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Abstract—In this paper, we consider the problem of joint
offloading and wireless scheduling design for parallel computing
applications with hard deadlines. This is motivated by the
rapid growth of compute-intensive mobile parallel computing
applications (e.g., real-time video analysis, language translation)
that require to be processed within a hard deadline. While
there are many works on joint computing and communication
algorithm design, most of them focused on the minimization of
average computing time and may not be applicable for mobile
applications with hard deadlines. In this work, we explicitly take
hard deadlines for computing tasks into account and develop a
joint offloading and scheduling algorithm based on the stochastic
network optimization framework. The proposed algorithm is
shown to achieve average energy consumption arbitrarily close
to the optimal one. However, this algorithm involves a strong
coupling between offloading and scheduling decisions, which
yields significant challenges on its implementation. Towards this
end, we first successfully decouple the offloading and scheduling
decisions in the case with one time slot deadline by exploring the
intrinsic structure of the proposed algorithm. Based on this, we
further implement the proposed algorithm in the general setups.
Simulations are provided to corroborate our findings.

I. INTRODUCTION

With the rapid growth of Artificial Intelligence (AI) tech-
nology, there is a strong need for real-time computation for
mobile applications, such as video monitoring, real-time video
analysis, and real-time language translation. For example,
many users may use real-time language translation services
in international events such as World’s Fair, where each
user expects to experience zero latency and high quality of
language translation. Indeed, in these real-time applications,
computing tasks become outdated if they are not processed
in time. Different from traditional multimedia applications,
these real-time mobile applications not only demand for high
throughput and low energy consumption but also involve
intensive computations.

On one hand, each mobile user has limited computing and
battery capacity and thus processes computing tasks slowly,
while causing large energy consumption. On the other hand,
users can upload computing tasks to edge servers that have
powerful computing units and can process computing tasks
in a much faster way without any limitation on energy con-
sumption. However, if all users upload their computing tasks
to edge servers via wireless works, it will not only cause large
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transmission delay and thus drop a large amount of computing
tasks, but also results in large energy consumption due to
significant amount of wireless transmissions. Therefore, in
order to meet the desired throughput and energy consumption
requirements, each user requires a careful offloading decision
on the amount of computing traffic that is processed by itself
and waits for wireless transmissions to edge servers, respec-
tively, and each AP needs to make a scheduling decision that
determines which users are allowed for wireless transmissions
in each time slot.

While there are many works on joint computation and
communication algorithm design, most of them (see [1], [2],
[3], [4], [5], [6], [7], [8] and [9] for a thorough survey) focused
on the minimization of average computing time and hence are
not applicable for mobile applications with hard deadlines.
Despite some recent work (e.g., [10], [11]) focused on offload-
ing design for data traffic with hard deadlines, they did not
consider scheduling decisions for wireless communications.
On the other hand, many efficient wireless scheduling algo-
rithms (e.g., [12], [13], [14], [15]) have already been developed
for mobile applications with hard deadlines, however, they
did not take offloading decisions into account. Therefore, the
proposed solutions in existing work on either joint offloading
and communication design or wireless scheduling design with
hard deadlines do not apply and new joint offloading and
scheduling algorithm designs are required in the presence of
mobile compute-intensive applications with hard deadlines.

To that end, we consider the optimal joint offloading and
wireless scheduling design for mobile applications with hard
deadlines. The main results and contributions of this paper are
listed as follows:
• In Section II, we formulate the problem of joint offloading

and wireless scheduling design with hard deadline constraints
with the goal of minimizing average energy consumption while
meeting desired drop rate requirements. We use a simple
example to illustrate the need of such a design.
• In Section III, we develop a joint offloading and schedul-

ing (JOS) algorithm based on the stochastic network opti-
mization framework, and show that it yields average energy
consumption arbitrarily close to the optimal one. However, the
proposed JOS algorithm involves a strong coupling between
offloading and scheduling decisions, which yields significant
challenges on its implementation.
• In Section IV, we decouple the offloading and scheduling

decisions of the proposed JOS algorithm by exploring its
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intrinsic structure in the case with one time slot constraint.
• In Section V, based on the insight of implementing

the proposed JOS algorithm in the case with one time slot
deadline constraint, we successfully decouple the offloading
and scheduling decisions of the proposed JOS algorithm in
general setups.

