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ABSTRACT

Stream-based active learning methods assume that data instances
arrive in sequence and the decision must be made to query an in-
stance or not as it arrives. In mobile health and human activity
recognition, the data stream is often block-structured where in-
stances in the same block have the same label, but the boundaries
between blocks are unobserved. In this paper, we propose an ap-
proach to active learning in this setting where we simultaneously
learn to segment the stream while learning an instance-level dis-
criminative classifier. We show that by propagating collected labels
into inferred segments, we can learn improved predictive models
with significantly fewer queries.
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1 INTRODUCTION

While unlabeled data are abundant in many traditional applica-
tion areas of machine learning and data mining, the labeled data
required to apply supervised learning methods remain scarce in
many domains due to the time and cost required for data annota-
tion. Active learning methods attempt to address this problem under
a model where a learner creates a labeled data set by iteratively
querying an oracle to obtain labels for instances [22]. The goal of
active learning methods is to minimize the generalization loss that
a given supervised learning model achieves given a sample of N
labeled training data instances by selectively sampling (as opposed
to randomly sampling) instances for labeling by the oracle.
Active learning methods fall into several categories based on
how the learner interacts with the labeling oracle. In this work,
we focus on the stream-based (or online) setting where the learner
must make sequential decisions about whether to query for the
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label of each instance in a stream of instances [4]. We consider a
specialization of active learning in the online setting where the data
stream is block-structured, by which we mean that instances in the
same block have the same label. However, the boundaries between
blocks are not observed. This problem is motivated by online active
learning for human activity recognition [10] and mobile health [9]
where users must be queried in real-time for labels, but activity
states naturally persist though time.

To leverage the resulting block structure of the label streams, we
investigate methods for joint segmentation and active learning. In
particular, we focus on the use of semi-supervised hidden Markov
models to learn to segment streams, coupled with the learning of
discriminative classification models. Our approach allows obtained
label information to propagate along inferred segments, effectively
enabling a single active learning query to label an inferred block of
instances. We present results using both basic logistic regression
models and neural network models showing that this approach can
significantly out-perform standard stream based active learning
methods that apply the results of queries to single data points.

2 BACKGROUND AND RELATED WORK

In this section, we begin by presenting technical background on ac-
tive learning. We then discuss active learning in the human activity
recognition and mobile health domains.
Notation: We denote data instances by x € X and corresponding
labels by y € M. We let C denote the number of labels. Our main
interest in this work is learning score-based, instance-level discimi-
native classification functions f : Y x X — R. We will denote the
space of possible classification functions by F (typically indexed by
a continuous parameter vector w). The canonical hard classification
rule is given by arg max,c y f(y’,x). We denote the oracle label-
ing function by Q : X — Y. We define L(D) to be a supervised
classifier learning function, which takes a labeled training set O as
input and outputs a classifier.
Stream-Based Active Learning Background: In classical stream-
based or online active learning [4], we assume access to a stream
S of unlabeled instances x;, 0 < t < T where T is the length of the
stream.! T may be finite or infinite and may be known or unknown
to the active learner. By assumption, the labeling oracle Q can only
be queried for the label of instance X; at time ¢. We denote the
learned classifier following the i*" query by f;. The goal of the
learner is to minimize the generalization loss of the classifier by
optimally selecting instances for labeling from the stream. It is also
common to start learning from a small initial data set.

Common methods for stream-based active learning leverage a
utility function u : X X ¥ — R that estimates the usefulness of

1To simplify notation, we will refer to ¢ as indexing time, although the interval between
the arrival of instances in the stream need not be uniform in general.
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Algorithm 1 Utility maximizing stream-based active learning

1: Function SAL(S, Do, u, L, Q, 7, B):
2t 0; fo « L(Do); i < | Dyl

3. while i < Bdo

4: X — S

5 if u(xs, fi-1) = 7 then

6 yr — Q(x¢)

7: Di — Di1 U{(ys,x4)}

8

9

fi & L(Di)
ie—i+1
10: te—t+1
11: Return fp

obtaining a label for the current instance X; based on the classifier
fi available at that time. To decide whether to query an instance,
the utility is compared to a fixed threshold [22]. We show a general
stream-based active learning method in Algorithm 1 where S is
the stream, Dy is an initial training data set (possibly empty), u is
the utility function, L is the underlying supervised learner, Q is the
labeling oracle, 7 is the utility threshold and B is the active learning
query budget.

