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ABSTRACT
The focus of this paper is on the development of a chance

constrained controller for type 1 diabetic patients in the pres-
ence of model, meal and initial condition uncertainty. Since the
chance constraints require the mean and variance of the evolv-
ing uncertain blood-glucose, a conjugate unscented transform
based approach is used to estimate the blood-glucose statistics.
The proposed approach is demonstrated on the classic Bergman
model augmented with a gut dynamics model.

1 INTRODUCTION
The American Diabetes Association (ADA) [1] estimates

that 1.25 million Americans have been diagnosed with Type 1
diabetes which is also called Juvenile diabetes. There are about
40 thousand additional diagnosis every year. Type 1 diabetes
is a chronic ailment which without careful regulation results in
micro-vascular complications such as retinopathy, neuropathy &
nephropathy and macro-vascular complications such as cardio-
vascular disease & strokes [2]. The ADA estimates that the cost
associated with the treatment and productivity loss of patients
(with diabetes) has risen from $174 billion in 2007 to $245 bil-
lion in 2012, a 41% increase. There is a clear motivation from
a quality of life and from a health care economics point of view,
to develop controllers which can emulate the human pancreas as
closely as possible. This has motivated the Juvenile Diabetes
Research Foundation to launch a consortium in 2006 [3]. The

European Union provided additional impetus by initiating the
AP@Home effort in 2010 [4], to develop an Artificial Pancreas.

Since the development of the first insulin pump by Arnold
Kadish [5] which was essentially a backpack, significant
progress has been made in reducing the size of the pump. The
first commercial pump called AutoSyringe provided the impe-
tus leading to numerous manufacturers currently providing pager
sized insulin pumps [5]. The current insulin pumps use a catheter
to subcutaneously provide basal insulin infusion in conjunction
with bolus doses and correction doses.

There has also been a long term effort at developing reliable
Continuous Glucose Monitoring (CGM) systems. Many of the
current continuous glucose monitoring devices are invasive and
are electroenzymatic and need to be periodically replaced. The
sensor reading from these electroenzymatic sensors can be trans-
mitted every 1-5 minutes to an insulin pump to facilitate the im-
plementation of a closed loop control system. Finger-prick read-
ings are required to periodically calibrate the CGM although a
newer version of a CGM sensor claims to be calibration free [6].
Various non-invasive sensing approaches, based on technolo-
gies such as bio-impedance, Near Infrared Spectroscopy, Raman
spectroscopy etc. [7] have also been tested to gauge their poten-
tial to serve as a reliable, calibration free approach for blood-
glucose sensing.

With the maturation of sensing technology in conjunction
with the availability of rapid and long acting insulin, the imple-
mentation of closed-loop control to eliminate if not minimize the
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potential of hypo- and hyperglycemic events is becoming a re-
ality. This goal of the closed-loop control is challenged by the
fact that the blood-glucose insulin dynamics for Type 1 diabetic
patients is characterized by uncertainties that can be attributed to
diurnal variations, meal uncertainties, level of exercise and ill-
ness [8]. There is therefore a need to formulate control problems
that can account for the uncertainties to synthesize insulin infu-
sion profiles which can emulate a healthy pancreas.

This paper presents a probabilistic problem formulation for
the design of optimal controllers for type 1 diabetic patients in
the presence of model and meal uncertainties. The classical
Bergman model is used to illustrate the proposed control formu-
lation. Since the traditional exponentially decaying models for
glucose appearance in the Bergman model seem to depart from
the glucose appearance rates from the FDA approved T1DMS
simulator, a gut-dynamic model is included resulting in a sixth
order model. A chance constraint, which only requires informa-
tion of the mean and variance of the distribution of the blood-
glucose is used to impose an acceptable risk level. We assume
five uncertain parameters in the model, uncertainty in the meal
size and uncertainty in the blood glucose at the time of insulin
bolusing. Since, we only require information about the mean and
variance of the evolving blood-glucose, the recently developed
Conjugate Unscented Transform (CUT) approach [9] is used to
estimate the blood-glucose statistics. A sequential cone program-
ming problem is then solved to determine the optimal insulin in-
fusion profile to track an ideal glucose trajectory for the nominal
meal.