II. SYSTEM MODEL

We consider a wireless system consisting of N mobile users
and one access point (AP), where the AP is directly connected
to some powerful servers (referred to as edge servers). We
consider a time-slotted system. We assume that each user has
dynamic and heterogeneous computing demands with strict
deadlines of T time slots, where they will be dropped if they
are not processed within T time slots. To that end, we group
a set of T consecutive time slots into a frame.

We note that each mobile user has limited computing
capability and thus can only process a portion of computing
traffic with a relatively slow speed, while edge servers usually
have high-performance computing units and can process a
large amount of computing tasks in a much faster way. Due
to the wireless interference, only a subset of users is allowed
for data transmission in each time slot. Therefore, if all users
upload their computing workloads to edge servers via wireless
networks, it causes a large network delay and hence signif-
icantly increases the total latency of completing computing
tasks for each user. As such, a careful offloading decision is
needed for each user on the amount of computing traffic that is
processed by itself and waits for wireless transmissions to edge
servers, respectively, and each AP needs to make a scheduling
decision that determines which users are allowed for wireless
transmissions in each time slot.

To facilitate our mathematical modeling and algorithm
developments, we unify the units for the processing speed
of each user and wireless transmission rate, and ignore the
computation time in powerful edge servers. To that end, we use
a “packet” to denote the minimum amount of computation and
wireless communication units. We assume that all computing
tasks arrive at the beginning of each time frame. We use
An[kT ] to denote the number of packets arriving at user n at
the beginning of time frame k that is independently distributed
over users and independently and identically distributed (i.i.d.)
over time with mean λn > 0 and An[kT ] ≤ Amax for some
Amax < ∞. We assume that each user n has a maximum
allowable drop rate ρnλn, where ρn ∈ (0, 1) denotes the
maximum fraction of computing demand that can be dropped
by user n. For example, ρn = 0.05 means that user n can
drop at most 5% of its computing demand on average.

We assume that each user n can process µn packets in each
time slot. Due to the wireless channel fading, the transmission
rate of each user may change over time. We assume that
each user knows its channel rate at the beginning of each
time frame that keeps constant over the entire frame. As
such, we use Cn[kT ] to denote the maximum number of
packets that can be transmitted in each time slot within
frame k if user n is scheduled for wireless transmission. We

assume that C[kT ] , (Cn[kT ])Nn=1 are i.i.d. over frames with
Cn[kT ] ≤ Cmax,∀n, k ≥ 0, for some Cmax < ∞. Due to
the wireless interference, we assume that at most one user is
allowed to transmit data in each time slot. Let Sn[t] = 1 if
user n is scheduled for wireless transmission in time slot t,
and Sn[t] = 0 otherwise. We use S[t] , (Sn[t])Nn=1 to denote
a feasible schedule, where at most one element is equal to one.
We use S to denote the collection of all feasible schedules.

In this paper, we focus on mobile parallel applications with
hard deadlines, where each application can be partitioned into
two different parts that can be executed simultaneously by
users’ devices and edge servers (via wireless transmissions).
In particular, an offloading decision is required for each mobile
user that determines the amount of incoming computation that
is processed by itself or is uploaded to edge servers via wire-
less transmission, which is determined by the AP (also referred
to as scheduling decision). Towards this end, let A(L)

n [kT ]

and A
(E)
n [kT ] denote the number of packets that are going

to be processed by mobile user n and are waiting for wireless
transmissions to edge servers in time frame k, respectively. Let
A(L)[kT ] , (A

(L)
n [kT ])Nn=1 and A(E)[kT ] , (A

(E)
n [kT ])Nn=1.

We use e(L)n and e
(E)
n to denote the energy consumption for

local computation and wireless transmission of user n in one
time slot, respectively. Let Pn[k : (k+ 1)] denote the total en-
ergy consumption of user n within the frame k, which is equal
to e(L)n min

{⌈
A

(L)
n [kT ]

/
µn

⌉
, T
}

+ e
(E)
n
∑(k+1)T−1
t=kT Sn[t].

