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Abstract— The objective of this paper is to develop an open
loop insulin input profile over a span of 24 hours which makes
the glucose trajectory of a Type 1 diabetic person track a target
glucose trajectory. The Bergman minimal model is chosen to
represent the glucose-insulin dynamics which is shown to be
differentially flat. An optimal control problem is posed by
parameterizing the differentially flat output of the Bergman
model using Fourier series, to result in an input profile that
can be repeatedly administered every day. The solution to
the optimization problem is then shown to present acceptable
performance in terms of tracking and adhering to imposed
constraints.

I. INTRODUCTION

According to the American Diabetes Association, in 2015,
almost 30 million Americans (which accounts for nearly 9%
of the US population) had diabetes. Among them, approxi-
mately 1.25 million people suffered from Type 1 diabetes [1].
Similar statistics are being reported across the planet where
an increasing number of people are presenting themselves
with Diabetes. Already considered a global epidemic [2],
researchers are still looking for a cure and a comprehensive
method of treatment.

Type 1 diabetes is a chronic disease where the patient’s
pancreas loses its ability to naturally synthesize the hormone
insulin. Left untreated, it leads to high blood glucose lev-
els for prolonged periods of time which eventually causes
permanent nerve damage, kidney failure and death. The
present methods of treatment either involve the patients
administering themselves with insulin injections at various
instances during the day or being aided by an Artificial
Pancreas (AP) which injects insulin into the body via an
insulin pump.

A vast body of literature is already present on designing
controllers for Type 1 diabetic patients (see references [3],
[4], [5] and references therein) owing to the significance
of the issue. The work presented in this paper adds to this
domain of research by presenting a methodology to design
insulin profiles that can be administered to the patient on a
daily basis such that the patient’s blood glucose levels follow
the blood glucose levels of a normal person.

The Bergman minimal model [6] along with the Dalla
Man gut dynamics model [7] is selected as the mathematical
model to represent the glucose-insulin dynamics of the
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human body. The model is then subjected to a daily meal
plan to observe the variation in the blood glucose levels. An
optimal control problem (OCP) in the insulin input space is
then posed such that a solution to the OCP would cause the
glucose trajectory of a Type 1 diabetic track that of a normal
individual daily and repeatedly. The OCP is solved however,
using the differential flatness property of the Bergman model.

Differential flatness is a property which allows inversion of
system dynamics to represent states and controls in the output
space and has been used in control theory to re-pose optimal
control problems as static non-linear optimization problems.
Controller design using differential flatness has found appli-
cations in UAV trajectory planning [8], drug delivery [9],
second order systems with Lagrangian mechanics [10] as
well as determining set points for a non-linear H-infinity
control method for insulin infusion [11] to name a few.
However, differential flatness has never been used to design
controllers by parameterizing the differentially flat outputs
for Type 1 diabetes (to the best of the authors knowledge).
In this paper, we show that the Bergman model is in fact
differentially flat and pose a non-linear optimization problem
in the output space to track a target glucose trajectory. The
solution to the problem is presented at the end: revealing
good tracking performance while meeting all the imposed
constraints.

The paper is organised as follows. Section II presents
the dynamic systems, the meal plan and the simulation
environment. Section III summarizes differential flatness and
shows that the Bergman model is differentially flat. Section
IV presents the optimal control problem of interest and its
adaptation in the differential flat framework. Section V puts
forward the results of the optimization problems and provides
discussion before presenting concluding remarks in Section
VI.

II. MODEL AND SIMULATION ENVIRONMENT

A. Dynamic Model

The model used to represent glucose insulin dynamics is
chosen to be the Bergman minimal model. It is a set of
three differential equations describing the time evolution of
glucose and insulin concentrations in blood (given below).

Ġ(t) = −(X(t) + p1)G(t) + p1Gb +Rag(t)/Vg (1)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (2)



İ(t) =


−p4I(t) + γ(G(t)− h)(t− tm) for t ≥ tm and

G(t) ≥ h
−p4I(t) otherwise.