This document is organized as follows. Section 1 introduces
the problem statement and presents some background in the field.
Section 2 elaborates the dynamic systems as well as outlays the
environment used for the simulations. Section 3 provides a brief
overview of the CUT and how it can be used to determine statis-
tics of stochastic variables. This is followed by section 4 where
the concept of chance constraints are introduced. Then, in sec-
tion 5 the method to determine the statistics of blood glucose us-
ing CUT is explained. Section 6 combines results from the pre-
vious two sections to present the implementation of the chance
constraints on blood glucose. The sequential cone programming
algorithm is outlined in section 7 where the final results are pre-
sented. The paper ends with concluding remarks in section 8.

2 MODEL AND SIMULATION ENVIRONMENT
2.1 Dynamic Model

The control design in this work has been implemented on
the popular Bergman’s Minimal model for glucose-insulin dy-
namics [10], although the strategy can be easily adapted for more
sophisticated models. The minimal model is a two compartment
physiological model where the evolution of the model states are

defined by

Ġ(t) =−(X(t)+ p1)G(t)+ p1Gb +Rag(t)/Vg (1)

Ẋ(t) =−p2X(t)+ p3(I(t)− Ib) (2)

İ(t) =


−p4I(t)+ γ(G(t)−h)(t− tm) for t ≥ tm and

G(t)≥ h
−p4I(t) otherwise.

(3)

p1 (min−1), p2 (min−1), p3 (min−2.L/mU), p4 (min−1), γ

(min−2.mU.dL/mg.L) and h (mg/dL) are parameters of the
model. p1 is used to characterize the effective glucose disap-
pearance at basal insulin levels, while p2 along with p3 repre-
sents the capacity of insulin to increase glucose disappearance
and hinder more glucose production. p4 represents the time
constant for insulin disappearance from blood. The states G(t)
(mg/dL), X(t) (min−1) and I(t) (mU/L) represent the blood glu-
cose concentration, effective insulin in the remote compartment
and the blood insulin concentration respectively. Gb and Ib rep-
resent certain basal values of the states G(t) and I(t). The term
γ(G(t)−h)(t− tm) mimics the action of the human pancreas, tm
(which has been assumed to be 30min for all simulations) is time
of meal consumption and Vg (dL) is the distribution volume of
glucose.

The additional term Rag(t) (mg) (also referred to as the Rate
of appearance of glucose in blood) is introduced in the model to
replicate a meal intake disturbance. In this work, the dynamics
that determine Rag(t) is evaluated from a gut dynamics model
adopted from [11]. The model is given by the equations

q̇sto1(t) =−k21qsto1(t)+Dδ (t− tm) (4)

q̇sto2(t) =−kemptqsto2(t)+ k21qsto1(t) (5)

q̇gut(t) =−kabsqgut(t)+ kemptqsto2(t) (6)

Rag(t) = f kabsqgut(t) (7)

qsto = qsto1 +qsto2 (8)

kempt(qsto) = kmin +0.5(kmax− kmin)(tanh[α(qsto−
bD)]− tanh[β (qsto− cD)]+2) (9)

α =
5

2D(1−b)
(10)
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β =
5

2Dc
. (11)

where qsto1 (mg) and qsto2 (mg) are the amounts of glucose in
solid and liquid phases respectively present in the stomach at
any time. qgut (mg) is the amount of glucose in the intestines,
δ (.) is the Dirac delta function and D (mg) is the amount of glu-
cose consumed during the meal. k21 (min−1) is a constant which
determines the rate at which food moves from the first stomach
state to the second. kempt (min−1) represents the rate at which the
food is drained from the second stomach state to the gut state. It
is bounded by maximum and minimum values kmax and kmin re-
spectively. kabs (min−1) is the rate at which the carbohydrates
are absorbed into the body from the gut. α and β are parame-
ters which determine the transition of kempt between its extrem-
ities. Finally, b, c and f are other dimensionless parameters of
the model.

One of the objectives of the control problem is to make the
glucose concentration in a Type 1 diabetic patient track the glu-
cose concentration of a normal person over time after a meal. The
variation of glucose concentration for a normal person is referred
to as the target glucose trajectory. This target trajectory is gener-
ated by simulating the Bergman’s model using parameter values
fitted to a normal person. Since these parameters vary among
people, a set of values are chosen, for illustrative purposes, from
literature [12,13]; where the Bergman model and the gut dynam-
ics was actually fit to real data (taken from a normal subject(s)).
These values are listed in Table 1. The initial conditions for the
trajectory was selected as

G(0) = Gb; X(0) = 0; and I(0) = Ib.

