit virtual bias variation within wide range of temperatures.
Additionally, to keep the slope of the transfer function temperature
invariant (within < 0.2%), Ir is also supplied by the same PTAT
source. The temperature sensitivity of both A}V and slope can be
further improved by designing a more complex compensation
circuitry.

Finally, Figure 5d shows that reasonable +4% fluctuations in
supply voltage result in <0.5% change of the transfer function
slope. This is because the slope depends only on bias currents, so
that as long as the current reference, which supplies these bias
currents, is voltage insensitive and critical devices remain in their
targeted operating region, the linearity remains acceptable.



5. Case Studies
5.1 Metric-Optimal Sensing Circuits

We designed four different styles of the proposed sensing circuit,
in each case optimizing bias current and size of the devices
according to the specific metric. In particular, we consider power-
optimal (referred as Si), the area-optimal (S2), the precision-
optimal (S3), and the energy-optimal (S4) designs. In addition, each
style is implemented based on a targeted 6-bit for S1,2,4 and 8-bit for
S3 precision requirement. All designs are based on 1.2 V devices in
Global Foundries 55 nm process technology.

Fig. 6a summarizes various characteristics of the implemented
designs, while Fig. 6b shows the impact of input current for S4. (The
maximum input current is naturally linearly proportional to
parameter N of VMM circuit.) Figure 6b shows that for small input
currents, the critical devices must be kept large to counteract the
process variation effects, resulting in slower operation. On the other
hand, 7, and width of M1 23 can be scaled up accordingly for larger
maximum input currents to keep the precision/speed constant. The
power, area, and energy naturally increase with respect to the
maximum input current.

The impact of process variations on the circuit’s linearity is also
studied for all designs (Fig. 6a). Statistical simulations across all
corners show that the sensing circuitry can effectively operate with
up to 8-bit precision. In particular, the process-induced precision
errors are controlled by the proper sizing of the translinear devices
and the bias current. Dispersion in transfer function slope, which
follows a normal distribution, is addressed by adjusting the
weights.
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Fig. 6. Sensing circuit results: (a) Various performance characteristics for
4 different implemented designs assuming (fin)max = 1 LA and Cp = 7.5 fF,
which crudely corresponds to a 4-bit 100x100 1Q VMM based on floating
gate memory, driving the same size circuit; (b) Impact of the input current
on S, sensing circuit chracteristics. Nonlinearity and virtual bias distortion
are kept relatively constant at 1.05% and 14.5 mV, respectively.

5.2 All-Analog Current-Mode NOR Flash VMM

Energy-optimal design S4 is further utilized to investigate
performance of a current-input current-output fully analog VMM
based on split-gate embedded NOR flash memory technology.

One of the most important characteristics for the analog-mode
VMM is its effective operating precision. Even though Sa design is
suitable for 6-bit operation, for simplicity, we here consider rather
conservative assumption that VMM ’s input, weight, and computing
precisions are all effectively 4 bit. To justify it, let us first note that
the weight precision might be limited by each of the following
factors: tuning accuracy, drift, bitline bias variations, and
subthreshold slope nonlinearities.

The redesigned layout of the memory array allowed to demonstrate
experimentally >8-bit tuning accuracy for a single cell when
sufficient number of pulses are applied during tuning procedure
[21]. The tuning precision is expected to be somewhat lower for

the current mirror structure, especially considering half-select
disturbance in the memory array, but still much better than the
targeted 4-bit precision [10]. The virtual bias variation A}V can be
limited to less than 15 mV, which corresponds to < 1% overall
bitline distortion for the targeted current range. The accelerated
retention tests have shown less than 1% drift in memory state after
7 months for the vast majority of devices [2], thus also providing
evidence for implementation of 4-bit weights.

In general, the effective weight error due to the subthreshold slope
nonlinearities depends on the choice of peripheral device state and
the selected range of states used for the array devices. In addition,
there is a tradeoff between power consumption and weight
precision. Indeed, using the memory states corresponding to the
lower operating voltages (Fig. 2c¢) helps reducing power
consumption. The downside is that at these voltages the
subthreshold slopes are more nonlinear. In light of this tradeoft, the
state of the peripheral cell and the maximum current via array
device are assumed to be 30 nA and 10 nA, respectively, under Vcg
=09V, VwL=1.2V, and VsL= 1 V biasing conditions, shown in
the unshaded region of Fig. 2c.