In this paper, we are interested in developing an optimal
joint offloading and scheduling algorithm that minimizes the
total energy consumption while meeting the desired drop rate
requirements. To illustrate the need for such a design, we
consider the power consumption of two simple offloading
and scheduling algorithms that meet desired drop rate re-
quirements, Local-First Offloading and Scheduling (LFOS)
Algorithm and Edge-First Offloading and Scheduling (EFOS)
Algorithm. Under the LFOS Algorithm, at the beginning of
each time slot, each user n allocates µn packets for local
computation if it has sufficient number of packets. Otherwise,
each user processes all packets. If there are still packets
left, then each user competes for wireless transmission via
MaxWeight-type policy (e.g., [14]). Similarly, under the EFOS
Algorithm, each user contends for wireless transmission first
and then performs local computation in each time slot. Table I
illustrates energy consumption in the presence of N = 2 users
with deadline of T = 6 time slots. Each user can process 1
packet in each time slot at the energy expenditure 7 watt,
while it can transmit 2 packets if scheduled in each time slot
with the energy consumption 4 watt. We assume that both
users have 6 packets at time 0. Then, from Table I, we can
easily calculate that each user consumes 4.5 watt and 4.25 watt
on average under LFOS and EFOS, respectively. However, a
better choice will be to let user 1 transmit data in the first
three slots and user 2 in the rest of three slots, under which
each user only consumes 2 watt on average and saves 55.56%
energy compared with LFOS Algorithm.

This simple example indicates the possibility of significant
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Policy User t = 0 1 2 3 4 5

LFOS 1 3, 11 0, 11
2 5, 7 4, 7 1, 11 0, 7

EFOS 1 3, 11 0, 11
2 5, 7 4, 7 1, 11 0, 4

Better
choice

1 4, 4 2, 4 0, 4
2 4, 4 2, 4 0, 4

TABLE I: Average energy consumption under different poli-
cies: the first and second number in each cell denote the num-
ber of remaining packets and energy expenditure, respectively.

energy saving through a careful joint offloading and scheduling
design. To that end, in this paper, we want to determine
offloading decisions (A

(L)
n [kT ], A

(E)
n [kT ])Nn=1 and scheduling

decisions (S[t])
(k+1)T−1
t=kT within each frame k that solve the

following optimization problem:

min lim sup
k→∞

1

K

K−1∑
k=0

N∑
n=1

E[Pn[k : (k + 1)]] (1)

s.t. λn(1− ρn) ≤ νn, ∀n, k, (2)

A(L)
n [kT ] +A(E)

n [kT ] = An[kT ], ∀n, k, (3)

where νn , E

[
min

{
A

(L)
n [kT ], Tµn

}
+ min

{
A

(E)
n [kT ],

Cn[kT ]
∑(k+1)T−1
t=kT Sn[t]

}]
denotes the average total number

of packets that can be processed within frame k. Here, the
objective (1) is to minimize the average energy consumption
and the constraint (2) means that each user should meet its
own drop rate requirement.

Next, we develop a joint offloading and scheduling algo-
rithm based on the stochastic network optimization framework
(e.g., [16]), which involves a strong coupling between offload-
ing and scheduling decisions.

III. JOINT OFFLOADING AND SCHEDULING DESIGN

In this section, we develop a joint offloading and scheduling
algorithm that achieves arbitrarily close to the optimal solution
to the Problem (1)-(3) (optimal energy consumption) based on
the stochastic network optimization framework. To that end,
we introduce a virtual queue for each user to keep track of
amount of violations of its own drop rate requirement over
time. In particular, let Dn[kT ] be the number of packets
dropped by user n at the end of time frame k, which is
expressed as follows:

Dn[kT ] =

(
An[kT ]−min

{
A(L)
n [kT ], µnT

}
−min

{
A(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

Sn[t]

})+

, (4)

where (x)+ , max{x, 0} for any real number x. We generate
virtual service Bn[kT ] for virtual queue n at the end of time
frame k that is independently across users and i.i.d. over time

with mean ρnλn and E
[
B2
n[kT ]

]
< ∞. Then, the evolution

of virtual queue n can be described as follow:

Xn[(k + 1)T ] = (Xn[kT ] +Dn[kT ]−Bn[kT ])
+
. (5)

We call virtual queue n rate stable if limk→∞X[kT ]/k = 0.
According to [16, Definition 2.2], the average drop rate of user
n meets the requirement if its virtual queue is rate stable. By
using the stochastic network optimization framework, we de-
velop the following joint offloading and scheduling algorithm.

Joint Offloading and Scheduling (JOS) Algorithm: At the
beginning of each frame k, given X[kT ] , (Xn[kT ])Nn=1,
A[kT ], and C[kT ], find (Â(L)[kT ], Â(E)[kT ]) and
(Ŝ[t])

(k+1)T−1
t=kT that solve the following optimization

problem:

max
N∑
n=1

F (L)
n [kT ] +

N∑
n=1

F (E)
n [kT ], (6)

where

F (L)
n [kT ] ,Xn[kT ] min

{
A(L)
n [kT ], Tµn

}
−Me(L)n min

{⌈
A

(L)
n [kT ]

µn

⌉
, T

}
, (7)

F (E)
n [kT ] ,Xn[kT ] min

A(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

Sn[t]


−Me(E)

n

(k+1)T−1∑
t=kT

Sn[t], (8)

A
(L)
n [kT ] + A

(E)
n [kT ] = An[kT ],∀n, k, and M > 0 is some

parameter.