It should be noted that during practical implementation, the pa-
rameters and initial conditions are not binding and can be altered
depending on the target trajectory desired for a patient. In fact,
the target trajectory need not be obtained from a model simula-
tion and could be prescribed by the respective physician. How-
ever, in this work as mentioned previously, for illustration, the
target trajectory is obtained from a simulation.

In case of a person suffering from Type-1 diabetes, the nat-
ural pancreas (γ(G(t)−h)(t− tm)) is removed and is substituted
by an artificial insulin input term U ′(t) similar to Lynch and Be-
quette in [14]. This alters equation (3) to

İ(t) =−p4I(t)+U ′(t). (12)

The diabetic model (comprised of equations (1), (2) and (12))
is now an unstable system in the absence of any insulin control
causing the glucose concentration to grow unchecked (which is
reasonable to assume: for a Type 1 diabetic patient with no in-
sulin). To stabilize the glucose concentration in such patients,

TABLE 1. Parameter values for a normal subject

Parameter Value Parameter Value

p1 0.03082 kmax 0.0558

p2 0.02093 kmin 0.0080

p3 1.062×10−5 kabs 0.057

p4 0.30000 k21 0.0558

γ 0.003349 b 0.82

h 89.5 c 0.00236

Gb 92 f 0.9

Ib 7.3 Vg 146.64

in reality, a basal insulin dosage is given. This concept can be
modeled by assuming the control to be of the form

U ′(t) =U(t)+ p4Ib (13)

where the term p4Ib mimics the basal dosage. With this modifi-
cation, the diabetic model can be summarized as

Ġ(t) =−(X(t)+ p1)G(t)+ p1Gb +Rag(t)/Vg (14)

Ẋ(t) =−p2X(t)+ p3(I(t)− Ib) (15)

İ(t) =−p4(I(t)− Ib)+U(t). (16)

Equations (14) through (16) now represent a stable system
where the glucose concentration is driven to the desired basal
level (Gb). The objective is to determine an insulin trajectory
(U(t)) to successfully track the target trajectory.

2.2 Model Uncertainties
This subsection is used to outline the uncertainties that have

been assumed for the simulation of diabetic patients and present
their non-uncertain parameter values. To account for patient vari-
ability, model parameters such as G(0), p1, p2, p3, kmax and kmin
are assumed to be uncertain. The non-uncertain Bergman param-
eter p4 is taken from literature [14] where the value was identi-
fied by fitting the Bergman model to the outputs obtained from
the Sorensen diabetic model. The other parameters for diabetic
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patients (kabs, b, c, f , Vg Gb and Ib) were obtained from the FDA
approved Type 1 Diabetes Metabolic Simulator (T1DMS) soft-
ware (corresponding to an average adult). The parameters have
been tabulated in Table 2.

TABLE 2. Parameter values for a Type 1 Diabetic subject

Parameter Value Parameter Value

pnominal
1 0.028735 knominal

max 0.0429

pnominal
2 0.028344 knominal

min 0.0141

pnominal
3 5.035×10−5 kabs 0.2062

p4 5/54 k21 0.0558

b 0.7612 c 0.1372

Gb 119.1858 f 0.9

Ib 15.3872 Vg 128.8237

G(0) is the glucose concentration in blood when the simula-
tion starts (i.e. at t = 0 min). Since, the glucose concentration at
that instant is unlikely to be exactly the basal value (Gb), G(0) is
assumed to be uniformly distributed about Gb with a 30% varia-
tion on either side of it. Therefore, G0 ∈U [83.43,154.9415].

To account for inter-patient variability p1, p2, p3, kmin
and kmax are also assumed to have uniform distributions with a
30% variation about their nominal values. The nominal values
(for type 1 diabetic patients) are taken from literature [14] and
T1DMS average adult data set (Table 2).

The final uncertainty has been assumed in the meal size con-
sumed by a patient (i.e. the parameter D in equation (4)). Ac-
cording to the 2010 Dietary Guidelines [15] published by the
U. S. Department of Agriculture, Health and Human Services,
the daily carbohydrate (CHO) intake goal for all ages should be
130 gm. Depending on the individual and time of day, meal sizes
can vary. Light and heavy meals vary in their CHO counts sig-
nificantly. The values can vary between 15 gm for a snack to
60 gm for lunch if CHOs from all foods at a meal are added up.
A breakdown of the carbohydrate content of recommended foods
for diabetic patients can be found in article [16] from the Ameri-
can Diabetes Association. Based on the daily total and mealtime
CHO recommendations, D is assumed to have a uniform distri-
bution given by D ∈U [0,60]mg.