(3)
p1 (min−1), p2 (min−1), p3 (min−2.L/mU), p4

(min−1), γ (min−2.mU.dL/mg.L) and h (mg/dL) are
parameters of the model. The states G(t) (mg/dL), X(t)
(min−1) and I(t) (mU/L) represent the blood (plasma) glu-
cose concentration, (effective) insulin in the remote compart-
ment and the plasma insulin concentration respectively. Gb
and Ib represent certain basal values of the states G(t) and
I(t). The term γ(G(t)−h)(t− tm) imitates the actions of a
natural human pancreas, tm is the time of meal consumption
and Vg (dL) is the distribution volume of glucose.

To introduce dynamics of a meal disturbance, the term
Rag(t) (mg) (also referred to as the Rate of appearance of
glucose in plasma) is introduced in the model. In this work,
Rag(t) is obtained as an output from a gut dynamics model
developed by Dalla Man in [7]. It is given by the equations

q̇sto1(t) = −k21qsto1(t) +Dδ(t− tm) (4)

q̇sto2(t) = −kemptqsto2(t) + k21qsto1(t) (5)

q̇gut(t) = −kabsqgut(t) + kemptqsto2(t) (6)

Rag(t) = fkabsqgut(t) (7)

qsto = qsto1 + qsto2 (8)

kempt(qsto) = kmin + 0.5(kmax − kmin)(tanh[α(qsto−
bD)]− tanh[β(qsto − cD)] + 2) (9)

α =
5

2D(1− b)
(10)

β =
5

2Dc
. (11)

qsto1 (mg) and qsto2 (mg) represent the glucose quantity
present in solid and liquid phases respectively in the stomach
at any time. qgut (mg) is the amount of glucose in the
intestines, δ(.) is the Dirac delta function and D (mg) is the
amount of glucose consumed during the meal. k21 (min−1)
and kempt are parameters which govern the rate of food
movement between the first & second stomach compartments
and the second stomach compartment & the gut respectively.
The maximum and the minimum values of k21 (min−1) are
given by kmax and kmin respectively. kabs (min−1) is the
rate at which the carbohydrates are absorbed into the body
from the gut. α and β are parameters which determine the
transition of kempt between its extremities. Finally, b, c and
f are other dimensionless parameters of the model.

The blood glucose variation of a normal person after a
meal is referred to as the target trajectory throughout this
document. This is because the primary objective of the
control problem is to make the glucose concentration in
a Type 1 diabetic patient track the glucose concentration
of a normal person over time after a meal. The target
trajectory is generated by simulating the Bergman’s model

using parameter values fit to a normal person. A set of values
for the parameter set is chosen for illustrative purposes, from
literature [12], [13]. In these parameter sets, the Bergman
model and the gut dynamics were actually fit to real data
taken from a normal subject(s). These values are listed in
Table I. The initial conditions for the trajectory was selected
as

G(0) = Gb; X(0) = 0; and I(0) = Ib.

It should be noted that the values in Table I only belong
to a particular individual (without Type 1 diabetes) and is
not representative for all normal glucose-insulin dynamic
behaviour. These values can be changed based on the desired
target trajectory since the desired target could be extremely
specific for each individual patient. Moreover, a target tra-
jectory need not be the end result of a simulation but could
also be derived in consultation with a physician. However, in
this work as mentioned previously, for illustration, the target
trajectory is obtained from a simulation.

TABLE I
PARAMETER VALUES FOR A NORMAL SUBJECT

Parameter Value Parameter Value
p1 0.03082 kmax 0.0558
p2 0.02093 kmin 0.0080
p3 1.062× 10−5 kabs 0.057
p4 0.30000 k21 0.0558
γ 0.003349 b 0.82
h 89.5 c 0.00236
Gb 92 f 0.9
Ib 7.3 Vg 146.64

For people suffering from Type-1 diabetes, the natural pan-
creas term (γ(G(t)−h)(t−tm)) is removed and is substituted
by an artificial insulin input term U ′(t) similar to Lynch and
Bequette in [14]; to model the external administration of
insulin as a method of treatment. As a result, equation (3)
becomes

İ(t) = −p4I(t) + U ′(t). (12)