In the proposed JOS Algorithm, it requires to
solve optimization problem (6) to obtain offloading
decisions (Â(L)[kT ], Â(E)[kT ]) and scheduling decisions
(Ŝ[t])

(k+1)T−1
t=kT for the entire frame k. Next, we show that the

proposed JOS Algorithm yields average energy consumption
arbitrarily close to the optimal one.

Proposition 1: The JOS Algorithm with any M > 0
achieves O(1/M) close to the optimal energy consumption
at the expense of the mean virtual queue-length growing with
O(M), i.e.,

lim sup
K→∞

1

K

K−1∑
k=0

N∑
n=1

E[Xn[kT ]] ≤ MPmax +H

ε
(9)

lim sup
K→∞

1

K

K−1∑
k=0

N∑
n=1

E

[
P̂n[k : (k + 1)]

]
≤ Pmin +

H

M
, (10)

where H ,
∑N
n=1E[A2

n[kT ] + B2
n[kT ]], P̂n[k : (k + 1)] is

the energy consumption in frame k under the JOS Algorithm,
Pmax is the maximum energy consumption within one time
frame which is bounded due to the boundedness of arrivals,
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Pmin is the optimal solution to Problem (1)-(3), and ε is some
positive parameter.

Proof: Select the Lyapunov function V [kT ] ,
1
2

∑N
n=1X

2
n[kT ] and consider its conditional expected drift:

∆V [kT ] , E [V [(k + 1)T ]− V [kT ]|X[kT ]]

(a)

≤
1

2

N∑
n=1

E

[
(Xn[kT ] + D̂n[kT ]−Bn[kT ])2 −Xn[kT ]2

∣∣∣X[kT ]
]

(b)

≤
N∑

n=1

E [Xn[kT ](An[kT ]−Bn[kT ])|X[kT ]]

−
N∑

n=1

E

Xn[kT ] min

Â(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

Ŝn[t]


∣∣∣∣∣∣X[kT ]


−

N∑
n=1

E

[
Xn[kT ] min

{
Â

(L)
n [kT ], Tµn

}∣∣∣X[kT ]
]

+H, (11)

where the step (a) follows from the fact that (max {x, 0})2 ≤
x2,∀x, and D̂n[kT ] denote the number of packets dropped at
the end of frame k under the JOS Algorithm; (b) is true for
H ,

∑N
n=1E[A2

n[kT ]+B2
n[kT ]] <∞ and uses the definition

of D̂n[kT ] (cf. (4)).

Adding the term M
∑N
n=1E

[
P̂n[k : (k + 1)]

∣∣∣X[kT ]
]

on
both sides of (11), we have

∆V [kT ] +M
N∑
n=1

E

[
P̂n[k : (k + 1)]

∣∣∣X[kT ]
]

(a)

≤
N∑
n=1

λn(1− ρn)Xn[kT ]

−
N∑
n=1

[
Xn[kT ] min

{
Â(L)
n [kT ], Tµn

}
−Me(L)n min

{⌈
Â

(L)
n [kT ]

µn

⌉
, T

}∣∣∣∣X[kT ]

]

−
N∑
n=1

E

Xn[kT ] min

Â(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

Ŝn[t]


−Me(E)

n

(k+1)T−1∑
t=kT

Ŝn[t]

∣∣∣∣∣∣X[kT ]

+H (12)

(b)

≤
N∑
n=1

λn(1− ρn)Xn[kT ]

−
N∑
n=1

E

[
Xn[kT ] min

{
Ã(L)
n [kT ], Tµn

}
−Me(L)n min

{⌈
Ã

(L)
n [kT ]

µn

⌉
, T

}∣∣∣∣∣X[kT ]

]
(13)

−
N∑
n=1

E

Xn[kT ] min

Ã(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

S̃n[t]



−Me(E)
n

(k+1)T−1∑
t=kT

S̃n[t]

∣∣∣∣∣∣X[kT ]

