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Abstract— In this paper, a novel way to compute derivative-
based global sensitivity measures is presented. Conjugate Un-
scented Transform (CUT) is used to evaluate the multidimen-
sional definite integrals which lead to the sensitivity measures.
The method is compared with Monte Carlo estimates as well
as the screening method of Morris. It is shown that using CUT
provides a much more accurate estimate of sensitivity measures
as compared to Monte Carlo (with far lesser computational
cost) as well as the Morris method (with similar computational
cost). Illustrations on three test functions are presented as
evidence.

I. INTRODUCTION

Sensitivity Analysis (SA) is a branch of study in engi-
neering which involves determining quantitatively how much
the output of a system varies with its input parameters. This
allows one to figure out which input factors significantly im-
pact the output and which factors (if any) are inconsequential.
Valuable information can be inferred from these studies and
are used when designing experiments, developing surrogate
models or even allocating resources to analyze important
input variables [1].

SA has been traditionally done in two ways [2]. Local
SA which involves calculating the partial derivative of the
output with respect to each of its input factors at a nominal
point in the input space and global SA where a metric is
derived which represents the degree of output variation when
all the inputs are varied across their domain. Hence global
SA not only looks at the interaction between some of the
input factors but also considers the entire input domain as a
whole (unlike local SA where the metric is evaluated only
at nominal locations).

Global SA (GSA) techniques have been popularly studied
in the literature (see articles [1], [2], [3], [4], [5], [6], [7] and
references there in). One of the most common indices used
for GSA has been the Sobol’ Indices [1]. It is a variance
based approach where indices pertaining to each input and
its combinations are derived based on their fractional contri-
bution to the total output variance. Such indices consider
the entire input space as well as the interaction between
input factors. However, computing these indices is extremely
expensive and could require extensive system realizations.
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In order to navigate the high computational requirements
of calculating the Sobol indices, it is often desired to deter-
mine a subset of the input variables which can be declared
unimportant. If such a subset can be found (i.e. the sensitivity
of the output with respect to a subset of inputs is negligible),
the dimensionality of the problem can be readily reduced
and Sobol’ indices could be then determined for a lower-
dimensional system.

One such method to eliminate non-crucial inputs has been
to use the Morris method of screening [8]. The Morris
method crudely approximates the local sensitivity of the
output at a certain location in the input space and then
averages the local sensitivities evaluated at a finite number
of input points. The Morris method has its own set of
drawbacks [9]. In order to get a more accurate measure
of averaged local sensitivities, Kucherenko et al. in [9]
introduced metrics called the Derivative-based Global Sen-
sitivity Measures (DGSM). DGSM basically evaluates the
local sensitivity at a particular location and is then averaged
over the entire input space using Monte Carlo or quasi
Monte Carlo techniques. Their article shows that DGSM is a
more reliable way to determine relative importance of input
parameters and do so at a comparable computational cost.
Sobol and Kucherenko [10] illustrate that the total Sobol
indices are bounded by a measure similar to the DGSM
which integrate the square of the local sensitivity rather than
the absolute value of the local sensitivities. This provides
the motivation to use DGSM as a means to pare down and
identify the subset of parameters for other higher fidelity
global sensitivity analysis.

The work presented in this paper details a method to
determine the DGSM even more efficiently than previously
quoted. The local sensitivity at any location is determined
using finite difference similar to [9] and remains unchanged
in this paper as well. However, the methods to find the mean
and the standard deviation of those local sensitivities are
altered. Conjugate Unscented Transform (CUT) [11] which
is a recently developed set of quadrature rules to evaluate
multivariate integrals is used to evaluate the necessary mean
and variance integrals accurately. It is shown in this paper
that CUT greatly reduces the number of function evaluations
necessary to derive reliable DGSM metrics.

The paper has been organized in the following way.
Section II presents the derivative based global sensitivity
measures, section III elaborates the method of Morris, section
IV discusses the Monte Carlo and Conjugate Unscented
Transform approach towards evaluating the sensitivity mea-
sures, section V presents the functions on which our methods



are tested, and finally section VI presents all the results
before concluding with section VII.

