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ABSTRACT
The focus of this paper is on the development of an open

loop controller for type 1 diabetic patients which is robust to
meal and initial condition uncertainties in the presence of hypo-
and hyperglycemic constraints. Bernstein polynomials are used
to parametrize the evolving uncertain blood-glucose. The unique
bounding properties of these polynomials are then used to en-
force the desired glycemic constraints. A convex optimization
problem is posed in the perturbation space of the model and is
solved repeatedly to sequentially converge on a sub-optimal so-
lution. The proposed approach is demonstrated on the classic
Bergman model for Type 1 diabetic patients.

1 INTRODUCTION
In 2015, a report released by the Centers for Disease Con-

trol and Prevention (CDC) on the National Diabetes Statistics
revealed that a significant 30.3 million people in United States
alone have diabetes, which accounts for about 9.4% of the US
population [1]. Moreover, WHO reported that there has also been
a staggering rise in the growth of diabetes worldwide where the
number of people with diabetes has risen from 108 million in
1980 to 422 million in 2014 [2]. This is clearly a worldwide
epidemic with the cost to health care being enormous. These
numbers are expected only to rise in the future unless substantial
progress is made in diabetes research to solve or even mitigate

the impact of uncontrolled blood-glucose.
The natural control of blood glucose concentration level is

primarily facilitated by two hormones (namely the glucagon and
the insulin), both of which are secreted by the pancreas. This
loss of glucose regulation due to autoimmune diabetes (Type 1)
or insulin-resistant diabetes (Type 2) can have dire health con-
sequences. For individuals with diabetes, the undesirable events
where the blood glucose level rises above the 180 mg/dL mark
and falls below the 70 mg/dL mark are called hyperglycemia and
hypoglycemia respectively. Critical hypoglycemia (glucose <
50 mg/dL) can lead to seizures, unconsciousness as well as pos-
sible permanent brain damage [3] while chronic hyperglycemia
can lead to blindness, nerve damage and potential loss of limbs;
thereby emphasizing the severity of the ailment in discussion.

In response to the alarming rise in Diabetes the Juve-
nile Diabetes Research Foundation launched a consortium in
2006 [4] and the European Union initiated the AP@Home ef-
fort in 2010 [5], to promote the development of an Artificial Pan-
creas (AP). AP is a bio-medical device which integrates an in-
sulin pump along with a glucose sensor to mimic the operations
of a natural pancreas.

Cobelli et al. in [4] review the history of the effort to de-
velop an Artificial Pancreas (AP) (also referred to as a bionic
pancreas [6] or an artificial β cell [7]). Lunze et al. [8] reviewed
the current state of controllers proposed for use in automated
blood glucose regulation. Dassau et al. [7] makes comparisons of
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different algorithms to detect meal times using continuous glu-
cose measurement (CGM) from 26 children. It is observed in
the datasets that significant variation of baseline glucose level
exists. Moreover, remarks are also made on the uncertainty in
meal quantities (in terms of carbohydrates). Both of these vari-
ables have been considered as uncertain in this paper. Chen et
al. [9] also remark on the meal detection challenge due to meal
macronutrient composition uncertainty and variation in patient
specific physiology.

With the advent of sensing technology and sophisticated in-
sulin pumps, the goal of closed loop glycemic control today is
almost a reality. However, there remains a significant number of
obstacles that needs attention; one of which is addressed in this
paper. Particularly, that of the design of an insulin control algo-
rithm that addresses the impact of initial condition and meal-size
uncertainties.

This paper is an attempt to develop a framework to charac-
terize the uncertainty in the evolution of blood glucose due to
various sources of uncertainties and determine an open loop con-
trol trajectory that can deal with them. In this paper we consider
two such sources: uncertainty in the initial conditions (blood glu-
cose) and uncertainty in the meal size (number of carbohydrates
in the meal). A spectral expansion based approach to represent
the evolution of blood glucose uncertainty is proposed and spe-
cial properties of its bases (Bernstein polynomials) are used to
determine bounds on the range of variation. These bounds are
then utilized to solve for a control strategy that forces the uncer-
tainty in glucose to meet certain constraints as well as track the
blood glucose level of a normal person. The final optimization
problem thus formed is iteratively solved by formulating a con-
vex optimization problem repeatedly, to converge to a reasonable
solution.