All the aforementioned uncertainties are time invariant and
their impact on the evolution of the blood glucose is of interest
in the analysis of any controller. Monte Carlo simulations can be
used to estimate the evolution of the probability density function
of the blood-glucose. However, it is well recognized that this is
computationally expensive and will not be suitable for real-time

estimation of the time evolution of the statistics of the blood-
glucose. A technique such as polynomial chaos [17] presents a
powerful approach for the estimation of the statistics, but also
suffer from the curse of dimensionality as the number of uncer-
tain variables increase. A powerful deterministic sampling based
approach was proposed by Julier and Uhlman [18], called the
Unscented Transform (UT). UT permits using 2p+1 number of
samples (sigma points) for p dimensional uncertain inputs to es-
timate the mean and covariance of the output. One shortcoming
of the UT is that as the number of uncertain variable grows, the
weights assigned to the sigma points can become negative and
the location of the sigma points can lie outside the support of the
uncertain variable. For example, if a variable is uniformly dis-
tributed, the sigma points could potentially fall outside the sup-
port of the uncertain variable. This motivates the use of a more
sophisticated method to calculate statistics of random variables.
The next section outlines a recently developed sampling scheme
that addresses the two mentioned issues.

3 CONJUGATE UNSCENTED TRANSFORM
The Conjugate Unscented Transform for multivariate uni-

form distributions introduced in [9] is a technique used to calcu-
late statistics of uniform random variables which undergo non-
linear transformations. It belongs to a wide class of techniques
commonly referred to as sigma-point based estimators. In these
methods, a set of points (a.k.a. the sigma points) are selected
from the uncertain space (whose statistics are known) such that
the mean and the covariance of all the points match with the
known statistics. Each of these points are then made to go
through the non-linear transformation to yield another set of
points in the transformed space. The statistics of the transformed
space is now evaluated from the transformed points by weighing
them appropriately.

The CUT defines a way to determine the position (xi) and the
associated weights (wi) of these sigma points. If the non-linear
transformation is defined as yi = f (xi), then the statistics (mean
and covariance) of the transformed space (y) is determined by

y =
N

∑
i=1

wiyi and (17)

Py =
N

∑
i=1

wi(yi− y)(yi− y)T . (18)

where N is the total number of sigma points, y and Py are the
mean and the covariance of the transformed space.

For the diabetes problem in this work, CUT is used to de-
pict the variation in the glucose concentration due to the as-
sumed uncertainties. The number of uncertainties is 7 (i.e.
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xxx = [p1, p2, p3,G(0),D,kmax,kmin]
T ). Since, the variable of in-

terest is the glucose concentration, the output y is G(t) and the
non-linear function f is the numerical simulation of the dia-
betic model (equations (14) through (16)). After assuming that
the uncertain variables are independent, N = 686 sigma points
(xxx(i)) and weights (w(i)) are generated using the CUT-4 algorithm
in [9]. For each of these sigma points, the diabetic model is sim-
ulated and the glucose trajectories over time are recorded. The
statistics of the glucose concentration (at each time instant) is
then evaluated by weighing all the trajectories appropriately (as
presented in equations (17) and (18)). Figure 1 shows a 3-sigma
bounded variation of the glucose concentration, calculated from
the 686 trajectories via CUT.

FIGURE 1. Glucose variation with only basal Insulin infusion

It is recommended that blood glucose concentration never
falls below a lower bound Glb (hypoglycemia) at any time. Ac-
cording to a joint consensus statement from the ADA and the En-
docrine Society regarding hypoglycemia and diabetes [19], Glb
should be 70 mg

dL . In addition, after two hours (120min) of a meal,
it is recommended by the American Diabetes Association [20]
that the blood glucose concentration be below 180 mg

dL . These
constraints have been shown (in red) in Figure 1 as well. The
objective now is to figure out a way to incorporate these con-
straints into the control problem. One way to do it would be to
pose hard inequality constraints on the blood glucose at the nec-
essary time instants. However, a downside to this approach is
that the hypoglycemic as well as the hyperglycemic constraints
are treated with equal severity where in reality it is accepted that
the hyperglycemic constraint is a comparatively softer constraint
(as compared to the hypoglycemic one) in the short term. More-
over, assuming hard constraints may also fail to give a feasible
control solution where significant variability in glucose trajecto-
ries have been assumed. As a result, these two issues motivate
a probabilistic approach towards the glycemic constraints. The

next section introduces the concept of chance constraints which
is used later to impose the constraints on blood glucose.