II. DERIVATIVE-BASED GLOBAL SENSITIVITY
ANALYSIS

Consider the equation

y = f(x) (1)

where x ∈ Rn is a bounded input vector which is mapped to
a scalar output function y via f . Without loss of generality,
it is assumed throughout this paper that the domain of x is
an n dimensional hypercube Ω (i.e. Ω = [0, 1]n) and that the
ith element of x is written as xi.

Assuming that the input-output mapping function f(x)
is differentiable, the local sensitivity at any location in the
uncertain space x is given by

E(x) =
∂f

∂x
(x) (2)

where

∂f

∂x
(x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x), · · · , ∂f

∂xn
(x)

]T
. (3)

Derivative based global sensitivity analysis involves the
determination of certain Derivative-based Global Sensitivity
Measures (DGSM). One such measure is defined as the
average value of the local sensitivities over the domain of
the uncertain space Ω [9] and is given by

M =

∫
Ω

E(x)dx. (4)

Another measure often used is the standard deviation of
E given by Σ where the ith element of Σ is

Σi =

√∫
Ω

(Ei(x)−Mi)2dx (5)

where Σ = [Σ1,Σ2, · · · ,Σn]T , Mi and Ei are the ith ele-
ments of M and E respectively. However, a major drawback
of M is that if the values of E have large variations in
magnitude with opposite signs in Ω, the M metric could
have a value very close to 0. This would underestimate the
true variation of the sensitivities in the domain of interest.

Hence, in order to circumvent the cancelling effect, up-
dated measures are considered where the absolute values of
local sensitivities are averaged. These metrics are given by

M∗ =

∫
Ω

|E(x)|dx (6)

and

Σ∗
i =

√∫
Ω

(|Ei(x)|−M∗
i )2dx (7)

where M∗ = [M∗
1 , · · · ,M∗

n]T and Σ∗ = [Σ∗
1, · · · ,Σ∗

n]T .
Similar to [9], metrics M∗ and Σ∗ are considered to be the
DGSM.

III. METHOD OF MORRIS

The Morris screening method was first introduced in 1991
[8]. In the same flavour as determining derivatives using
finite difference, the method employed observing the changes
in the model output when any of the inputs were randomly
perturbed while keeping the others constants. This technique
has popularly been called as having randomized one-factor-
at-a-time experiments.

Each individual experiment leads to the determination of
an elementary effect (d). At the end of all experiments,
the statistics of all d are observed to evaluate the relative
importance of the input factors.

In this method, the entire input space is uniformly gridded.
A grid point x = [x1, ..., xn]T is chosen from that grid at
random and the following elementary effect is calculated

di =
y(x1, ..., xi + ∆, ..., xn)− y(x)

∆
(8)

where i represents the elementary effect due to the ith input
factor (i.e. i varies between 1 and n). The value of x should
be chosen such that the perturbed element xi + ∆ is within
the domain of xi. The number of levels into which an
input factor is divided is usually denoted by p and the total
number of samples (or experiments) by N . ∆ is typically the
relative distance between two grid points in the direction of
perturbation. Although ∆ could be the distance between any
two grid locations, it is typically made equal to the distance
between two adjacent grid locations (i.e. ∆ = 1

p−1 ). The
notation and the nomenclature for the Morris method has
been adopted from [1] and can be referred to for more details.

If the elementary effect from the jth experiment or sample
is denoted by d

(j)
i , the final metric of interest is defined to

be

µi =
1

N

N∑
j=1

d
(j)
i (9)

and

σi =

√√√√ 1

N

N∑
j=1

(d
(j)
i − µi)2. (10)

Once again to circumvent the cancelling effect, a revised
version of the metric was presented by Campolongo et al. in
[12] and is given by

µ∗
i =

1

N

N∑
j=1

|d(j)
i |. (11)

In order to be consistent with the definition in equation (7),
we define

σ∗
i =

√√√√ 1

N

N∑
j=1

(|d(j)
i |−µ∗

i )2. (12)

For purposes of brevity we also define the vectors µ∗ =
[µ∗

1, ..., µ
∗
n]T and σ∗ = [σ∗

1 , ..., σ
∗
n]T . For the rest of the

paper, µ∗ and σ∗ are considered to be the Morris Method
(MM) metrics.