This document is organized as follows. Section 1 motivates
& introduces the problem statement, provides existing back-
ground literature and presents a brief summary of the work in
this paper. Section 2 talks about the Bergman model for glucose-
insulin dynamics and describes the simulation environment. Sec-
tion 3 reviews the well-known Galerkin Projection technique to
determine coefficients of a series expansion of stochastic states.
Section 4 presents Bernstein polynomials and motivates their
choice as basis functions for a series expansion. Section 5 gives
a detailed account of the Sequential Quadratic Programming al-
gorithm that has been used to solve an optimal control problem.
Finally, the paper ends with concluding remarks in section 6.

2 MODEL AND SIMULATION ENVIRONMENT
2.1 Dynamic Model

The control design in this work has been implemented on
the popular Bergman’s Minimal model for glucose-insulin dy-
namics [10], although the strategy can be easily adapted for more
sophisticated models. The minimal model is a two compartment

physiological model where the evolution of the model states are
defined by

Ġ(t) =−(X(t)+ p1)G(t)+ p1Gb +D(t) (1)

Ẋ(t) =−p2X(t)+ p3(I(t)− Ib) (2)

İ(t) =


−p4I(t)+ γ(G(t)−h)(t− tm) for t ≥ tm and

G(t)≥ h
−p4I(t) otherwise

(3)

p1 (min−1), p2 (min−1), p3 (min−2.L/mU), p4 (min−1), γ

(min−2.mU.dL/mg.L) and h (mg/dL) are parameters of the
model. The states G(t) (mg/dL), X(t) (min−1) and I(t) (mU/L)
represent the blood (plasma) glucose concentration, (effective)
insulin in the remote compartment and the plasma insulin con-
centration respectively.

Gb and Ib represent certain basal values of the states G(t)
and I(t). The term γ(G(t)− h)(t− tm) mimics the action of the
human pancreas, tm (which has been assumed to be 30min for all
simulations) is time of meal consumption.

The additional term D(t) is introduced in the model to repli-
cate a meal intake disturbance. In this work, the structure of the
meal disturbance (D(t)) is assumed to be that defined by Fisher
in [11] as

D(t) =

{
0 t < tm
Be−d(t−tm) t ≥ tm

where d is the natural rate of decay of glucose in blood and B
characterizes the quantity of food consumed. To make D(t) a
smooth function (as opposed to piecewise continuous), it is writ-
ten in terms of a sigmoidal function as

D(t) = Be−d(t−tm)
(

1− 1
1+ er(t−tm)

)
(4)

where r defines the steepness of the sigmoid part (and is chosen
to be r = 100 for all simulations).

One of the objectives of the control problem is to make the
glucose concentration in a Type 1 diabetic patient track the glu-
cose concentration of a normal person over time after a meal.
The variation of glucose concentration for a normal person is re-
ferred to as the target glucose trajectory. This target trajectory
is generated by simulating the Bergman’s model using parameter
values fitted to a normal person along with a gut dynamics model
adopted from [12]. The reason a higher order model was selected
was for the generation of a realistic nominal target trajectory. A
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lower order model for the controller design was strictly for il-
lustrative purposes. Since these parameters vary among people,
a set of values are chosen, for illustrative purposes, from liter-
ature [13, 14]; where the Bergman model and the gut dynamics
were actually fit to real data (taken from a normal subject(s)).
The pertinent parameters and details regarding the gut dynamics
model can be found in the Appendix Section.

It should be noted that during practical implementation, the
parameters and initial conditions are not binding and can be al-
tered depending on the target trajectory desired for a patient. In
fact, the target trajectory need not be obtained from a model
simulation and could be prescribed by the respective physician.
However, in this work as mentioned previously, for illustration,
the target trajectory is obtained from a simulation.

In case of a person suffering from Type-1 diabetes, the nat-
ural pancreas (γ(G(t)−h)(t− tm)) is removed and is substituted
by an artificial insulin input term U ′(t) similar to Lynch and Be-
quette in [15]. This alters equation (3) to

İ(t) =−p4I(t)+U ′(t). (5)

The diabetic model (comprised of equations (1), (2) and (5)) is
now an unstable system in the absence of any insulin control
causing the glucose concentration to grow unchecked (which is
reasonable to assume: for a Type 1 diabetic patient with no in-
sulin). To stabilize the glucose concentration in such patients,
in reality, a basal insulin dosage is given. This concept can be
modeled by assuming the control to be of the form

U ′(t) =U(t)+ p4Ib (6)

where the term p4Ib mimics the basal dosage. With this modifi-
cation, the diabetic model can be summarized as

Ġ(t) =−(X(t)+ p1)G(t)+ p1Gb +D(t) (7)

Ẋ(t) =−p2X(t)+ p3(I(t)− Ib) (8)

İ(t) =−p4(I(t)− Ib)+U(t). (9)

Equations (7) through (9) now represent a stable system where
the glucose concentration is driven to the desired basal level (Gb).