4 CHANCE CONSTRAINTS
Calafiore and El Ghaoui in [21] present an approach to

rewrite linear probabilistic inequalities as non-probabilistic in-
equalities. In their work, they prove that if a and b are random
variables with known means and variances, then the constraint:

Prob{aT x+b≤ 0} ≥ 1− ε (19)

is equivalent to the convex constraint

√
1− ε

ε
{var[aT x+b]}1/2 +E[aT x+b]≤ 0 (20)

where ε (∈ (0,1)) represents the risk level i.e. the probability
with which the constraint is permitted to be violated. It should
be noted that the constraint is conservative since it subsumes all
distributions with the same mean and variance. Therefore, if only
the first two moments of the random variables (a,b) are known,
equation (20) allows one to enforce equation (19) no matter what
the true distribution of (a,b) is. However, since this constraint is
robust to all distributions, it yields conservative solutions.

One alternative would be to assume a Gaussian distribution
as the probability distribution function (pdf) of G(t) and enforce
a chance constraint specific to a Gaussian distribution. However
Figure 2 is used to illustrate that the pdf of G(t) is non-Gaussian
at all times.

In Figure 2, Gaussian pdfs are generated using the mean and
variance obtained from CUT at 3 distinct time instants (shown in
red). These pdfs are then compared to the pdfs generated from
10000 Monte Carlo (MC) sample trajectories (shown in blue). It
is evident that although the two sets of pdfs have the same first
two moments, they are all different. Hence, the robust chance
constraint (equation (20)) is chosen for implementation.

The idea here is to: use CUT to obtain accurate measures
of the mean and the variance of blood glucose (G(t)) over time
and then: use these measures to enforce hypoglycemic or hyper-
glycemic chance constraints.

5 COMPUTATION OF MEAN AND VARIANCE
The formulation of the chance constraints is designed only

for linear constraints (Equation (19)). Such a formulation would
need the mean of G(t) to be a linear function of G(0) and U(t)
as well as the variance of G(t) to be a quadratic function of G(0)
and U(t). This is not the case here as can be seen from the
model equations. Therefore, the first objective of this section
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FIGURE 2. Pdfs obtained from CUT and MC sampling at times: t =
0, 99 and 174 min. (Pdfs have been scaled for illustration)

is to present a linear approximation for G(t) which can cater to
the chance constraint needs. The second objective is to derive a
way in which the statistics of blood glucose can be determined
after the control input has been slightly changed.

To deal with the issue of non-linearity, the non linear model
is linearized about the trajectories generated from the N sigma
points (also called the nominal trajectories). The mean and the
variance of G(t) are then calculated from these linearized mod-
els by appropriately weighing them. This entire process is elab-
orated in this section.

5.1 Linearization
Let the non-linear diabetes model be described by the equa-

tion

żzz = fff (zzz,U) (21)

where zzz = [G,X , I,qsto1,qsto2,qgut ]
T . This system is linearized

about the N nominal trajectories zzz(i). zzz(i) are generated from N
sigma points using żzz(i) = fff (zzz(i),U), where U (also referred to as
the nominal input) is an initial guess of the control input U . The
error dynamics of the linearized systems is given by

∆żzz(i) =
∂ fff
∂ zzz

∣∣∣∣∣
zzz=z(i),U=U

∆zzz(i)+
∂ fff
∂U

∣∣∣∣∣
zzz=z(i),U=U

∆U (22)

where (i) represents the system corresponding to the ith sigma
point and varies from 1 to N. This linear system is now dis-
cretized so that linear algebraic chance constraints on the blood
glucose can be exercised.

5.2 Discretization
The discretized version of equation (22) assuming a Zero

Order Hold setting can be written as

∆zzz(i)(k+1) = G(i)
k ∆zzz(i)(k)+H(i)

k ∆U(k) (23)

where k is the kth time step, G(i)
k and H(i)

k are state dependent dis-
cretized system matrices for the ith sigma point trajectory. Equa-
tion (23) can be simplified to

∆zzz(i)(k+1) =

(
k

∏
j=0

G(i)
j

)
∆zzz(i)(0)+H(i)

k ∆U(k)

+
k−1

∑
j=0

(
k

∏
m= j+1

G(i)
m

)
H(i)

j ∆U( j) (24)

where ∆zzz(i)(0) represents the initial perturbation state of each
trajectory and is equal to 0.