IV. COMPUTATIONAL METHODS TO EVALUATE
DGSM

The primary goal of this section is to present two methods
to evaluate the DGSM numerically. Evaluating the DGSM
requires the computation of definite integrals of the form

I =

∫
Ω

g(x)dx. (13)

There is a considerable amount of literature that is present
which looks at evaluating I . Some of the most popular meth-
ods are the Monte Carlo (MC) random sampling [13], Gauss
quadrature rules [14], Sparse quadrature [15] and recently
developed Conjugate Unscented Transform (CUT) among
several others. In this paper, two methods are discussed:
namely the MC and the CUT.

A. Monte Carlo Sampling

Monte Carlo sampling has been used extensively for
evaluating compact integrals. It involves drawing random
samples from the input space, evaluating the integrand at
those locations and averaging them, i.e.

IMC =
1

NMC

NMC∑
i=1

g(xi). (14)

IMC is an approximation to I and converges on I as NMC

tends to infinity. Although the convergence of MC is slow
(and is inversely proportional to the square root of NMC),
it has the advantage of being independent of the number
of variables. Hence, MC has been popular for evaluating
high dimension multivariate integrals where quadrature rules
encounter the curse of dimensionality [9].

B. Conjugate Unscented Transform

Conjugate Unscented Transform (CUT) like several other
numerical integration methods, is a sigma-point based in-
tegration scheme where a multivariate integral is estimated
by calculating weighted sums of the integrand evaluated at
specific points (a.k.a sigma points) inside the input domain.
Therefore, I in equation (13) can be approximated as

ICUT =

NCUT∑
i=1

wig(xi). (15)

The distinction between different sigma-point based integra-
tion schemes lie in the manner by which the sigma points
xi and the weights wi are selected. For example, in Gauss
quadrature, the points and weights for a multidimensional
input space are determined simply by taking the tensor
product of the points and weights in each univariate direction
(where the points and weights for each univariate direction
is derived from roots of specific orthogonal polynomials
such as Gauss-Legendre polynomials). For Sparse quadrature
rules, only a subset of those points are used to determine
the multivariate integrals. CUT has developed rules to deter-
mine points and weights to evaluate integrals using moment
constraint equations [11]. Such a methodology results in far

Function f(x)

A1
∑n

i=1(−1)i
∏i

j=1 xj

B1
∏n

i=1
n−xi
n−0.5

C1 2n
∏n

i=1 xi

TABLE I
TEST FUNCTIONS

fewer number of sigma points to evaluate multidimensional
integrals in comparison to any other known quadrature rules.

CUT was developed with an intention to evaluate primarily
weighted integrals where the weighing function would either
be a uniform distribution or the standard normal distribution.
Since, often in sensitivity analysis, input factors are bounded,
CUT rules for uniform distributions can be readily adopted
to determine integrals of the form I .

Depending on the order of moments that are satisfied by
the sigma points and weights, three sets of sigma points were
proposed: namely the CUT4, CUT6 and CUT8 algorithms.
The points in CUT4, CUT6 and CUT8, are designed to
preserve up to 5th, 7th, and 9th order moments. The number
of CUT points in each category is fixed depending on the
dimension of the input space. Although with an increase
in dimension, the number of points increase, the growth is
substantially lower than some of the other popular quadrature
schemes. More details regarding the construction of the CUT
points, weights and the nomenclature can be found in [11].

Hence, in this paper, we adopt CUT to efficiently deter-
mine the mean and standard deviation integrals necessary to
evaluate DGSM.

V. TEST FUNCTIONS

The objective of this paper is to compare the metrics of
DGSM and MM and present computationally efficient ways
to evaluate DGSM over existing known methods. To illustrate
the performance of each algorithm, three benchmark test
functions are considered.

These functions are listed in Table I. Function A1 is
known to have a few dominant input variables. Function
B1 has no unimportant subsets and has important low-order
interactions. Function C1 also has no unimportant subsets
but in contrast to B1 has important high-order interaction
terms. The functions have been adopted from [9] and should
be referred for more details.

For each of these functions, 5 methods are implemented
for effective comparisons.

Method 1: Morris method with p = 11 (MM11).
Method 2: Morris method with p = 101 (MM101).
Method 3: Monte Carlo estimate of DGSM (MCDGSM).
Method 4: CUT4 estimate of DGSM (CUT4DGSM).
Method 5: Analytical values of DGSM (ADGSM).
For each method, the global sensitivity metrics are eval-

uated. Method 5 is used as a gold standard for comparison
since it is evaluated symbolically (i.e. it is not a numerical
estimate).