The values for the parameters (corresponding to Type-1 dia-
betic patients) are chosen from literature [15] and are given by

p1 = 0.028735
1

min
; p2 = 0.028344

1
min

; (10)

p3 = 5.035e−5
mU
L

; p4 =
5

54
1

min
; d = 0.05. (11)

The basal values for plasma glucose and insulin concen-
trations were obtained by averaging respective values from 30
subjects (10 of each: adults, adolescents and children) available
from the FDA approved Type 1 Diabetes Metabolic Simulator
(T1DMS) software. These values are

Gb = 119.1858
mg
dL

and Ib = 15.3872
mU
L

. (12)

In this work, it is assumed that the initial value of glucose con-
centration in plasma (G(0) or G0) and the meal quantity (B) are
uncertain variables with known specific distributions.

2.2 Distribution of G0 and B
Since the initial value of blood glucose concentration (G0)

is unlikely to be exactly the basal value (Gb), G0 is assumed to
be uniformly distributed about Gb with a 30% variation on either
side of it. Therefore, G0 ∈U [83.43,154.9415]. It can be defined
in terms of another uniformly distributed random variable (ξ1)
where ξ1 ∈U [0,1] as

G0 = 0.7Gb +(2×0.3)Gbξ1. (13)

According to the 2010 Dietary Guidelines [16] published by the
U. S. Department of Agriculture, Health and Human Services,
the daily carbohydrate (CHO) intake goal for all ages should be
130 gr. Depending on the individual and time of day, meal sizes
can vary. Light and heavy meals vary in their CHO counts sig-
nificantly. The values can vary between 15gr for a snack to 75gr
for lunch if CHOs from all foods at a meal are added up. A break-
down of the carbohydrate content of recommended foods for di-
abetic patients can be found in the article [17] from the Ameri-
can Diabetes Association. Based on the daily total and mealtime
CHO recommedations, a meal of 45 gr of CHO is assumed to be
common practice. Hence, a beta distribution is assumed for the
meal quantity with its mode corresponding to a meal of 45 gr of
CHO.
To determine the value of B corresponding to a 45 gr CHO meal,
the glucose appearance rate in plasma (Rag(t)) was observed
from a T1DMS simulation (for an average adult subject). The
area under the curve Rag was evaluated to estimate the total con-
centration of glucose that was absorbed in the plasma. Conse-
quently, B was chosen such that the area under the curve D(t) was
the same as the area under the curve Rag ensuring that the same
amount of glucose entered the blood stream (in the Bergman
model) as deemed acceptable by the FDA.
Table. 1 shows the values of B determined for 3 different quan-
tities of meals. Based on these numbers, the random variable B
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30 gr 45 gr 60 gr

B 19.46 28.98 38.91

TABLE 1. Values of B for different meal sizes

is expressed as an affine function of a Beta random variable (ξ2),
where ξ2 is defined over [0,1] with parameters α = 7 and β = 5.
The expression of B is written as

B = 48ξ2. (14)

With this distribution, B has a mode at B = 28.8, which is very
close to B corresponding to a 45 gr CHO meal (Table. 1) as seen
in Figure. 1.

FIGURE 1. Distribution of B

3 GALERKIN PROJECTION
If the model is observed carefully, it can be seen that X(t)

and I(t) can be solved independently from G(t). Moreover, since
the uncertainties are only with B and G0; X(t) and I(t) can be
solved deterministically making G(t) the only evolving stochas-
tic state. In this work, the stochastic G(t) state is approximated
by a finite series expansion (similar to a Polynomial Chaos Ex-
pansion of the glucose state in [18]) as follows

Ĝ(t) =
N

∑
i=0

xi(t)Ψi(ξ1,ξ2) (15)

where xi(t) are the time varying coefficients of the basis func-
tions Ψi(ξ1,ξ2) (typically selected to be a special polynomial

basis set) and N is the order of expansion desired. The goal is
to determine xi(t) so that the glucose concentration at any instant
in time can be known as a polynomial function of the uncertain
variables ξ1 and ξ2.

