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Tracking of Vehicle Motion on Highways and
Urban Roads Using a Nonlinear Observer

Woongsun Jeon, Ali Zemouche and Rajesh Rajamani

Abstract—This paper focuses on the development and use of a
nonlinear observer for tracking of vehicle motion trajectories
while using a radar or laser sensor. Previous results on vehicle
tracking have typically used an interacting multiple model filter
that needs different models for different modes of vehicle motion.
This paper uses a single nonlinear vehicle model that can be used
for all modes of vehicle motion. Previous nonlinear observer
design results from literature do not work for the nonlinear system
under consideration due to the wide range of operating conditions
that need to be accommodated. Hence, a new nonlinear observer
design technique that utilizes better bounds on the coupled
nonlinear functions in the dynamics is developed. The exponential
stability of the observer is established using Lyapunov techniques.
The observer design with the developed technique is then
implemented in both simulations and experiments. Experimental
results show that the observer can simultaneously and accurately
estimate longitudinal position, lateral position, velocity and
orientation variables for the vehicle from radar measurements.
Results are presented both for tracking of vehicle maneuvers on
highways and of maneuvers on urban roads at traffic intersections
where turns and significant changes in vehicle orientation can
occur.

Index Terms—Nonlinear observer, vehicle motion estimation,
vehicle tracking.

I. INTRODUCTION

EHICLE motion tracking is an important problem that is

frequently encountered in autonomous driving, as well as
in collision avoidance and adaptive cruise control (ACC)
applications [1-5]. There has been significant recent interest in
the autonomous control of vehicles [6-8, 17-18], but the topic
of estimating the trajectories of other vehicles on a road in order
to track them or avoid conflicts with them has not been
sufficiently addressed. Collision avoidance and ACC systems
typically use radar or laser sensors for measuring distances and
azimuth angles [1-5] to vehicles. With such sensors, radial
distances and azimuth angles can be measured.

In the case of vehicles in urban traffic, including vehicles at
traffic intersections, the radar-measured variables are
inadequate in order to fully predict the trajectories of vehicles.
Both lateral and longitudinal distances and orientation of the
vehicles are needed in order to accurately predict vehicle
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motion and provide appropriate warnings or automated driving
actuation. Previous work in vehicle tracking has typically
utilized interacting multiple model (IMM) filters for estimation
of vehicle trajectories [9-11]. The models used in the IMM filter
typically include a “straight line driving” model and a “constant
turn rate” model. Each model can be used for its respective
driving scenario and is not applicable for the other scenario.

This paper develops a vehicle tracking algorithm that uses a
single model to represent all possible vehicle motions involving
both longitudinal and lateral maneuvers. By using a single
vehicle model, stability of the state observer can be guaranteed
and the real-time computational effort in estimating trajectories
of multiple vehicles on the road is reduced in comparison with
the IMM approach. The observer gains are obtained by off-line
computation while the IMM approach uses multiple models and
recomputes gains in real-time.

Since the proposed vehicle model is nonlinear, an effective
nonlinear observer design technique is required to ensure an
exponentially stable observer. Two nonlinear observer design
techniques from literature that are designed for bounded
Jacobian systems are first used in an attempt to obtain a stable
observer. However, their design procedures fail to yield stable
observer gains for this application, due to infeasibility of the
associated Linear Matrix Inequalities (LMIs). A new nonlinear
observer design technique suitable for this application is
therefore developed. The stability of the observer is proved, and
an observer gain for the vehicle model application is obtained
for a larger operating range than the previous observer design
techniques from literature. The advantage of the developed
observer is the increased feasibility of a solution due to less
conservative LMIs in the observer design equation.

The developed observer is used to track the lateral and
longitudinal positions and orientation of a vehicle in both
simulations and experiments. A radar sensor that measures
radial distance and azimuth angle is used as the measurement
unit. Vehicles maneuvers that include straight driving cars, a
lane change maneuver, a double lane change maneuver, cross
traffic driving at a traffic intersection, and a left turn maneuver
are considered in this paper. Thus, the observer works for both
highway driving and urban traffic that includes intersections.