Note that we do not require that the learner L used here operate
in a fully online fashion where the current classifier must be up-
dated on the basis of the current labeled instance only. Instead, as
in the pool-based setting [12], we assume that all labeled instances
collected to date can be used to update the classifier. This approach
can easily be modified to update the classifier using a fixed-size
buffer of instances of any size, including the current instance only,
in which case the supervised learner may also take the previously
learned classifier f;_; as an input. The algorithm can also be modi-
fied to use an adaptive threshold z(¢), but in this work we restrict
our investigation to the case of a fixed threshold.

The active learning literature includes many different utility
functions. Within the uncertainty sampling family, the entropy and
margin utilities are both commonly used. Both utilities require the
classification score function f(y, x) to provide a probability distribu-
tion over the values of y (e.g., f(y,x) = p(y|x)). The entropy-based
utility function ug(x, f) corresponds to the standard Shannon en-
tropy [23]. The margin utility corresponds to the difference in
probability between the most likely class y. given x and the sec-
ond most likely class y’. Instances with smaller margins (higher
uncertainty) are sampled, so the utility function up;(x, f) must be
negated for use in Algorithm 1.

un(x, ) == ), f(,%)log(f(y, %)) (1)
yey
um(x, f) = fyex) - £y, ) (2)

mHealth, HAR and Active Learning: This work is motivated by
applications in the closely related areas of mobile health (mHealth)
and human activity recognition (HAR). In these domains, a key
challenge is developing accurate models for detecting a wide range
of general and health-related activities and behaviors from multi-
modal on-body sensor data including sleep [21], physical activity
[25], eating and drinking [24] cigarette smoking [2, 20], drug use
[7, 18] and more.
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However, the data from commonly used sensors is generally not
human interpretable and can generally not be labeled after collec-
tion without access to additional sources of data like video. The use
of video data to support labeling is impractical outside of controlled
lab settings, which themselves suffer from limited real-world va-
lidity resulting in other modeling challenges [16]. Alternative field
data collection protocols rely on self-reported activity labels, which
either places a large burden on study participants if temporally
dense labels are requested, or results in substantial missingness
if labels are sparsely requested. At the same time, many studies
have indicated significantly better performance when personalizing
models to individuals instead of using global models [20, 25].

As a result, the online, real-time nature of the activity labeling
problem is an excellent match for stream-based active learning
methods where methods generate queries in real time and each
individual serves as the labeling oracle for their own sensor data
streams. Interestingly, this problem has much richer structure than
the classical streaming setting. For example, activity states typically
persist through time. It is also often feasible to query individuals
for the labels of events in the recent past, although with possibly
degraded accuracy in the provided labels. Finally, while not all
individuals are the same, they are also not all completely different,
resulting in the possibility of reducing labeling burden by sharing
data across similar individuals.

In terms of prior work, Miu et al. investigated methods for online
active learning in the HAR setting, but used the ground truth activ-
ity segments on the more challenging case of non-periodic activities
that we investigate here, while for the case of periodic activities
they leverage a basic change-point method in the feature space [14].
Martindale et al. use a hierarchical hidden Markov model (HMM)
as part of a smart data annotation tool in an active learning-like
setting for labeling gait data sets [13]. However, they condition
on high-level gait labels and use the tool to assist with labeling
individual gait cycles. Similarly, Alemdar et al. use an HMM-based
model to perform active learning for activity recognition based
on ambient (as opposed to on-body) sensors [1]. However, their
approach relies on issuing multiple queries once per day and is thus
not a fully online streaming active learning method. There is also re-
lated work on clustering-based methods for active learning in data
streams; however, this work focuses on a batch incremental setting
where multiple instances are selected for labeling from a stream at
once instead of in a fully online fashion [8]. Finally, we note that
past work in the mHealth setting has leveraged between-subject
similarity structure when applying active learning to a cohort of
individuals simultaneously, but this work was performed in the
pool-based active learning setting [17].

3 PROPOSED APPROACH

In this section, we present our proposed approach to the problem
of active learning for block-structured data streams.

Overview: As mentioned in the introduction, our ultimate goal
is to more efficiently learn an instance-level discriminative clas-
sifier by exploiting the block structure of the data stream. To do
so, we proposed a hybrid approach that combines online semi-
supervised learning of a segmentation model with online active
learning of a discriminative instance classifier. The central idea is
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Algorithm 2 Joint Segmentation and Active Learning
1: Function JSAL(S, Do, u, L, Q, 7, 0):
2t 0; fo & L(Do); i « |Dol; bs < 0
3. while i < B do

4 Xt S

5 if o(x;) then

6: be —t-1

’ if bs?,?;‘be(“(xk,ﬁ—l)) > r then

> Ye1 — Qxe-1)

9 Di — Dij—1 U{(xg,ys-1)|bs < k < be}
1 fi = L(Di)bs —t;i—i+1

11: te—t+1

12: Return fp

that by introducing a segmenter, which makes predictions about
the block-structure of the input data stream, we can infer block
boundaries and use single queries to label blocks. We only trigger
an evaluation of the active learning utility function at inferred block
boundaries and the utility that is assessed is the maximum utility
among all instances in the inferred block. If a query is issued, the
whole inferred block of labeled instances can then be added to the
training set of the discriminative classifier.