Galerkin Projection allows the determination of these coeffi-
cients xi(t) by forming a deterministic set of coupled differential
equations. This is done by minimizing the expected value of the
approximation error square over the uncertain space. An illustra-
tion on the problem at hand is shown below.

The objective of the Galerkin Projection is to determine xi(t)
such that

J =
∫ 1

0

∫ 1

0
(Ġ− ˙̂G)2 pd f (ξ1)pd f (ξ2)dξ1dξ2 (16)

is minimized. Deriving the necessary conditions for the minima
leads to N +1 differential equations

∂J
∂xi

=
∫ 1

0

∫ 1

0
(Ġ− ˙̂G)Ψi pd f (ξ1)pd f (ξ2)dξ1dξ2 = 0. (17)

Recognizing the weighted inner product operator

〈 f (ξ1,ξ2),g(ξ1,ξ2)〉=
∫ 1

0

∫ 1

0
( f )(g)pd f (ξ1)pd f (ξ2)dξ1dξ2,

(18)
equation (17) can be simplified to


ẋ0
ẋ1
...

ẋN


︸ ︷︷ ︸

˙XXXGGG

=


〈Ψ0,Ψ0〉 . . . 〈Ψ0,ΨN〉
〈Ψ1,Ψ0〉 . . . 〈Ψ1,ΨN〉

...
. . .

...
〈ΨN ,Ψ0〉 . . . 〈ΨN ,ΨN〉


−1
〈 fG,Ψ0〉
〈 fG,Ψ1〉

...
〈 fG,ΨN〉


︸ ︷︷ ︸

FFFGGG(t)

(19)

where fG is the right hand side of equation (7) and XXXGGG ∈ RN+1

is a vector comprising all the time varying coefficients of ex-
pansion. Solutions of equation (19) now yields xi(t) over time
and allows us to evaluate the blood glucose concentration as a
polynomial function of the uncertain variables for any realiza-
tion. However, in order to do so, first an appropriate set of basis
functions Ψi needs to be selected. The next section presents and
motivates a well known bases in the form of Bernstein polyno-
mials.

4 BERNSTEIN POLYNOMIALS
In numerous fields of engineering, it is often desired to de-

termine the bounds on the range of a particular state or function.
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If the particular function of interest is, or can be well approxi-
mated by a multivariate polynomial, Bernstein polynomials can
be exploited to determine these bounds [19]. In fact, algorithms
have also been proposed to determine the exact range of multi-
variate polynomials [20] using Bernstein expansions. The work
presented here, however, makes use of the bounding properties of
Bernstein bases to estimate tight bounds on the range of stochas-
tic states and use these bounds as constraints to design a robust
controller.

Since there are only 2 uncertain variables considered in this
paper, the bounding property corresponding to bi-variate Bern-
stein polynomials is summarized below. If a polynomial func-
tion of ξ1 and ξ2 (z(ξ1,ξ2)) is expressed in terms of Bernstein
polynomial basis functions (Bd

ξ1,ξ2
(ξ1,ξ2)) as

z(ξ1,ξ2) =
d,d

∑
ξ1,ξ2=0

bξ1,ξ2
Bd

ξ1,ξ2
(ξ1,ξ2) (20)

where Bd
ξ1,ξ2

(ξ1,ξ2) =
2
∏
i=1

Bd
ξi
(ξi) are the bi-variate Bernstein

polynomials (developed using a tensor product of univariate
Bernstein polynomials (Bd

ξi
(ξi)) with degree d) and bξ1,ξ2

are the
Bernstein coefficients; the range enclosing property of Bernstein
polynomials over the box [ξ1,ξ2]

T = ξξξ = [0,1]2 is given by

z(ξξξ )⊆
[ d,d

min
ξ1,ξ2=0

bξ1,ξ2
,

d,d
max

ξ1,ξ2=0
bξ1,ξ2

]
. (21)

Expression (21) can now be used to immediately obtain bounds
on z, i.e. get an upper bound and a lower bound on the magnitude
of the polynomial in the domain ξξξ = [0,1]2.