For the entire work, the simulation time has been as-
sumed to be Tf = 250 min and the sampling time to be Ts =
1 min. This makes k vary between 0 and 249. Correspond-
ingly, the number of inputs is 250, i.e. U(0) through U(249).
If the entire control profile is defined by the vector UUU =
[U(0),U(1), . . . ,U(249)]T , the entire blood glucose profile by
GGG = [G(1),G(2), . . . ,G(250)]T ), the error dynamics can be given
by the equation

∆GGG(i) = M(i)
∆UUU (25)

where M(i) =


CgluH(i)

0 . . .

CgluG(i)
1 H(i)

0 CgluH(i)
1

...
...

. . .

Cglu

(
∏

k
j=1 G(i)

j

)
H(i)

0 . . . . . . CgluH(i)
249

 (26)

and Cglu = [1,0,0,0,0,0]T . Thus, equation (25) allows us to
write the blood glucose perturbation along each sigma point tra-
jectory as a linear function of the input perturbation, accomplish-
ing the first objective of the section.

Cglu can also be used to write the nominal blood glucose
trajectories as

GGG
(i)

=Cgluzzz(i). (27)
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Therefore, the blood glucose profile GGG due to a ∆UUU change in the
control input profile UUU can be finally written as

GGG = GGG+∆GGG (28)

where GGG is the stochastic nominal blood glucose trajectory due to
the control input UUU and ∆GGG is the stochastic perturbation about
GGG due to a perturbation in the control input ∆UUU . The statistics
of GGG can now be easily calculated using relations similar to (17)
and (18) since we have sigma-point realizations of GGG as well as
∆GGG. This completes the second objective.

However, the statistics of most interest is the mean and the
variance of GGG because the mean and the variance are the only two
moments necessary for the robust chance constraints. The next
section details the development of the chance constraints using
the said two moments.

6 CHANCE CONSTRAINTS ON GLUCOSE
As expressed previously, this work seeks to implement

chance constraints on the hypoglycemic and hyperglycemic
blood glucose concentration levels. It is desired that the hypo-
glycemic constraint is always satisfied, i.e. G(k) ≥ Glb for all
k. It is also desired that the hyperglycemic constraint is satisfied
after two hours of the meal, i.e. G(k) ≤ Gub for k > 150 since
meal time is tm = 30 min. In this section, the derivation of only
the hypoglycemic chance constraint at a particular time instant j
is shown, as the other constraints are almost identical. The objec-
tive of this section is to derive a convex inequality as a function
of ∆UUU to represent the chance constraints.

The blood glucose concentration at the jth minute is given
by the jth row of equation (28) and is summarized as G( j) =
G( j)+∆G( j). The goal is to effectively implement the following
probabilistic constraint

Prob{−G( j)+Glb ≤ 0} ≥ 1− ε1 for j = 1, . . . ,250. (29)

Ideally, ε1 should be 0 since we want the hypoglycemic con-
straint to be satisfied with probability 1. However, since the
chance constraints are conservative to begin with, a 10 % vio-
lation is allowed, i.e. ε1 = 0.1. Equation (29) is equivalent to the
constraint

√
1− ε1

ε1
{var[−G( j)+Glb]}1/2 +E[−G( j)+Glb]≤ 0 (30)

similar to equation (20). Now,

E[−G( j)+Glb] =−E[G( j)+∆G( j)]+Glb =

−
N

∑
i=1

w(i)G(i)
( j)︸ ︷︷ ︸

E[G( j)]

−
N

∑
i=1

w(i)M(i)
j ∆UUU︸ ︷︷ ︸

E[∆G( j)]

+Glb (31)

where G(i)
( j) is the jth element of GGG

(i)
and M(i)

j is the jth row of
M(i). Moreover,

var[−G( j)+Glb] = var[−G( j)] = var[G( j)+∆G( j)] (32)

since Glb is a number and not a random variable. Equation (32)
can be expanded as

var[G( j)+∆G( j)] = var[G( j)]+var[∆G( j)]

+2cov[G( j),∆G( j)]. (33)

The variances can be found using the following relations

var[G( j)] =
N

∑
i=1

w(i)(G(i)
( j)−E[G( j)])2

︸ ︷︷ ︸
C

and (34)

var[∆G( j)] =
N

∑
i=1

w(i)(∆G(i)( j)−E[∆G( j)])2. (35)