The outline of the rest of the paper is as follow: In the next
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section, the proposed nonlinear observer design technique is
presented. In Section III, we propose a single vehicle model that
can represent both longitudinal and lateral maneuvers, and
discuss vehicle motion tracking using the vehicle model and
developed observer. Then, in Section IV and V, the proposed
vehicle motion tracking algorithm is validated in both
simulations and experiments. Conclusions are presented in
Section VI.

II. NONLINEAR OBSERVER DESIGN

A. Problem Statement

Before introducing the vehicle tracking problem, we start by
proposing a new LMI-based nonlinear observer design method.
This methodology provides less conservative LMI conditions
for observer design than those existing in the literature.

We consider the class of nonlinear systems described by
where x € R™ is the state vector, u € R™ is the input vector and
vy € RP is the output vector. C € RP*™ is a matrix of appropriate
dimensions.  f(x,u):R®* X R™ - R™ is a vector of
differentiable nonlinear functions.

The following Luenberger-like observer will be studied:

x=f&u)+Ly-CR) )
where L is the observer gain matrix to be designed such that
exponential convergence of the estimation error ¥ = x — X
towards zero is obtained.

B. Existing Nonlinear Observer Design Methods

Previous researchers have developed nonlinear observer
design techniques suitable for bounded Jacobian systems using
the mean value theorem [12, 13]. These studies define and use
Jacobian bounds based on element-wise minimum and
maximum values of the Jacobian. By considering the nonlinear
system and observer described in (1) and (2), the following
results can be summarized from the existing methods in
literature.

Lemma 1: Differential Mean Value Theorem using
Canonical Basis [12, 13].

Let f(x): R™ - R™ be a function continuous on [a, b] € R™
and differentiable on convex hull of the set (a, b) with Lipschitz
continuous gradient. For sy, s, € [a, b], there exists z € (a, b)
such that

f(s2) — f(s1)
3fi 3
= (T el DL @) (2 =5
where e, (i) = (0,---,0,1,0,---,0)T € R" is a vector of the
canonical basis of R™ with 1 at i;;, component.

Theorem 1 [12]: If an observer gain matrix L can be chosen
such that

P(HT) + (HF)'P — CTL"P — PLC < 0
P(Hmm) + (Hmm) P—CTITP —PILC <0 (4)
P>0

Vi=1,-,n,andVj = 1,---,n, where
1) hma" > max (afl/axl) and hmm < min (0f;/0x;);

2 HJ™ = e (Def (DR and HI™ = e, (Del (DA™

3) Zy = n X nis the state scaling factor, n being dimension

of the state vector;

4) Hmax — Z Hmax and Hmm — ZHHZ}lin;
then this cho1ce of L leads to asymptotically stable estimates by
the observer for the system.

Theorem 2 [13]: The observer estimation error converges
exponentially towards zero if there exist matrices P = PT > 0
and R of appropriate dimensions such that the following LMIs
are feasible:

AT(W)P + PA®) —CTR—RTC <0
v € vy, , ®)
where
AW) =TI eaer () 52 () (©)
and the domain vy, . is defined by

an,n = {19 = (1911'""ﬁln""rﬁnn)lﬁij (7)
€ {hyj, hyi 1}
hij = min(af;/0x;) and h;; = max(df;/dx;)  (8)
When these LMIs are feasible, the observer gain L is given by
L =P 'RT.

However, these methods do not work for the application of
vehicle motion tracking considered in this paper. Specifically,
the LMI toolbox in MATLAB fails to provide a feasible
solution for the multiple LMIs that need to be simultaneously
satisfied in both Theorems 1 and 2. It should be noted that an
observer gain (and an associated P matrix) that satisfy multiple
LMIs need to be obtained in both methods. Hence, a new
nonlinear observer design method suitable for the vehicle
tracking application is presented herein.

C. Analysis of Domain of Jacobian Matrix

In order to further motivate the new nonlinear observer
design method, we investigate the domain of the Jacobian
matrix and the reason for failure of the observer design methods
from [12] and [13].