+H, (14)

where step (a) uses the fact that An[kT ] and Bn[kT ] are
i.i.d. with mean λn and ρnλn, respectively, and the definition
of P̂n[k : (k + 1)]; (b) follows from the fact that the JOS
Algorithm minimizes the drift of (12) and is true for the
stationary randomized policy (Ã[kT ], S̃[kT ]) that satisfies

λn(1− ρn) + ε ≤ E
[
min

{
Ã(L)
n [kT ], Tµn

}]
+ E

min

Ã(E)
n [kT ], Cn[kT ]

(k+1)T−1∑
t=kT

S̃n[t]


 ,∀n

and
N∑
n=1

E[P̃n[k : (k + 1)]] = Pav(ε),

where P̃n[k : (k + 1)] , e
(L)
n min

{⌈
Ã(L)

n [kT ]
µn

⌉
, T
}

+

e
(E)
n
∑(k+1)T−1
t=kT S̃n[t] and limε↓0 Pav(ε) = Pmin. The exis-

tence of such a randomized policy can be shown by using
similar arguments in [17, Theorem 1] and its proof is omitted
for brevity. Therefore, we have

∆V [kT ] +M
N∑
n=1

E

[
P̂n[k : (k + 1)]

∣∣∣X[kT ]
]

≤− ε
N∑
n=1

Xn[kT ] +MPav(ε) +H. (15)

Summing (15) over k = 0, 1, 2, . . . ,K − 1 and taking
expectation on both sides, we have

E [V [KT ]− V [0]] +M

K−1∑
k=0

N∑
n=1

E

[
P̂n[k : (k + 1)]

]
≤− ε

K−1∑
k=0

N∑
n=1

E[Xn[kT ]] +MKPav(ε) +HK (16)

Therefore, we have

ε

K−1∑
k=0

N∑
n=1

E[Xn[kT ]] ≤MKPav(ε) +HK +E[V [0]] (17)

M

K−1∑
k=0

N∑
n=1

E

[
P̂n[k : (k + 1)]

]
≤MKPav(ε) +HK +E[V [0]].

(18)

By using the fact that Pav(ε) ≤ Pmax, dividing Kε on both
sides of (17) and taking the limit, we have (9).

Since (18) holds for any ε > 0, we have

M
K−1∑
k=0

N∑
n=1

E

[
P̂n[k : (k + 1)]

]
≤MKPmin +HK + E[V [0]].

By dividing MK on both sides of the above inequality and
taking the limit, we have (10).

Even though the JOS Algorithm can achieve optimal en-
ergy consumption asymptotically, it requires to solve the
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W
(E)
n∗[t][t] ≥ 0 W

(E)
n∗[t][t] < 0

W
(L)
n∗[t][t] ≥ 0

A
(E)

n∗[t][t] = min
{
An∗[t][t], Cn∗[t][t]

}
A

(L)

n∗[t][t] = An∗[t][t]−A
(E)
n∗[t][t]

A
(E)

n∗[t][t] = 0

A
(L)

n∗[t][t] = An∗[t][t]

W
(L)
n∗[t][t] < 0

A
(E)

n∗[t][t] = An∗[t][t]

A
(L)

n∗[t][t] = 0

A
(E)

n∗[t][t] = An∗[t][t]

A
(L)

n∗[t][t] = 0

TABLE II: Offloading decisions in one time slot deadline case.

optimization problem (6) at the beginning of each time
frame, which involves the strong coupling between offload-
ing decisions (Â(L)[kT ], Â(E)[kT ]) and scheduling decisions
(Ŝ[t])

(k+1)T−1
t=kT . Even in the case with one-time slot deadline

constraint, it is not clear how to decouple offloading and
scheduling decisions at the first glance. To that end, we first
consider the decoupled JOS algorithm design in a simplistic
case with one-time slot deadline constraint. Then, based on the
insights obtained from this simplistic scenario, we develop the
decoupled JOS algorithm in general setups.

IV. JOS ALGORITHM IMPLEMENTATION FOR THE CASE
WITH ONE TIME SLOT DEADLINE

In this section, we consider the decoupled algorithm design
for the JOS Algorithm in the case with one time slot deadline
constraint (i.e., T = 1). We explore the intrinsic structure
of optimization problem (6) in the presence of one time slot
constraint, and develop the following easily implementable
algorithm.

Decoupled JOS (DJOS) Algorithm for the case with
one time slot deadline: In each time slot t, given
(X[t],A[t],C[t]),

(1) User n∗[t] is allowed for both local and edge com-
putations, and put A

(L)

n∗[t][t] and A
(E)

n∗[t][t] packets for
local computation and edge computations via wireless
transmission, respectively.