Equation (35) can be simplified in terms of ∆UUU as

var[∆G( j)] =

∆UUUT

(
N

∑
i=1

(M(i)
j −M j)w(i)(M(i)

j −M j)
T

)
︸ ︷︷ ︸

A

∆UUU . (36)

where M j = ∑
N
i=1 w(i)M(i)

j . The covariance term in equation (33)
is found using

cov[G( j),∆G( j)] =
N

∑
i=1

w(i)(G(i)
( j)−E[G( j)])(∆G(i)( j)−E[∆G( j)]). (37)
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Once again, equation (37) can be simplified in terms of ∆UUU as

cov[G( j),∆G( j)] =(
N

∑
i=1

w(i)(G(i)
( j)−E[G( j)])(M(i)

j −M j)

)
︸ ︷︷ ︸

B

∆UUU . (38)

Therefore, the variance term in equation (30) can be written as a
quadratic function of the ∆UUU vector as

var[−G( j)+Glb] = ∆UUUT A∆UUU +2B∆UUU +C (39)

where A, B and C are defined through equations (36), (38) and
(34) respectively. Since var[−G( j) +Glb] ≥ 0, a factorization
can be found of the form

var[−G( j)+Glb] = (P∆UUU +Q)T (P∆UUU +Q) (40)

leading to

var[−G( j)+Glb]
1/2 = ||P∆UUU +Q||2. (41)

On substituting equation (41) and (31) in (30), the chance con-
straint finally boils down to the cone constraint

√
1− ε1

ε1
||P∆UUU +Q||2−E[G( j)]−E[∆G( j)]+Glb︸ ︷︷ ︸

HypoCon( j)

≤ 0. (42)

Equation (42) represents the hypoglycemic glucose chance con-
straint for the jth time instant or minute. By considering vary-
ing values of j, the hypoglycemic constraint can be imposed for
every minute. A similar inequality can also be derived for the
hyperglycemic constraint

√
1− ε2

ε2
||P∆UUU +Q||2 +E[G( j)]+E[∆G( j)]−Gub︸ ︷︷ ︸

HyperCon( j)

≤ 0. (43)

in which case j would vary from 150 to 250. ε2 is used to denote
the risk level for the hyperglycemic constraint and since it is a
much softer constraint, the value was fixed to be 0.3, i.e. allowing
a 30 % violation.

Now that all the components necessary to solve the optimal
control problem have been defined, the next section focuses on
the sequential cone programming algorithm (which uses results
from all the previous sections) to finally solve it.

7 SEQUENTIAL CONE PROGRAMMING
This section presents the iterative sequential algorithm that

can be used to determine a solution to the optimal control prob-
lem.

The algorithm starts with an initial guess of the entire
IV insulin control profile. This profile is also termed as
the nominal control trajectory and is represented by UUU =
[U(0),U(1), ...,U(249)]T . In the problem it is assumed that
the control UUU results in the stochastic state GGG and the control
UUU =UUU +∆UUU results in the stochastic state GGG = GGG+∆GGG.

Using UUU as the control input trajectory, N nominal state tra-
jectories zzz(i) are determined based on the N sigma points. The
sigma point trajectories now allow the determination of the mean
and the variance of GGG as weighted sums of the nominal glucose
trajectories (GGG

(i)
).

This step is followed by linearizing the state space model
about those N nominal state trajectories to obtain N time-varying
continuous linear systems. The N time-varying continuous linear
systems are then discretized to obtain N time-varying discrete
linear systems with system matrices G(i)

k and H(i)
k (as explained

in sections 5.1 and 5.2).
These N sets of system matrices are then used to construct N

special matrices (M(i)), which map the control perturbation pro-
file (∆UUU) to the glucose perturbations (∆GGG(i)) about the N nom-
inal glucose trajectories (GGG

(i)
). This allows the determination

of the mean and the variance of ∆GGG as a linear and a quadratic
function of ∆UUU respectively. At this point in the development,
the following optimization problem is solved:

minimize∆UUU ||E[GGG]−GGGtarget ||2
subject to HypoCon( j)6 0 for j = 1, ...,250

HyperCon( j)6 0 for j = 150, ...,250
UUU > 0.