From (4) in Theorem I and (8) in Theorem 2, it is obvious
that the element-wise minimum and maximum values of the
Jacobian are used to satisfy stability conditions of the observers.
However, this approach is likely to be conservative, especially
when there are coupled terms in the Jacobian matrix of the
nonlinear function. For example, let us consider the following
nonlinear system:

x = f(x)
y=Cx ©)
where
X3 COS X4
X5 Sin x 1 0 0 O
=" e=1, 1 o o 0

0
This nonlinear system is similar to the vehicle tracking
application. The Jacobian matrix of the nonlinear function
X3C0SX, 18
aj;l =[0 0 cosx, —x3sinx,] (11)
Using element-wise inequalities with the assumption 5 < x5 <

15 and —w/3 <x, <m/3, it can be concluded that the
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Fig. 1. Illustration of domains from Jacobian of nonlinear function.

Jacobian of the nonlinear function is in a bounded domain
defined by vertices:

v; = (0.5,12.99),v, = (1,12.99),

vy = (1,-12.99),v, = (05,—-12.99)
However, designing the observer to be stable over this entire
domain is challenging. In fact, some parts of the domain do not
need to be considered. For instance, the vertex v; spans from
x4 = 0 for the cosine function and x, = m/3 for the sine
function in (11) which are contradictory to each other. The sine
and cosine functions are never going to be maximum at the
same values of their identical arguments. Fig. 1 illustrates both
the bounded domain based on the vertices, and the actual
domain that needs to be considered of the Jacobian. It is true
that the Jacobian always evolves within the bounded domain of
the vertices. However, it is possible that the bounded domain
based on the vertices becomes too conservative as the Jacobian
of the system has many coupled terms.

D. Nonlinear Observer

In this section, we present a modified nonlinear observer
design method for the nonlinear system described in the
previous three sections.

Theorem 3: Consider the nonlinear system (1) and observer
form (2). If there exist matrices P = [ and R of appropriate
dimensions such that the following problem is solvable:

miny
subject to (12)
P=>1 (13)

P RT
R I (14)

A, w)TP + PA(§,u) —CTR—RTC
+2aP <0,
Vu € ugrid"vf € fgrid (15)
where A(E,w) = 22.(6,u), § € R"
then, the observer gain L is given by

L=P'RT (16)

and with this value of the observer gain, the estimation error of
the observer (2) converges exponentially towards zero.

Proof: Let the Lyapunov function candidate for observer
design be defined as V = ¥ P% where P=PT >0 and P €
R™™. For exponential stability, we will require that the
derivative of V satisfies the following differential inequality:

V <-2aV (17)
where « is a positive constant. The inequality (17) implies the
exponential stability condition [14]:

lIx(t) = (O < xllx(0) — £(0)[le™* (18)
where Kk is a positive constant. From the Lyapunov function
candidate, the derivative of IV can be represented as

V =—xT{(LC)TP + P(LC)}x + 2XTPSf (19)
where §f = f(x,u) — f (&, u). The difference of the functions
Sf can be presented by using the integral form of the mean
value theorem [15] for vector functions:

1 af >
1) - X 20
f (f aS s=x+n(X—-x) (x x) ( )
Then, we can write
V+2aV
1 T
=J- (fT{[i —LC] P
0 05 ls=x—n(x-2) 1)
+P[af LC]+2 P}”)d
— — aP X
0s s=x—n(x—-%x) 7
Using the notation
E2x—n(x—3%) (22)
of
AGw) = o= (W) (23)
(21) becomes
V+2aV
1
- [ Gruacw - ey 24)
0

+ P[A(¢,u) — LC] + 2aP}X)dn

Since ¢ varies with the value of x and X, A is an unknown and

continuously time varying matrix. From (24), (17) is satisfied

when following condition is satisfied:

(A&, u) = LC)TP + P(A(&,u) — LC) + 2aP

<0

By introducing a new variable R = LT P, (25) can be expressed

as

(25)

A, w)TP + PA(§,u) —CTR — RTC + 2aP
<0

Since ¢ and u vary infinitely in a given set, (26) gives us
infinitely many LMIs. This can be reduced to a finite number
of LMIs using gridding techniques. We fix a finite subset of the
& and u within its bounds such that

Ugrid € {ult Y uN}

fgrid € {fll Tt fN}
It is noted that the dimension of the grid is proportional to the
number of varying variables in ¢ and u. Also, the points of the
finite subset need to be chosen sufficiently dense so that solving
LMIs for the finite subset is equivalent to satisfying the original
stability condition. Therefore, the observer design condition
(15) can be obtained.