This unique range enclosing property now motivates us to
choose the basis functions in equation (15) as Bernstein polyno-
mials, i.e. we assume

Ψ0 = Bd
0,0(ξ1,ξ2); . . . ;ΨN = Bd

d,d(ξ1,ξ2). (22)

Such an expansion would now allow us to easily determine the
upper (Gub) and lower bounds (Glb) of the stochastic Glucose
state (Ĝ(t)) at any instant in time using the relations

Glb(t) = min(x0(t),x1(t), . . . ,xN(t)) (23)

Gub(t) = max(x0(t),x1(t), . . . ,xN(t)) (24)

if the variation of xi(t) were known over time. A comprehensive
system can be defined by augmenting the system in equation (19)
by the two other remaining states of the Bergman model (i.e. X
and I). This leads to the system of differential equations given
by

ẊXXGGG
Ẋ
İ


︸ ︷︷ ︸

ẊXX

=

FFFGGG
fX
fI


︸ ︷︷ ︸

FFF

(25)

where

Ĝ(t) = [Ψ0, . . . ,ΨN ,0,0]×XXX(t) (26)

and XXX ∈ RN+3 is a vector comprising all the states necessary to
accurately determine the statistics of Ĝ(t) as well as the bounds
on Ĝ(t).

In order to simulate equation (25), we need to know the ini-
tial conditions of the system (i.e. XXX(0)). It is assumed that the
terminal two states (X and I) at time t = 0 is at their steady state
values (X(0) = 0 and I(0) = Ib) which is not an unreasonable
supposition. The initial condition for xi(0), however, needs to
be determined specially since the relation G(0) = Ĝ(0) has to be
satisfied. G(0) as well as Ĝ(0) are both polynomial functions in
ξ1 and ξ2. Therefore a linear mapping (M0) can be found to de-
termine xi(0) from the polynomial coefficients of equation (13)
by comparing coefficients, i.e. since we have

G(0) = Ĝ(0) (27)

⇒ [1,ξ1]

[
0.7Gb
0.6Gb

]
= [Ψ0, . . . ,ΨN ]︸ ︷︷ ︸

Ψ

x0(0)
...

xN(0)

 (28)

we can compare coefficients of the two polynomials to get

x0(0)
...

xN(0)

= M0

[
0.7Gb
0.6Gb

]
. (29)

Now that XXX(0) is known, system in equation (25) can be simu-
lated.

Figure 2 illustrates the results of numerical simulations. Fig-
ure 2 is generated using values of d = 4 leading to a value of
N = 24 (i.e. a total of 25 basis functions were selected in the
series expansion). The black plots show the upper and lower
bounds determined using relations (23) and (24). To confirm
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the bounds are sound, 10000 Monte Carlo (MC) simulations are
done for different realizations of ξ1 and ξ2. It is evident from the
figure that the determined Bernstein bounds successfully envelop
all those samples.

FIGURE 2. Comparison of MC mean with E[Ĝ(t)] and Bernstein
Bounds

The figure also compares how well the mean is captured by
the coefficients xi(t). The mean trajectory can be evaluated using
the relation

E[Ĝ(t)] = x0E[Ψ0]+ . . .+ xNE[ΨN ] (30)
= [E[Ψ0], . . . ,E[ΨN ]]︸ ︷︷ ︸

Mmean

XXXGGG. (31)

The blue curve is the mean trajectory determined from the 10000
MC realizations and the dotted yellow curve is the mean trajec-
tory determined using equation (31). Once again it is evident
that the information necessary to construct the mean trajectory
is well captured by the evolving coefficients xi(t). It should be
noted that the IV insulin control profile assumed during the sim-
ulation is U(t) = 0.

Now that a method of characterizing and quantifying the
uncertainty in the glucose state has been established, a control
strategy can be developed to address the robust optimal control
problem as seen in the subsequent section.

5 SEQUENTIAL QUADRATIC PROGRAMMING
This section of the paper gives a detailed outline of the op-

timal control problem and the methodology used to solve it. It
should be stated that the final solution being sought is that of
an open loop control profile (U∗(t)) which makes the mean glu-
cose trajectory (E[Ĝ(t)]) track a target trajectory (Gtarget(t)) as

closely as possible while simultaneously ensuring that at no in-
stant in time does any sample trajectory (i.e. a stochastic real-
ization) violate certain pre-determined constraints. The nature of
these constraints have been elaborated below.