Algorithm 2 illustrates the approach using a fixed segmenter
o that returns True when it predicts that a new block has started.
We operate the segmenter in a conservative, over-segmentation
mode, which mitigates the risk of introducing label error due to
inaccurate inference of block boundaries at the cost of reduced
label propagation. While active learning of the classifier is used to
drive the active learning in the proposed framework, the segmenter
can also be trained online in a semi-supervised fashion using both
abundant unlabeled instances and labeled instances returned by
active learning. The segmenter can also condition on observed
labels to improve segmentation inference. We use both extensions
in this work.

We also note that this algorithm makes assumptions about the
availability of unlabeled instances that differ from the more strin-
gent classical streaming setting where it is assumed that instance
x; must be processed at time t and then discarded. As we can see,
Algorithm 2 assumes access to all unlabeled instances from the
previous block and the query that is issued is actually for the most
recent instance in the previous block. In practice, the additional
assumptions pose little practical concern as the individual instances
in the mHealth and HAR setting are typically short in duration
(for example, one to several minutes long). Similarly, maintaining a
buffer of instances for the current block is not a problem as blocks
may last from minutes to hours depending on the application. If
needed, a maximum allowable block length can also asserted. When
learning the segmenter online, it will also typically be necessary to
retain additional unlabeled data. Again, a buffer of the desired size
can be used for this purpose that satisfies any storage constraints.
In our experiments, we do not apply storage restrictions as the data
volumes do not require it.

In the next sections, we discuss the choices we explore for the
segmenter and classifier in this work.
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Segmentation: As noted in the related work section, hidden
Markov models (HMMs) [3] have been used as the classifiers in
some previous work on active learning for activity recognition. We
adopt HMMs as well to exploit their ability to accomodate semi-
supervised training. However, we decouple their application as
segmenters from their application as classifiers to enable the use of
discriminative classifiers.

In this work, we use a Gaussian emission model Pr(X; = x|Y; =
y) = N(x|py, Ay) where py is the class conditional mean and Ay is
the class conditional covariance matrix. We consider diagonal and
full covariance matrices. For the label transition matrix Pr(Y; =
y'|Yi—1 = y) = 7y, we consider a full parameterization of 7, as
well as a simplified parameterization where the probability of no
transition is p and if a transition occurs, all values of y are equally
likely (including the current class).

To train the model, we use the Expectation-Maximization (EM)
algorithm [5] with Laplace smoothing on the transition probability
parameters. We train the model in a semi-supervised fashion using
acquired instance labels together with unlabeled instances seen
to date. We choose to update the model only when a new labeled
instance is obtained or K time steps have passed since the last
query was issued. The update schedule parameter K is introduced
for increased control of computation required.

Given the current trained model, the decision rule for block
boundaries is straightforward. Given a hyper-parameter ¢, the seg-
menter will predict that x; belongs to a new segment if:

Z Pr(Y, = Yo1lX1, ..., X;) < €
yey

In other words, the segmenter predicts that a point is the start
of a new block if the probability that it shares the same label as
its predecessor is not sufficiently high. This probability is easily
obtainable as a pairwise marginal from the messages computed by
the forward-backward algorithm used within the EM algorithm [15].
We note that the structure of this inference shows its advantage over
using the instance classifier itself to decide when block boundaries
occur since it marginalizes over the possible joint label assignments
of the two instances give the transition structure and history of the
HMM. We further note that this inference can also condition on
whatever labels have previously been obtained. Finally, we note that
the parameter € directly controls how conservative the segmenter
is. The larger the value of €, the more conservative the segmenter
and the smaller the blocks will be on average.
Discriminative Classification: We consider two probabilistic clas-
sification models in this work: a basic multi-class logistic regression
model and a Bayesian feed-forward neural network model. The
logistic regression model [6] parameterizes the conditional proba-
bility P(Y = y|x) of the labels given the features using a log linear
function of the features. Due to the fact that the number of parame-
ters equals the number of features, the model has minimal variance
and can be efficiently trained using standard maximum likelihood
methods at small data volumes. This makes it a good choice for ac-
tive learning with low label budgets, which is the scenario we focus
on here, although the model will have high bias in cases where the
data are not close to being linearly separable.