Assuming negligible input-referred noise of the sensing circuit, the
main limiting factors for the computing (output) precision are the
sensing circuit’s nonlinearities and the low-frequency noise of the
memory devices. Following the analysis presented in Sect. 4.1, the
total relative nonlinearity error of the sensing circuit based on S
style is 1.1%. The subthreshold current fluctuations are mainly due
random telegraph noise (RTN) in as-fabricated cells, and, more
generally, 1/f noise after repeated switching. For example,
discernible transition between RTN and 1/f noise was
experimentally observed in 65 nm NOR flash memories within 100
switching cycles [22]. Our own measurements for ESF3 cells show
that only few cells (out of 140 total) had severe subthreshold current
fluctuations, even after cycling each device 1000 times.

Assuming the targeted maximum current, and the reported
spectrum with flat region below 1 KHz and the corner frequency of
~500 KHz [22], the root mean square of the current noise via single
device is ~575 pA at 300 MHz operating bandwidth. The total
resultant output signal-to-noise ratio is ~44.8 dB for 100 element
dot-product operation. (Due to similar physics of operation, 1/f
noise can be also crudely quantified by considering much more
numerous reported noise data for standard 55 nm MOSFETSs with
the same width and length.)

The above analysis takes into account all important nonideality
factors and shows that achieving 4-bit computing and weight
precision should be relatively straightforward for the considered
VMM design. The estimates are rather conservative and, e.g., even
higher weight precision is possible when using larger operating
voltages.

To evaluate and optimize operation speed, we assumed that several
VMNMs are chained in a cascade structure, with output of one VMM
sensing circuit feeding directly the input of the next VMM stage.
This assumption is representative of all-analog multilayer neural
network implementation (though neglects additional circuitry,
which might be required for neuron implementation). The
propagation delay through such cascade can be minimized by
adjusting VMMSs’ output pole locations. Note that since the input
pole of a particular stage VMM is effectively the output pole for
the preceding stage multiplier, only output pole can be considered.
Also, out of the two output poles, the first one is always fixed based
on the sensing circuitry’s targeted maximum input current and
linearity requirement. Therefore, the goal is to only find optimal



location of the second pole, at which the settling time is the
smallest.

More specifically, as discussed in Sect. 4.3, for a desired, fixed
sensing circuit linearity and given capacitive load, the smallest
delay is achieved at the specific sensing circuit output current. The
optimal current value, however, is typically higher than the nominal
subthreshold current of the minimum size floating gate transistor.
Forcing such optimal current via single peripheral floating gate cell
would lead to significant errors in the multiplier operation.

To overcome this issue, we assume that M, peripheral cells are
connected in parallel for each input, which effectively increases the
width of the peripheral floating gate transistors. In particular, let us
first note that the optimal output current is proportional to the load
capacitance, which is (M+Mp)Ceell, Where Ceen is memory cell’s unit
capacitance. Therefore, for the most interesting cases of large M,
increasing M, and, simultaneously, output current for optimal pole
location result in both lowering individual currents via peripheral
cells and decreasing settling time. More generally, the settling time
in this case is proportional to (1+M/Mp)Ceett/(Ip)max, Where (Ip)max is
the desired maximum current via peripheral cell.

Figure 7 summarizes various performance characteristics of the
considered VMM as a function of its size. As expected, the
simulation results show that the average energy consumption for
the dot-product operation (one channel) is growing superlinearly
with N, mostly due to the increasing maximum input current. The
number of operations per channel grows linearly, and with constant
settling time, the energy-efficiency saturates. The relative
peripheral area overhead is always below 11%.
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Fig. 7. Performace, total area, and energy per channel for NxN VMM
based on 55 nm ESF3 NOR flash memory. POp/J operation is achieved
for N> 50, which are practical kernel sizes for many applications.

6. Summary

A very efficient sensing circuitry, which utilizes the translinear
principle of Gilbert cell, is proposed to boost the performance of
NVM-based analog-mode VMM:s. In prior work, the area, energy,
and density potentials of current-domain circuits were typically
counterbalanced by the overhead of PVT compensation. In this
study, offset calibration is performed by considering two auxiliary
columns of programmable NVMs in the crossbar array so that
robustness against PVT variations is achieved with minimal
overhead. As a case study, we investigated several sensing circuits,
each optimized for a specific metric. Our simulation results show
that 100x100 4-bit VMM designed in 55 nm CMOS technology
with embedded NOR flash and employing energy-optimal sensing
circuit achieves 3.63 POps/J.
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