The type 1 diabetic model consisting of equations (1),
(2) and (12) now represents an unstable dynamic system.
With U ′(t) = 0 (i.e. no insulin control) the blood glucose
level keeps increasing mimicking the rise in the glucose
concentration of an untreated Type 1 diabetic patient. To
stabilize the glucose concentration in such patients, in reality,
a basal insulin dosage is given. This concept can be modeled
by assuming the control to be of the form

U ′(t) = U(t) + p4Ib (13)

where the term p4Ib mimics the basal dosage. With this
modification, the diabetic model can be summarized as

Ġ(t) = −(X(t) + p1)G(t) + p1Gb +Rag(t)/Vg (14)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (15)

İ(t) = −p4(I(t)− Ib) + U(t). (16)



Fig. 1. Blood Glucose Concentration of a normal person and a Type 1
Diabetic patient under no insulin control

Equations (14) through (16) now represent stable dynamics
where the glucose concentration is driven to the desired basal
level (Gb). The objective is to determine an insulin trajectory
(U(t)) to successfully track the target trajectory.

B. Meal Pattern

In this work, we seek to derive a periodic control strategy
for an entire day, on the assumption that a specific meal
pattern is followed by the Type 1 diabetic patient.

Such a repetitive control strategy has been previously
examined in the literature and is popularly known as a run-
to-run control strategy [5]. In this work, a meal pattern
similar to [15] is adopted. In this structure, the patient is
subjected to a 20 gm carbohydrate (CHO) breakfast meal
at 8 am, a 40 gm CHO lunch at 12 noon and a 60 gm
CHO dinner at 5 pm. For all simulations, it is assumed that
t = 0 corresponds to 8 am. The final time (Tf ) is 1440min
corresponding to a day’s length of 24 hours. The three meals
have respective meal times of tm1 = 0, tm2 = 240 and
tm3 = 540 minutes. The blue plot in Figure 1 shows the
blood glucose concentration evolution over time for a normal
person (i.e. the target trajectory) subjected to the meal plan. It
was generated by simulating equations (1) through (11) using
parameters in Table I and will henceforth be referred to as
Gtarget(t). Three distinct peaks are observed with increasing
magnitudes which are commensurate with the meal sizes.

Figure 1 also presents the glucose trajectory of a person
with Type 1 diabetes when subjected to the meal plan with no
insulin control (i.e. with U(t) = 0) in red. This trajectory was
generated using equations (4) through (16) using parameters
in Table II. Table II lists parameters catering to a Type 1
diabetic patient and have been adopted from literature [14]
and the FDA approved Type 1 Diabetes Metabolic Simulator
(T1DMS) software (corresponding to an average adult).

It is clearly evident that the Type 1 patient’s trajectory is
significantly higher than the desired curve: presenting a clear
motivation for the need to find an optimal U(t) trajectory to
track the target profile (Gtarget).

TABLE II
PARAMETER VALUES FOR A TYPE 1 DIABETIC SUBJECT

Parameter Value Parameter Value
p1 0.028735 kmax 0.0429
p2 0.028344 kmin 0.0141
p3 5.035× 10−5 kabs 0.2062
p4 5/54 k21 0.0558
γ N/A b 0.7612
h N/A c 0.1372
Gb 119.1858 f 0.9
Ib 15.3872 Vg 128.8237

III. DIFFERENTIAL FLATNESS

Differential flatness is a concept introduced by Fliess et
al. in [16] in the year 1995 and has subsequently been
used extensively in the literature to design controllers by
parameterizing a specific output.

Differentially flat systems allow an optimal control prob-
lem to be posed as a non-linear programming problem where
the design variables of interest are typically the coefficients
of a parameterization. This section provides a short expla-
nation of differential flatness and shows that the Bergman
minimal model is differentially flat.