It is recommended that plasma glucose concentration never
falls below a lower bound Gdlb (hypoglycemia) at any time. Ac-
cording to a joint consensus statement from the ADA and the En-
docrine Society regarding hypoglycemia and diabetes [21], Gdlb
should be 70 mg

dL . In addition, after two hours (120min) of a meal,
it is recommended by the American Diabetes Association [22]
that the plasma glucose concentration be below 180 mg

dL .
To meet all these goals, an optimal control problem (P1) can

be posed as follows

minimizeU(t)

∫ Tf

0
(E[Ĝ(t)]−Gtarget(t))2dt

subject to Ĝ(t,ξ1,ξ2)≥ Gdlb for t ≥ 0

Ĝ(t,ξ1,ξ2)≤ Gdub for t ≥ tm +120
U(t)> 0
for any ξ1 ⊂ [0,1] and ξ2 ⊂ [0,1]

(32)

whose solution yields U∗(t). Solving the problem described in
equation (32) is the main goal of this paper. It is a non-linear non-
convex optimization problem in the continuous time domain.
Therefore, to seek a solution, in this work, the problem is first
approximated by another surrogate equivalent optimization prob-
lem (in the discrete time domain) which is convex (P2). Then an
algorithm which solves P2 repeatedly to sequentially converge
on a sub-optimal solution to P1 is exercised. The development
of P2 and the algorithm is what comprises the majority of this
section.

The first step in the algorithm is to make an initial guess of
the control profile (U (0)(t)) over time. The problem is devel-
oped such that this initial control profile is updated iteratively to
converge to the desired control profile (i.e. U∗(t) = U (itermax)(t)
where itermax is the maximum iteration number). For any iter-
ation (iter), the control input U (iter)(t) is also referred to as the
nominal control input and is represented as U(t).

The second step is to determine the nominal state trajecto-
ries (XXX(t)) corresponding to U(t). This is done by simulating the
system in equation (25) with the control U(t). In this step, the
system in equation (25) is also linearized to get the error dynam-
ics as

∆∆∆ẊXX =
∂FFF
∂XXX

∣∣∣∣∣
XXX=XXX ,U=U

∆∆∆XXX +
∂FFF
∂U

∣∣∣∣∣
XXX=XXX ,U=U

∆U. (33)

The third step is to discretize this linear system so that the prob-
lem in the discrete domain becomes tractable. The discretized
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version of equation (33) assuming a Zero Order Hold setting can
be written as

∆XXX(k+1) = Gk∆XXX(k)+Hk∆U(k) (34)

where k is the kth time step, Gk and Hk are state dependent dis-
cretized system matrices. Equation (34) can be simplified to

∆XXX(k+1) =

(
k

∏
j=0

G j

)
∆XXX(0)+Hk∆U(k)

+
k−1

∑
j=0

(
k

∏
m= j+1

Gm

)
H j∆U( j) (35)

where ∆XXX(0) represents the initial perturbation state of each tra-
jectory and is equal to 0.

For the entire work, the simulation time has been as-
sumed to be Tf = 250 min and the sampling time to be Ts =
1 min. This makes k vary between 0 and 249. Correspond-
ingly, the number of inputs is 250, i.e. U(0) through U(249).
If the entire control profile is defined by the vector UUU =
[U(0),U(1), . . . ,U(249)]T , the entire blood glucose profile by
ĜGG = [Ĝ(1), Ĝ(2), . . . , Ĝ(250)]T ), the glucose error dynamics can
be given by the equation

∆ĜGG = M∆UUU (36)

where M =
CgluH(i)

0 . . .

CgluG(i)
1 H(i)

0 CgluH(i)
1

...
...

. . .

Cglu

(
∏

k
j=1 G(i)

j

)
H(i)

0 . . . . . . CgluH(i)
249

 (37)

and Cglu = [Ψ,0,0]. Thus, equation (36) allows us to write the
blood glucose perturbation as a linear function of the input per-
turbation.

Cglu can also be used to write the nominal blood glucose
trajectory as

ĜGG = E[Cglu]XXX (38)

where E[Cglu] = [Mmean,0,0]. Therefore, the blood glucose pro-
file ĜGG due to a ∆UUU change in the control input profile UUU can be
finally written as

ĜGG = ĜGG+∆ĜGG (39)

where ĜGG is the stochastic nominal blood glucose trajectory due
to the control input UUU and ∆ĜGG is the stochastic perturbation about
ĜGG due to a perturbation in the control input ∆UUU .

Once, an expression to evaluate the blood glucose profile
is available (equation (39)), a cost function can be posed which
conceptually is equivalent to the cost in the optimization problem
P1. Since, we want to minimize the error between the mean
blood glucose of a type 1 diabetic patient and that of a target
trajectory, we define a new cost function

J = ||E[ĜGG]−GGGtarget ||2 (40)

where GGGtarget = [Gtarget(1), . . . ,Gtarget(250)]T . Now that the cost
function is developed, the next procedure is to enforce the desired
constraints on the blood glucose concentration.