(2) User n 6= n∗[t] is only allowed for local computation and
put A

(L)

n [t] packets for computation,

where scheduling decision n∗[t] and offloading decisions
(A

(L)

n∗[t][t], A
(E)

n∗[t][t]) and (A
(L)

n [t], ∀n 6= n∗[t]) are determined
below:
Wireless Scheduling Decision: Schedule user n∗[t] such that

n∗[t] ∈ arg max
n

{
W (L,E)
n [t]−W (L)

n [t]
}
, (19)

where W (L)
n [t] is the maximum weight of user n if it is only

allowed for local computation, i.e.,

W (L)
n [t] , max

A
(L)
n

(
Xn[t]min

{
A(L)

n , µn

}
−Me(L)

n 1{
A

(L)
n >0

}) ,
and W

(L,E)
n [t] is the maximum weight of user n if it is

allowed for both local and edge computations, i.e.,

W (L,E)
n [t] , max

A
(L)
n ,A

(E)
n

(
Xn[t]min

{
A(L)

n , µn

}
−Me(L)

n 1{
A

(L)
n >0

} +
(
Xn[t]min

{
A(E)

n , Cn[t]
}
−Me(E)

n

)+)
.

Offloading Decision: For all other users n 6= n∗[t], we need

to find A
(L)

n [t] that attains the value of W (L)
n [t]. That is, if

Xn[t] min{An[t], µn} − Me
(L)
n > 0, then A

(L)

n [t] = An[t].
Otherwise, A

(L)

n [t] = 0.

For user n∗[t], we need to find (A
(L)

n∗[t][t], A
(E)

n∗[t][t])

that yields to the value of W
(L,E)
n [t]. Let W

(E)
n∗[t][t] =

Xn∗[t][t] min{An∗[t][t], Cn∗[t][t]} − Me
(E)
n∗[t] be the weight

that user n∗ performs offloading decision and W
(L)
n∗[t][t] =

Xn∗[t][t] min{(An∗[t][t]−Cn∗[t][t])
+, µn∗[t]}−Me

(L)
n∗[t] be the

weight that user n∗ performs local computation. Then the
offloading decisions are listed in the Table II.

In our proposed DJOS Algorithm for the case with one
time slot deadline, the offloading and scheduling decisions
are nicely decoupled and it computational complexity is just
O(N). Moreover, it yields the optimal solution to the problem
(6) in the JOS Algorithm in the case with one time slot
constraint, as shown below.

Proposition 2: DJOS Algorithm optimally solves the opti-
mization problem (6) in the JOS Algorithm in the case with
one time slot constraint.

Proof: In the case with one time slot deadline (i.e.,
T = 1), the objective function in the optimization problem
(6) becomes:

N∑
n=1

(
Xn[t] min

{
A(L)
n [t], µn

}
−Me(L)n 1{

A
(L)
n [t]>0

})

+
N∑
n=1

(
Xn[t] min

{
A(E)
n [t], Cn[t]Sn[t]

}
−Me(E)

n Sn[t]
)

=
N∑
n=1

(
Xn[t] min

{
A(L)
n [t], µn

}
−Me(L)n 1{

A
(L)
n [t]>0

})
+
(
Xm[t] min

{
A(E)
m [t], Cm[t]

}
−Me(E)

m

)+
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W
(y∗n)(E)
n [kT ] ≥ 0 W

(y∗n)(E)
n [kT ] < 0

W
(y∗n)(L)
n [kT ] ≥ 0

A
(E)
n [kT ] = min {An[kT ], y∗nCn[kT ]}
A

(L)
n [kT ] = An[kT ]−A(E)

n [kT ]

A
(E)
n [kT ] = 0

A
(L)
n [kT ] = An[kT ]

W
(y∗n)(L)
n [kT ] < 0

A
(E)
n [kT ] = An[kT ]

A
(L)
n [kT ] = 0

A
(E)
n [kT ] = An[kT ]

A
(L)
n [kT ] = 0

TABLE III: Offloading decisions in general cases.

=
∑
n6=m

(
Xn[t] min

{
A(L)
n [t], µn

}
−Me(L)n 1{

A
(L)
n [t]>0

})
+

(
Xm[t] min

{
A(L)
m [t], µm

}
−Me(L)m 1{

A
(L)
m [t]>0

})
+
(
Xm[t] min

{
A(E)
m [t], Cm[t]

}
−Me(E)

m

)+
, (20)

where the second last step is true for m being the index of
user that is scheduled for data transmission in time slot t if
Xm[t] min

{
A

(E)
m [t], Cm[t]

}
−Me

(E)
m > 0 and uses the fact

that at most one user can be scheduled for data transmission
in each time slot.