The cost function of the problem is designed to minimize the er-
ror norm between the expected value of the glucose trajectory
(E[GGG]) and the target glucose trajectory (GGGtarget ) shown in blue
in Figure 1 so that the control solution drives the mean glucose of
the Type 1 diabetic patient towards a glucose profile seen in nor-
mal patients. The first two constraints refer to the hypoglycemic
and the hyperglycemic chance constraints derived in the previous
section (summarized by the inequalities (42) and (43)). The final
constraint is to enforce the fact that insulin can only be added to
the bloodstream (and not removed).

The optimization problem is convex since the cost is a 2-
norm error function (where the error function is linearly depen-
dent on the optimization variable ∆UUU), the chance constraints are
cone constraints and the final constraint is a linear inequality.
There are many efficient convex solvers available to solve such
problems. For this work however, the CVX MATLAB toolbox
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[22] was used. Once the solution ∆UUU∗ is obtained, the control
input solution is updated using the relation: UUU∗(1) =UUU +∆UUU∗.

This step concludes the first iteration with UUU∗(1) representing
the control solution determined from the iteration. Since the so-
lution at the end of iteration 1 is obtained as a perturbation about
an initial guess nominal control trajectory UUU , it depends on the
choice of UUU . To converge to at least a locally minimal control
solution, the entire process is made iterative where the nominal
trajectory UUU for the second iteration is made equal to the control
solution from the previous iteration, i.e. UUU∗(1). Therefore, we
get UUU |iter+1 =UUU∗(iter) where iter represents the iteration number
in the algorithm. As the entire control problem is resolved by
solving convex cone optimizations sequentially at each iteration,
the phrase Sequential Cone Programming (SCP) is used to justify
the process.

Figure 1 shows the variation of glucose (with the mean GGG in
black dashed line) when no insulin control is present. We can see
that a large fraction of the grey area (which shows a 3−σ glucose
variability bound) violates the hyperglycemic glucose constraint
beyond the 150min mark, thus motivating the need for an insulin
control.

Results from the SCP are now presented. The SCP algo-
rithm is started with an initial nominal guess for the control. The
nominal guess is chosen based on the pre-meal bolus principle
where an insulin bolus is given prior to the consumption of every
meal [23]. Therefore, the initial control guess is assumed to be
UUU = [40,0, . . . ,0]T .

FIGURE 3. Control Solution UUU obtained after 6 iterations of the SCP

It should be pointed out that the optimization assumes a lin-
ear approximation of the true non-linear model. Therefore find-
ing a control solution for the linearized model which satisfies
all the constraints does not imply that the same control on the
true system would also satisfy those constraints. Hence, the SCP
algorithm is terminated only if it is observed that the control so-

FIGURE 4. Glucose variation GGG obtained after 6 iterations of the SCP

lution is able to satisfy all the constraints even for the true non-
linear system. This is verified by determining the mean and the
variance of blood glucose via the non-linear model using CUT
and checking if the desired constraints are met. In the illustrated
case, the true glucose variation satisfied the desired constraints
at the end of the 6th iteration. The control solution obtained at
the end of the 6th iteration is shown in Figure 3. The associated
glucose variation is shown in Figure 4. In this figure we see that
the glucose variation lies within the stipulated bounds (present-
ing the success of the SCP algorithm). It is seen that the nominal
trajectory hovers above the blue curve instead of tracking it. This
is because perfect tracking would cause the grey region to violate
the glucose lower bound.

It should also be mentioned that although the optimization
problem being solved is a convex one, the final solution obtained
need not be globally optimal. This is because the optimization
problem tries to determine a perturbation profile about a pre-
established control trajectory and not estimate the entire control
input. Therefore, the optimization problem posed in this section
only provides the best perturbation profile. Repeatedly solving
this optimization problem (by updating the nominal control in-
put) however, allows us to converge to a reasonable solution. It
must also be mentioned that for an assumed UUU , a solution might
not be feasible. This does not mean that a control input solution
does not exist, but it just motivates the algorithm to select a better
UUU .

8 CONCLUSION
A probabilistic approach for the design of insulin profiles

to regulate blood glucose in Type 1 diabetic patients is studied.
Chance constraints, which are functions of the mean and vari-
ance of the uncertain blood-glucose are used to impose accept-
able probabilities of hypo- and hyperglycemic events. A sequen-
tial cone programming approach is used to design a controller for
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a model for Type 1 diabetes with uncertainties in model param-
eters, meal size and initial blood glucose. Numerical results are
encouraging to warrant studying more complex models including
subcutaneous insulin infusion.
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