We also consider Bayesian feed-forward neural network models
as an approach to achieving a more flexible bias-variance trade-off
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Figure 1: Results of active learning experiments on the MNIST and Opportunity data sets.

during active learning. Specifically, we adopt Stochastic Gradient
Langevin Dynamics (SGLD) as an efficient Markov chain Monte
Carlo (MCMC) method for implementing Bayesian inference in
neural network models [26]. Given a neural network architecture
and a prior over the network’s parameters w, SGLD allows for
sampling model parameters w from the model’s posterior distri-
bution over parameters when conditioning on a training data set.
The SGLD algorithm constructs a Markov chain using gradient
information that can be computed from mini-batches, which allows
for the per-iteration cost to be controlled as the data set size grows.

In this work, we use an incremental, parallel-chains variant of
SGLD. We run M completely separate SGLD chains. Each chain
provides a sample of the weights that is independent of the other
chains. The model’s posterior predictive distribution P(Y = y|x, D)
is then obtained as a Monte Carlo average of the predictions ob-
tained from the current sample provided by each chain. When a
new labeled instance is obtained, the posterior is updated by ad-
vancing all chains for a specified number of steps. The prediction
cost of this approach is M times higher than when using a single
neural network model. However, the use of MCMC methods in-
stead of point-estimation has the potential to enable the effective
use of neural network models in active learning despite their high
variance, while avoiding the approximation bias that occurs when
using variational Bayesian inference.

4 EXPERIMENTS AND RESULTS

In this section, we present initial experimental results comparing
the proposed approach (Proposed) to the traditional stream-based
active learning setting where a single query is used to label a single
instance (Stream). We also consider two oracle baselines including
an oracle HMM segmenter trained on all available data for a given
data set (Oracle HMM), and an oracle segmenter that uses the true
segment boundaries (Oracle Seg).

Data Sets: We consider two data sets: MNIST [11] and the Oppor-
tunity Human Activity Recognition data set [19]. MNSIT contains
60,000 training images and 10,000 test images from digit classes 0 to
9. We convert the data set into a stream by sampling from a Markov
chain model over the labels and then randomly assigning instances
to positions in the stream with a matching label. We use a model
matching the simplified transition structure with p = .98 as the no
transition probability. The assignment process is performed with-
out replacement thus producing a block-structured permutation of
the original labeled training data set. We generate 10 training data
streams at random using this procedure and average the results on
the test set. We use a 50-dimensional PCA basis as a pre-processing

step for MNIST to reduce the dimension of the data. This is a fully
unsupervised operation. The Opportunity data set consists of mul-
tiple activity sessions performed by four different individuals in
a lab setting. We use the “locomotion” label set ("Stand", "Walk",
"Sit", "Lie"). We note that that data set includes missing/other labels,
which we discard for these experiments. We learn a separate model
for each person and average the results over test sessions for each
person. Further details on the session structure an data set sizes for
Opportunity can be found in [19]. We initialize the models with 2
labels per class for MNIST and 10 labels per class for opportunity.
Methods: For the MNIST data set, we use the HMM segmenter
with simplified transition structure. We use logistic regression and
a one-hidden layer SGLD neural network model with 50 hidden
units. On the opportunity data set we use logistic regression and a
one-hidden layer SGLD neural network model with 10 hidden units.
In all cases we use 0.99 as the segment boundary threshold. We
use 0.003 as the utility threshold on MNIST and 0.1 on Opportunity.
These thresholds were selected so that the methods spread their
label budgets over most of the length of the data streams. We use the
margin utility in all experiments. We use a total budget of B = 200.
Results: The results of these experiments are shown in Figure 1.
We can see that the proposed joint segmentation and active learning
method out-performs the standard stream-based method up to the
limit of 200 labeled data points for both data sets and both classifiers.
We can also see that the proposed method is able to obtain a sizeable
fraction of the error reduction achieved by the oracle methods
(which condition on substantially more information) in all cases.
Finally, we note that while the SGLD neural network models obtain
improved performance on the MNIST data set relative to LR, this is
not the case for Opportunity, which requires further investigation.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new framework for joint seg-
mentation and active learning that is designed to exploit block
structure in data streams. We have explored two instances of this
framework based on semi-supervised HMM segmenters combined
with logistic regression and Bayesian neural network classifiers.
We have presented promising initial results showing that the pro-
posed approach can significantly outperform standard stream-based
methods. There are many possible future directions for this work
including using the HMM to assign confidence weights to instances
within a block to enable soft label propagation, investigating the
use of additional utility functions, integrating methods for adapting
utility and segmentation thresholds, and investigating the effect of
storage budgets for longer or unbounded streams.
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