Computational Efficiency

In order to compare the numerical efficiency, the number
of function evaluations (Nf ) is used as a metric. It is desired
to obtain the relative importance of the input factors xi with
as few function evaluations as possible.

For the Morris methods, each experiment requires n +
1 function evaluations to compute d(j) where d(j) =

[d
(j)
1 , d

(j)
2 , ..., d

(j)
n ]T . If there are a total of N experiments

done, N × (n+ 1) function calls are required to evaluate the
MM metrics.

For the MC and the CUT method, the integrand (g(x)
in equation (13)) is the local sensitivity E(x). In this paper,
finite difference (FD) (forward difference specifically) is used
to evaluate the local sensitivity at a particular location x.
Since, each sensitivity evaluation using FD also requires n+1
function evaluations, the total number of function calls for
methods 3 and 4 is given by NMC/CUT × (n+ 1).

VI. RESULTS

This section presents the final simulation results for the 5
methods on the test functions. For all the simulations the
number of input factors considered were n = 6. Hence,
the input domain was a 6 dimensional hypercube (i.e. Ω =
[0, 1]6). It should be noted that for n = 6, the number of
CUT4 points are 252 (i.e. NCUT4 = 252). To make a fair
computational comparison the values of N for methods 1
and 2 are made equal to NCUT4. Since, the convergence of
MC is rather slow, NMC is considered to be 100000 for all
simulations.

Figures 1(a), 1(b) and 1(c) present the values of µ∗ and
M∗ determined using the five methods for the test functions
A1, B1 and C1 respectively. Similarly, figures 2(a), 2(b) and
2(c) present the corresponding values of σ∗ and Σ∗. It
is quite evident from these figures that the Morris method
repeatedly fails to correctly rank the importance of the input
factors xi especially for functions B1 and C1. Although both
functions B1 and C1 have input factors which have an equal
influence on the output, the Morris methods MM11 as well as
MM101 indicate that some input factors are more important
than the others since it gives widely varying estimates for µ∗
and σ∗. In contrast, we see that the DGSM estimates from
CUT4 and MC do much better. For function A1, they both
successfully rank the input factors with decreasing influence
while for functions B1 and C1, it is correctly identified that
all the input factors are of equal relevance.

To present a quantitative comparison, the norm of the error
between the analytical results and the other four methods are
listed in Table II. The values in the table are calculated using
the expression

RMSE = ||Amethod −BADGSM ||2 (16)

where Amethod refers to the mean and the standard deviation
values derived from methods 1 through 4 and BADGSM

refers to the analytical values of M∗ and Σ∗. For each
column, the cell with the minimum value has been shaded
in gray to highlight it.

Function A1 B1 C1
Method M∗

or
µ∗

Σ∗or
σ∗

M∗
or
µ∗

Σ∗
or
σ∗

M∗
or
µ∗

Σ∗
or
σ∗

MM11 0.0568 0.0374 0.0205 0.0045 1.6070 1.8844
MM101 0.0211 0.0205 0.0068 0.0019 0.5425 1.3822
MCDGSM 0.0013 0.0014 0.0001 0.0001 0.0218 0.0578
CUT4DGSM 0.0000 0.0011 0.0000 0.0000 0.0000 0.0978

TABLE II
ERROR NORM COMPARISON FOR MEANS AND STANDARD DEVIATIONS

OF LOCAL SENSITIVITIES OVER Ω

It is evident from Table II that CUT4DGSM returns values
closest to the analytical values of the averaged local sensitiv-
ities and their standard deviations. Note that the number of
function evaluations required to evaluate each of entries for
MM11, MM101 as well as CUT4DGSM are identical and is
given by NCUT4/MM × (n + 1) = 252 × (6 + 1) = 1764.
The number of function evaluations for MCDGSM were
NMC × (n + 1) = 100000 × 7 = 700000. Hence we
see that with a computational effort similar to that of the
traditional Morris method, CUT4DGSM can perform far
more accurately (with improvements in several orders of
magnitude).