As was mentioned previously, the goal was to determine a
control profile such that no realization of the stochastic system
violated the constraints. Bernstein bounds allow us to pose these
constraints (albeit conservatively) effectively. The constraints
that need to be enforced are

min[Ĝ(k)]≥ Gdlb for k = 0, . . . ,249 (41)

max[Ĝ(k)]≤ Gulb for k = tm +120, . . . ,250 (42)

where Ĝ(k) is the value of the stochastic glucose state at the kth

time step and therefore the kth element of the vector ĜGG. Using
relation (39), inequality (41) can be approximated as

min[Ĝ(k)+∆Ĝ(k)]≥ Gdlb (43)

⇒ Ĝ(k)+min[∆Ĝ(k)]≥ Gdlb (44)

The reader should now note that ∆Ĝ(k) is the kth element of the
vector ∆ĜGG making ∆Ĝ(k) = Mk∆UUU where Mk is the kth row of M.
On observing Mk carefully, we can write the inequality (44) as

Ĝ(k)+min[Mk∆UUU ]≥ Gdlb (45)

⇒ Ĝ(k)+min[Cglu∆XXX(k)]≥ Gdlb (46)

⇒ Ĝ(k)+min[Ψ∆XXXGGG(k)]≥ Gdlb. (47)

Since, Ψ∆XXXGGG(k) is a polynomial function with Bernstein poly-
nomials as their bases, the range enclosing property can be used
to determine the minimum of the polynomial as

Ĝ(k)+min[∆x0(k), . . . ,∆xN(k)]≥ Gdlb. (48)

7 Copyright c© 2018 by ASME



Satisfying inequality (48) is now equivalent to satisfying the N+
1 inequalities

Ĝ(k)+∆xi(k)≥ Gdlb

for i = 0, . . . ,N and ∀k.
(49)

Hence, now the original hypoglycemic non-linear constraint in
P1 at any instant in time can be approximated by N + 1 lin-
ear constraints (equation (49)). Similarly, the original hyper-
glycemic constraint at any instant in time in P1 can also be ap-
proximated by the N +1 linear constraints

Ĝ(k)+∆xi(k)≤ Gdub

for i = 0, . . . ,N and for k = tm +120, . . . ,250.
(50)

The fourth step in the algorithm is to finally solve the following
optimization problem (P2)

minimize∆UUU J

subject to Ĝ(k)+∆xi(k)≥ Gdlb

for i = 0, . . . ,N and ∀k

Ĝ(k)+∆xi(k)≤ Gdub

for i = 0, . . . ,N
and for k = tm +120, . . . ,250

U +∆UUU > 0.

(51)

Once the solution to P2 (i.e. ∆UUU∗) is obtained, the control input
solution is updated using the relation

UUU∗(iter+1) =UUU +∆UUU∗ (52)

and the process is repeated all the way from step one. As the
entire control problem is resolved by solving convex quadratic
optimizations (P2) sequentially at each iteration, the phrase Se-
quential Quadratic Programming (SQP) is used to justify the title
of the paper.

Results from the SQP are now presented. The SQP al-
gorithm is started with an initial nominal guess for the con-
trol. The initial control guess is assumed to be all zeros, i.e.
UUU (0) = [0,0, . . . ,0]T .

It should be pointed out that the optimization assumes a lin-
ear approximation of the true non-linear model. Therefore find-
ing a control solution for the linearized model which satisfies
all the constraints does not imply that the same control on the
true system would also satisfy those constraints. Hence, the SQP

algorithm is terminated only if it is observed that the control so-
lution is able to satisfy all the constraints even for the true non-
linear system. In the illustrated case, the SQP algorithm is termi-
nated at the 20th iteration. The control solution obtained at the
end of the 20th iteration is shown in Figure 3. The associated
glucose variation is shown in Figure 4. In this figure we see that
the glucose variation lies well within the determined Bernstein
bounds as well as showing all the MC realization satisfying the
desired hypoglycemic and hyperglycemic constraints (presenting
the success of the SQP algorithm).