Consider dynamic systems of the form

ẋ = f(x,u) (17)

where x ∈ Rn is the state vector and u ∈ Rm is the input
vector. Such systems are said to be differentially flat if the
state vector (x) and the input vector (u) can be expressed
as algebraic expressions of an output vector (z ∈ Rm) and
its time derivatives (ż, z̈, . . .). Therefore, if an output vector
can be found such that

z = η(x,u, u̇, ü, ...u(p)) (18)

where {
x = x

(
z, ż, z̈, ....z(l)

)
u = u

(
z, ż, z̈, ....z(l)

) (19)

and (.)(a) refers to the a-th time derivative of (.), the system
is considered to be differentially flat.

Careful observation shows that the Bergman minimal
model is differentially flat if the flat output is considered to
be the blood glucose concentration (G(t)). The number of
flat outputs necessary is equal to the number of control inputs
in the system. Since there is only one input (U(t)), a single
flat output is sufficient. This means that all the other states
(X(t) and I(t)) as well as U(t) can be expressed as algebraic
functions of G(t) and its time derivatives (Ġ(t),G̈(t),. . .).
The following equations are used to present those relations.

X(t) = − Ġ
G
− p1 +

p1Gb
G

+
Rag
V g

, (20)

I(t) =
Ẋ

p3
+
p2X

p3
+ Ib (21)



and

U(t) = İ + p4I − p4Ib (22)

where

İ(t) =
Ẍ

p3
+
p2Ẋ

p3
, (23)

Ẋ(t) = − G̈
G

+
Ġ2

G2
− p1GbĠ

G2
+
Ṙag
VgG

− RagĠ

V gG2
(24)

and

Ẍ(t) =

...
G

G
+
G̈Ġ

G2
+2

ĠG̈

G2
− 2

Ġ3

G3
− p1Gb

...
G

G2
+2

p1GbĠ
2

G3

+
R̈ag
VgG

− 2
ṘagĠ

VgG2
− RagG̈

VgG2
+ 2

RagĠ
2

VgG3
. (25)

It should be noted that the gut dynamics model is not
differentially flat. However, this fact does not impede the
design process even though the output of the gut model
(Rag(t)) and its time derivatives are necessary to implement
the above equations. Rag(t) and its derivatives are simply
treated as exogenous inputs which vary with time and can
be determined beforehand using the model dynamics ((equa-
tions (4) through (11)) along with parameters from Table
II). Expressions to determine Rag(t), Ṙag(t) and R̈ag(t) are
presented below:

Rag = fkabsqgut, (26)

Ṙag = fkabsq̇gut and (27)

R̈ag = fkabsq̈gut (28)

where q̇gut is given by equation (6),

q̈gut = −kabsq̇gut + k̇emptyqsto2 + kempty q̇sto2 and (29)

k̇empty can be derived from the time derivative of equation
(9). It should be noted that since the meal pattern is repeated
daily, the trajectories of Rag , Ṙag and R̈ag are periodic
functions with periods Tf .

IV. OPTIMAL CONTROL PROBLEM

This section is used to present the optimal control problem
that is desired to be solved and a methodology by which it
can be re-posed as a non-linear programming problem using
the properties of differential flatness.

A. Gtarget tracking Optimal Control Problem

The optimal control problem of interest (P1) can be
written as

minimize
U(t)

J =

∫ Tf

0

(Gtarget(t)−G(t))2dt (30a)

subject to SystemDynamics (30b)
G(0) = G(Tf ) (30c)
X(0) = X(Tf ) (30d)
I(0) = I(Tf ) (30e)
G(t) ≥ Glb ∀t > 0 (30f)
G(t) ≤ Gub for (tmi + 120) ≤ t < tmi+1

(30g)
U ′(t) ≥ 0. (30h)

The cost function J is selected to penalize the error
between the glucose trajectories of a normal person and a
Type 1 diabetic person under the meal plan since tracking
Gtarget is the primary goal. SystemDynamics refers to the
model dynamic equations given by equations (14) through
(16). Periodicity constraints (equations (30c) through (30e))
are imposed to ensure that the state values are identical at
8 am on the next day. This allows for the control trajectory
to be repeatedly used on a daily basis (or run-to-run basis).