Therefore, the optimization problem (6) in the case with
T = 1 is equivalent to

max
m

∑
n6=m

max
A

(L)
n

(
Xn[t]min

{
A(L)

n , µn

}
−Me(L)

n 1{
A

(L)
n >0

})
+ max

A
(L)
m ,A

(E)
m

(
Xm[t]min

{
A(L)

m , µm

}
−Me(L)

m 1{
A

(L)
m >0

}

+
(
Xm[t]min

{
A(E)

m , Cm[t]
}
−Me(E)

m

)+)
⇔max

m
max

A
(L)
m ,A

(E)
m

(
Xm[t]min

{
A(L)

m , µm

}
−Me(L)

m 1{
A

(L)
m >0

}

+
(
Xm[t]min

{
A(E)

m , Cm[t]
}
−Me(E)

m

)+)

−max
A

(L)
m

(
Xm[t]min

{
A(L)

m , µm

}
−Me(L)

m 1{
A

(L)
m >0

}) , (21)

where we use the fact that the optimal solution
does not change if the objective function subtracts
a constant

∑N
n=1 max

A
(L)
n
f(A

(L)
n ) and f(A

(L)
n ) ,

Xn[t] min
{
A

(L)
n , µn

}
−Me

(L)
n 1{

A
(L)
n >0

}.

Thus, by introducing notations of W (L)
n [t] and W (L,E)

n [t] in
the DJOS Algorithm, (21) is equivalent to (19) in the DJOS
Algorithm and hence we have the desired result.

The difficulty of the JOS Algorithm implementation lies in
the fact that offloading and scheduling decisions are strongly
coupled. Our proposed DJOS Algorithm nicely decouples
them by first determining the user that is allowed for wireless
transmission. Based on this insight, we are ready to develop
DJOS Algorithm for the general case with T time slot con-
straint.

V. JOS ALGORITHM IMPLEMENTATION

In this section, we consider the implementation of our
proposed JOS Algorithm (cf. Section III) in general setups.

Base on the insight of DJOS Algorithm developed in the
case with one time slot deadline, we propose the following
Decoupled JOS Algorithm.

Similar to the implementation of JOS Algorithm for the case
with one time slot deadline, we use W (L)

n [kT ] to denote the
weight that user n is allowed to use local computations in time
frame k, which can be represented as

W (L)
n [kT ] , max

z=0,1,2,...,T

(
Xn[kT ] min

{
An[kT ], zµn

}
−Me(L)n min

{⌈
An[kT ]

µn

⌉
, z

})
.

Let yn denote the maximum number of wireless transmis-
sions allowed for user n in frame k. We use W (yn)(L,E)

n [kT ]
to the maximum weight of user n when it is allowed for
wireless transmissions yn times in frame k. In particular,
W

(yn)(L,E)
n [kT ] can be represented as

W (yn)(L,E)
n [kT ] ,W (yn)(E)

n [kT ] +W (yn)(L)
n [kT ],

where W (yn)(E)
n [kT ] , Xn[kT ] min {An[kT ], ynCn[kT ]} −

Me
(E)
n min

{⌈
An[kT ]
Cn[kT ]

⌉
, yn

}
and W

(yn)(L)
n [kT ] ,

maxz=0,1,...,T Xn[kT ] min {(An[kT ]− ynCn[kT ])+, zµn} −
Me

(L)
n min

{⌈
(An[kT ]−ynCn[kT ])+

µn

⌉
, z
}

.
Next, we propose the Decoupled JOS Algorithm for the case

with T time slot deadline. Let y , (yn)Nn=1.

Decoupled JOS (DJOS) Algorithm for the case with T
time slot deadline: Given A[kT ], X[kT ] and C[kT ] at the
beginning of time frame k, perform the following:
Wireless Scheduling Decision: Wireless scheduling decisions
y∗ is obtained by solving the following optimization problem:

y∗ ∈ arg max
y

N∑
n=1

(
W (yn)(L,E)
n [kT ]−W (L)

n [kT ]
)

(22)

s.t.
N∑
n=1

yn = T. (23)

Offloading Decision: Once wireless scheduling decisions y∗ =
(y∗n)Nn=1 are made, the offloading decision of each user n
depends on whether W

(y∗n)(E)
n [kT ] and W

(y∗n)(L)
n [kT ] are

positive or not, which are listed in the Table III.