It is interesting to note that E[Ĝ(t)] is pretty far away from
the blue target trajectory in the first half of the simulation (i.e.
for t < 100 min). This is because the lower bound on the glu-
cose (determined using the Bernstein Range Enclosing property)
is tightly pressed against the desired hypoglycemic lower bound.
If additional insulin was administered to lower the yellow curve
towards the blue one, the lower black curve would end up vio-
lating the acceptable lower glucose level (Gdlb). However, the
optimizer does the best it can: as is evident in the later half of the
plot where the tracking performance is much better (since none
of the black curves are close to being active, i.e. none of the hypo
or the hyperglycemic constraints are active).

It should also be mentioned that although the optimization
problem being solved is a convex one, the final solution obtained
need not be globally optimal. This is because the optimization
problem tries to determine a perturbation profile about a pre-
established control trajectory and not estimate the entire control
input. Therefore, the optimization problem posed in this section
only provides the best perturbation profile. Repeatedly solving
this optimization problem (by updating the nominal control in-
put) however, allows us to converge to a reasonable solution. It
must also be mentioned that for an assumed UUU , a solution might
not be feasible. This does not mean that a control input solution
does not exist, but it just motivates the algorithm to select a better
UUU .

6 CONCLUSIONS
A Bernstein bound based approach for the design of insulin

profiles to regulate blood glucose in Type 1 diabetic patients is
studied. A sequential quadratic programming approach is used
to design a controller for a model for Type 1 diabetes with uncer-
tainties in meal size and initial blood glucose. Numerical results
are encouraging to warrant studying more complex models such
as gut dynamics and including subcutaneous insulin infusion as
well.
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FIGURE 3. Control Solution UUU∗ obtained after 20 iterations of the
SQP

FIGURE 4. Variation of the Stochastic Glucose state under the influ-
ence of UUU∗
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Appendix
The Bergman Model used for generating the target trajectory

was

Ġ(t) =−(X(t)+ p1)G(t)+ p1Gb +Rag(t)/Vg (53)

Ẋ(t) =−p2X(t)+ p3(I(t)− Ib) (54)

İ(t) =−p4I(t)+ γ(G(t)−h)(t− tm) (55)

where Vg (dL) is the distribution volume of glucose. The initial
conditions for the trajectory was selected as

G(0) = Gb; X(0) = 0; and I(0) = Ib.

The additional term Rag(t) (mg) (also referred to as the Rate of
appearance of glucose in plasma) is introduced in the model to
replicate a meal intake disturbance. In this work, the dynamics
that determine Rag(t) is evaluated from a gut dynamics model
adopted from [12]. The model is given by the equations

q̇sto1(t) =−k21qsto1(t)+Dδ (t− tm) (56)

q̇sto2(t) =−kemptqsto2(t)+ k21qsto1(t) (57)

q̇gut(t) =−kabsqgut(t)+ kemptqsto2(t) (58)

Rag(t) = f kabsqgut(t) (59)

qsto = qsto1 +qsto2 (60)

kempt(qsto) = kmin +0.5(kmax− kmin)(tanh[α(qsto−
bD)]− tanh[β (qsto− cD)]+2) (61)

α =
5

2D(1−b)
(62)

β =
5

2Dc
. (63)

where qsto1 (mg) and qsto2 (mg) are the amounts of glucose in
solid and liquid phases respectively present in the stomach at any
time. qgut (mg) is the amount of glucose in the intestines, δ (.)
is the Dirac delta function and D (mg) is the amount of glucose
consumed during the meal. In this work D was assumed to be
45000 to correspond to a 45 gr CHO meal. k21 (min−1) is a con-
stant which determines the rate at which food moves from the
first stomach state to the second. kempt (min−1) represents the
rate at which the food is drained from the second stomach state
to the gut state. It is bounded by maximum and minimum val-
ues kmax and kmin respectively. kabs (min−1) is the rate at which
the carbohydrates are absorbed into the body from the gut. α

and β are parameters which determine the transition of kempt be-
tween its extremities. Finally, b, c and f are other dimensionless
parameters of the model.

All the parameters needed to generate the target trajectory
have been listed in Table 2.

TABLE 2. Parameter values for a normal subject

Parameter Value Parameter Value

p1 0.03082 kmax 0.0558

p2 0.02093 kmin 0.0080

p3 1.062×10−5 kabs 0.057

p4 0.30000 k21 0.0558

γ 0.003349 b 0.82

h 89.5 c 0.00236

Gb 92 f 0.9

Ib 7.3 Vg 146.64

10 Copyright c© 2018 by ASME