The hypoglycemic constraint (equation (30f)) and the hy-
perglycemic constraint (equation (30g)) are imposed to pre-
vent the glucose level from dropping below a threshold lower
limit (Glb) and spiking above a threshold upper limit (Gub).
According to a joint consensus statement from the American
Diabetes Association (ADA) and the Endocrine Society
regarding hypoglycemia and diabetes [17], Glb should be
70mgdL . Furthermore, it is also recommended by the ADA
[18] that the blood glucose concentration be below 180 mg

dL ,
(Gub = 180) two hours (120min) after the consumption of
a meal. Hence, the hyperglycemic constraint is imposed for
only specific intervals of time which correspond to periods
that start 120 minutes after a meal until the start of the next
meal.

The final constraint (equation (30h)) is imposed to recog-
nize the fact that insulin can only be added to the bloodstream
and not be removed.
P1 is an optimal control problem which is extremely

difficult to solve using traditional techniques of optimal
control theory. Therefore, the authors present an alternate
method to look for approximate solutions to P1 using the
differential flatness property of the Bergman minimal model.
The objective is to parameterize the flat output (G) using
certain basis functions in time, map the parameterization to
the state and control space, and pose an optimization problem
to determine the coefficients of the parameterization; subject
to the mapped constraints.

B. Parameterization of G(t)
In order to circumvent the constraints of periodicity in

P1, Fourier functions are chosen to be the basis functions
to parameterize the highest derivative of G(t) similar to [9]:

...
G = α

(c)
4 +

N∑
i=1

(α
(a)
i sin(iwt) + α

(b)
i cos(iwt)) (31)



where w = 2π/Tf , N is the order of expansion, and α
(.)
i

are the coefficients of expansion categorized into groups a, b
and c. On integrating back up, we can derive the expressions
for G̈, Ġ and G as

G̈ = α
(c)
3 +α

(c)
4 t+

N∑
i=1

(
−α(a)

i

cos(iwt)

iw
+ α

(b)
i

sin(iwt)

iw

)
,

(32)

Ġ = α
(c)
2 + α

(c)
3 t+

α
(c)
4 t2

2
+

N∑
i=1

(
−α(a)

i

sin(iwt)

i2w2
− α(b)

i

cos(iwt)

i2w2

)
(33)

and

G = α
(c)
1 + α

(c)
2 t+

α
(c)
3 t2

2
+
α
(c)
4 t3

6
+

N∑
i=1

(
α
(a)
i

cos(iwt)

i3w3
− α(b)

i

sin(iwt)

i3w3

)
. (34)

However, on imposing the periodic constraint, G(0) =
G(Tf ), it is evident that

α
(c)
2 = α

(c)
3 = α

(c)
4 = 0, (35)

reducing the total number of coefficients to 2N + 1 (where
α(a) = [α

(a)
1 , α

(a)
2 , ...α

(a)
N ]T , α(b) = [α

(b)
1 , α

(b)
2 , ...α

(b)
N ]T and

α(c) = α
(c)
1 ).

C. Gtarget tracking Non-Linear Programming Problem

P1 can now be approximately re-posed as a static opti-
mization problem P2 as follows:

minimize
α(a),α(b),α(c)

J2 = ||G−Gtarget||2 (36a)

subject to G(ti) ≥ Glb ∀ti > 0 (36b)
G(ti) ≤ Gub for (tmi + 120) ≤ ti < tmi+1

(36c)
U(ti) ≥ −p4Ib. (36d)

where i holds all integer values between 0 and Tf while ti
represents the ith minute of simulation. G as well as Gtarget

are elements of RTf+1 and are given by

G = [G(0), G(1), . . . , G(Tf )]
T (37)

and

Gtarget = [Gtarget(0), Gtarget(1), . . . , Gtarget(Tf )]
T .
(38)

The operator ||(.)||2 represents the standard two norm oper-
ation on a vector ((.)).

Since the parameterization guarantees that G, Ġ and G̈
are periodic over the time interval 0 < t < Tf ; X , I and
U are also guaranteed to be periodic (refer to equations (20)
through (25)). Hence, it is no longer required to explicitly
pose the periodicity constraints while writing P2. Constraint
(36d) is simplified from (30h) using equation (13).