We see that CUT4DGSM does much better than all the
other methods consistently for all the test functions except
for the standard deviation column of C1. As previously
mentioned, the output of C1 has important high-order inter-
actions among its input factors. Such high order interactions
are difficult to observe and capture accurately in sensitivity
measures such as the Morris method which primarily focuses
on first -order interactions. Hence, we see that the errors
are highest for C1. However, even for this test function we
observe CUT4DGSM doing relatively much better compared
to the Morris methods but fails to do better than the Monte
Carlo method while estimating σ∗. This can be attributed
to the fact that, the CUT4 algorithm produces sigma points
which can accurately capture up to the fifth moment of a
non-linear transformation. However, evaluating σ∗ for C1
requires higher moments than that. As a result, we see that
CUT4DGSM features a higher error than MCDGSM.

A solution to this problem could simply be to use a
higher CUT algorithm such as CUT6 or CUT8 which have
the ability to consider higher moments while evaluating
multivariate integrals. Table III is used to present the error
norm results for the test function C1 when CUT6DGSM as
well as CUT8DGSM are employed. Once again, the cell with
the minimum value in each column has been highlighted. We
see that CUT6DGSM as well as CUT8DGSM successfully
converges on the analytical values. Although more number of
function evaluations are required for a more accurate estimate
from CUT, the Nf value for CUT is almost two orders of
magnitude lesser than Monte Carlo.

In order to present the computational benefit of our method
with respect to the method of Morris as well as Monte Carlo,
Figures 3 and 4 have been shown. Figure 3 presents error
norms for the mean while figure 4 presents the error norms



(a) A1 (b) B1 (c) C1

Fig. 1. Comparison of numerical evaluation of M∗ or µ∗

(a) A1 (b) B1 (c) C1

Fig. 2. Comparison of numerical evaluation of Σ∗ or σ∗

(a) (b) (c)

Fig. 3. Comparison of RMSE convergence for the mean of local sensitivities

(a) (b) (c)

Fig. 4. Comparison of RMSE convergence for the std of local sensitivities



Function C1
Method M∗

or µ∗
Σ∗ or
σ∗

Nf

CUT4DGSM 0.0000 0.0978 1764
CUT6DGSM 0.0000 0.0152 2107
CUT8DGSM 0.0000 0.0006 6811

TABLE III
ERROR NORM COMPARISON FOR MEANS AND STANDARD DEVIATIONS

OF LOCAL SENSITIVITIES OVER Ω CALCULATED USING CUT4, 6 AND 8

for the standard deviation of local sensitivities. The sub-
figures (a), (b) and (c) correspond to the test functions A1,
B1 and C1 respectively.

The horizontal line in each plot marks the error norm
derived from CUT while the other curves denote the error
norm as the number of samples are increased. The blue and
the red curves represent methods 1 and 2. The accuracy of
the Morris method always stagnates after a certain number of
samples. This is because the value of ∆ is too large and the
method fails to derive accurate estimates of local sensitivities.
Hence, even though the number of local sensitivities being
averaged is increased with the number of samples, the quality
of each local sensitivity is rather poor: thereby leading to a
plateau for all Morris method curves.

On the other hand we observe that the yellow curve
steadily keeps improving in its performance with increasing
sample size. This observation is expected from MC and also
reiterates the fact that a huge number of samples are often
required to match the level of accuracy provided by CUT.

We see that, almost categorically CUT performs better
even when the number of samples are increased to 107.

VII. CONCLUSIONS
Although the method of Morris has been used extensively

before to recognize unimportant sets of variables, we see
from the illustrated examples that the Morris method could
be unreliable (for a certain class of functions at least) in
ranking the relevance of inputs. The Morris method has
also been favoured over the years for systems where a
single function evaluation could be expensive since the
method yields a ranking estimate with only a few function
evaluations instead of having to determine multidimensional
integrals. However, we see that when CUT is used to evaluate
those integrals, it can do so accurately with an equivalent
number of function evaluations as Morris: thereby not only
increasing the reliability of derivative-based global sensitivity
measures, but also maintaining a comparable computational
cost.

This paper highlights those findings by illustrating them
on three test functions quoted in the literature. Comparisons
are also made with Monte Carlo simulation estimates and
analytical values where it is evident that the CUT based
approach requires far less realizations than Monte Carlo.
Convergence plots are also presented to show that, at least
for the given test functions, it would require an enormous
number of function evaluations for Monte Carlo to match
the accuracy obtained by CUT.
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