In the proposed DJOS Algorithm, (23) is true since only
one user is allowed for wireless transmission in each time slot
and thus there are T total number of wireless transmissions.

335



(a) Average virtual queue length (b) Energy saving compared to LFOS (c) Impact of M in the DJOS

Fig. 1: Case with one time-slot deadline.

(a) Average virtual queue length (b) Energy saving compared to LFOS (c) Impact of M in the DJOS

Fig. 2: Case with three time-slot deadline.

The proposed DJOS Algorithm nicely decouples the of-
floading and wireless scheduling decisions, despite that its
computational complexity is O(NT ). Similar to the case with
one time slot deadline, we can show that the proposed DJOS
Algorithms yields the optimal solution to the problem (6) in
the case with general setup.

Proposition 3: DJOS Algorithm optimally solves the opti-
mization problem (6) in the JOS Algorithm in the case with
one time slot constraint.

Proof: The proof is similar to that of Proposition 2, and
is omitted for brevity.

VI. SIMULATION RESULTS

In this section, we perform simulations to validate the
efficiency of proposed low-complexity joint offloading and
scheduling algorithm. We consider N = 5 users with the
maximum allowable dropping rate ρ = 0.1. All users suffer
from i.i.d. ON-OFF channel fading with probability 0.9 being
ON. All users have arriving computing tasks within each
frame that follow i.i.d. Bernoulli distribution. The services
for all virtual queues follow i.i.d. Bernoulli distribution with
probability ρλ. We let e(L) = 7 watt and e(E) = 4 watt. This
is motivated by the fact (see [18]) that mobile CPU and GPU
consume 6.45 watt and 7.89 watt, respectively, while it only
takes 4 watt for wireless transmission via WiFi. We set the
local processing rate µ to 1.

The case with
one time-slot deadline

The case with
three time-slot deadline

Transmission rate 5
when the channel is ON

Transmission rate 4
when the channel is ON

X =

{
5, p = λ/5
0, otherwise X =

{
7, p = λ/7
0, otherwise

TABLE IV: Setups, where X denotes number of arriving
packets and p denotes the probability of having arrivals.

We consider both cases with one and three time-slot dead-
line constraints, whose simulation setups are shown in the
Table IV.

From Fig. 1a illustrates the simulation results in the case
with one time-slot deadline. From Fig. 1a, we can observe
that all algorithms yield finite average virtual queue length
when the arrival rate is less than 1.62. This implies that
all users satisfy maximum allowable drop rate requirements.
However, we can see from Fig. 1b that our proposed DJOS
Algorithm significantly saves energy compared to the LFOS
Algorithm (with the highest average energy consumption) and
yields about 60% energy improvement when mean arrival rate
is equal to 0.2 and M = 10, while EFOS just performs
about 48% energy improvement. Fig. 1c studies the impact of
design parameter M on the performance of DJOS Algorithm.
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From Fig. 1c, we can see that our proposed DJOS Algorithm
achieves a better tradeoff between average energy consumption
and average virtual queue length than both throughput-optimal
EFOS and LFOS Algorithms. In addition, as M increases, the
average energy consumption drops at the cost of increasing
average virtual queue length, which confirms our result (cf.
Proposition 1).

In the case with three time-slot deadline, similar to the one
time-slot deadline case, all algorithms can meet the maximum
allowable dropping rate requirement, as shown in Fig. 2a.
However, form Fig. 2b we can see that DJOS algorithm can
save energy at least twice than the EFOS algorithm when
M = 10. We can also see from Fig. 2c that DJOS Algorithm
achieves a better tradeoff between average energy consumption
and average virtual queue length than both throughput-optimal
EFOS and LFOS Algorithms.

VII. CONCLUSION

In this paper, we considered the joint offloading and
scheduling design for mobile parallel applications with hard
deadlines. We first developed a joint offloading and scheduling
algorithm by using the stochastic network optimization frame-
work, and showed that it yields average energy consumption
arbitrarily close to the optimal one required for meeting
the desired drop rate requirements. However, this algorithm
involves a strong coupling between offloading and scheduling
decisions, which makes its implementation quite challenging.
To that end, we first considered a simplistic case with one time
slot constraint and developed a decoupled JOS algorithm that
successfully decouples offloading and scheduling decisions.
Based on this, we further developed a decoupled JOS algo-
rithm in general setup. Simulations were provided to validate
the efficiency of our proposed algorithms.
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