P2 is a discretized approximation of the original optimal
control problem P1. The time domain is gridded (with grid
points at every minute) and the desired state & control
constraints are imposed at those grid locations. Moreover,
the optimal trajectory is restricted by the structure of the
parameterization and the order of Fourier expansion N .
However, in the limit of increasing the number of grid points
in time and the value of N , the NLP P2 approaches P1.

V. RESULTS

Simulation results and solutions to P2 are presented in
this section.

Figure 2(a) shows a plot of the optimal solution obtained
for the value of N = 45. The blue curve is the target
trajectory and is identical to the plot in Figure 1. The black
curve (G∗) is the optimized glucose trajectory of a type
1 diabetic patient. G∗ is derived by evaluating equation
(34) at (α∗(a),α∗(b), α∗(c)) where (α∗(a),α∗(b), α∗(c)) is the
solution to P2. The red curves represent the hypo- (lower)
and the hyper- (upper) glycemic constraint boundaries. Note
that the hyperglycemic constraint is discontinuous and is
exercised only after two hours of a meal. The green dashed
lines indicate the meal consumption times. It is evident from
Figure 2(a) that the glucose trajectory of a type 1 diabetic
patient tracks the target reasonably well (refer to Figure 1 to
see how poorly an uncontrolled diabetic trajectory behaves).
The value of the associated cost was J∗ = 181.30.

Figure 2(b) presents the final control input solution U∗(t)
that is associated with G∗(t).

The black curve (U∗(t)) is the final optimal control input
solution and is obtained by evaluating equation (22) at
(α∗(a),α∗(b), α∗(c)). Once again, the green dashed lines
represent the meal times. The red line denotes the lower
bound on the insulin infusion control input and is observed
to be never violated. It is interesting to observe that the
optimizer selects the design variables such that the control
input (insulin concentration) peaks very close to the meal
times. This is in fact intuitive and can be attributed to the
fact that more insulin is required during the meals to counter
the spikes in blood glucose concentrations.

As mentioned previously, P2 is an approximation of P1
and only converges on it with increasing values of N and
discretization. In order to study the effect of the number of
Fourier terms on the quality of the solution, P2 was solved
repeatedly with varying values of N . Figure 2(c) presents
the result from this study. We see that as the value of N is
increased, a steady drop in the value of the cost is observed.
This is consistent with the reasoning that on increasing N ,
the degrees of freedom for solving P2 increase thereby
leading to better tracking.
P2 is a non-convex optimization problem and comprises

of rather complex algebraic constraints. Hence, it is not
trivial to solve P2 in general. The solution to P2 is also
very sensitive to initial conditions and the algorithm used to
solve the problem. In this work, P2 was solved in Matlab,
with the help of the optimization toolbox and the interior-
point algorithm. To obtain solutions for a particular value of



(a) Optimal Glucose trajectory for a Type 1
Diabetic patient for N = 45

(b) Optimal Insulin Infusion profile U∗(t) for
a type 1 diabetic patient

(c) Variation of the final cost with the number
of Fourier terms

Fig. 2. Results from solving P2

N : the solution to the previous value of N was chosen and
a couple of zeros were appended to α∗(a) & α∗(b) to select
an initial guess.

VI. CONCLUSIONS

The paper uses differential flatness to convert an optimal
control problem to a parameter optimization problem in
order to derive a solution. While posing the control problem,
the structure of a particular type of meal plan is assumed
and it is also understood that this meal plan be repeated
diligently every day. However, in reality adhering to these
conditions may become difficult and room for a certain
amount of flexibility in meal times and quantities should be
incorporated in the design strategy. This could be done using
robust control techniques where meal times and sizes would
be stochastic and would be a natural extension of this study.

The paper also shows that the level of tracking is de-
pendent on the order of parameterization and actually im-
proves in quality if the degrees of freedom are increased.
However, increasing the degrees of freedom also means
that the optimization problem has a much larger number of
design variables to solve for thereby increasing the required
computational effort. Hence, the investigation was terminated
at the N = 45 mark as a trade off between performance and
computation.
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