Unfortunately, the observer gain L can be arbitrarily large, if
only the design condition (26) is utilized. Hence, we use the
following additional specification [16] for L. If (15) with P =
PT > 0 has a solution for P and R, the following size condition
must be satisfied for y sufficiently large:

Ll <y

(26)

27)

(28)
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This means that /y is an upper bound on the norm of the gain
L. Without loss of generality, we can assume that P > [. Since
L =P 'RT and y is sufficiently large, the condition (28)
becomes

LTL < LITPL =RP™'RT <yl
From this, we obtain

(29)

yl —RP7IRT >0 (30)
Using the Schur complement, (30) can be represented as (14).
]

III. VEHICLE MOTION TRACKING PROBLEM

A. Proposed Vehicle Motion Model

Previous models used for tracking of vehicle motion in active
safety or autonomous driving applications have primarily
involved longitudinal motion variables (and sometimes
additional lateral position variables) of the vehicle. For
instance, a popular approach for radar based vehicle tracking
consists of an interacting multiple model filter with two models
— a “constant velocity” model and a “nearly coordinated turn”
model [19]. The state vector is assumed to be

x=[X Y v 0 w] 31
where (X,Y), v, 0, and w are the target vehicle position in
Cartesian coordinates, speed, orientation, and turn rate in the
sensor body frame. The discrete-time state space equation for
the constant velocity model is given by

X + vT cos O
Y +vTsinf
Xk+1 = v
0
0 k
where w,, ;. is process noise sequence represented by zero mean
gaussian noise. The discrete-time state space equation for the
nearly coordinated turn model is given by

+ Wv,k (32)

Xk+1
X+ i)—v {sin (%T> cos (9 + %T)}

2v (. wTY . wT
_|Y+ ;{sm (7> sin (9 + T)} + Wi (33)
v
0 + wT
w k
where wy |, is process noise sequence represented by zero mean
gaussian noise.

It should be noted that the constant velocity model is
applicable to straight line motion and the coordinated turn
model only applies while turning. Neither model can be used
for both scenarios and the coordinated turn model, in fact,
becomes singular when the rotation rate becomes zero.

Another disadvantage of the above approach is that all the
three degrees of freedom have independent unknown inputs —
lateral, longitudinal and orientation variables are all driven by
unknown terms.

This paper proposes the use of a single nonlinear model that
encompasses both straight line and turning motions.
Considering only planar motion for the vehicle, the motion of
the vehicle can be described by X, Y and Y as shown in Fig. 2.
X and Y are coordinates of longitudinal and lateral locations of

Fig. 2. Vehicle motion model.

the vehicle with respect to the sensor (radar or LIDAR)
location, and 1 is orientation angle of the vehicle with respect
to the X axis, i.e., the orientation angle is with respect to the
sensor (ego vehicle). Assuming that the slip angles at the tires
are zero (but the slip angle of the vehicle itself is not zero), the
model equations can be described by

X =Vcos(y + B) (34)
Y = Vsin(y + ) (35)
¥ =5 P tan(s) (36)
B = tan~! (lir‘%) (37)
and
V=a (38)

where V is the speed of the vehicle, 5 is the slip angle of the
vehicle. [; and [, are the distances from the center of gravity of
the vehicle to the front and rear wheelbases of the vehicle, & is
steering angle of front wheel and a is the acceleration of the
vehicle. §; and a are unknown inputs. More understanding of
the nonlinear vehicle model can be found by reading [20].

The location of the vehicle is assumed to be measured by
using a radar or LIDAR sensor. Therefore, the output equations
can be written as

_[X1_
y=[y]=cx (39)
where
1 0 0 0 _ T
c_[o Lo ohandx=[X YV ylT (40

Then, the form of the system and output equations above is the
same as the form of (1) used for the nonlinear observer
development.

It should be noted that the “zero slip angle at the tires”
assumption could be avoided, and a model that assumes the tire
force as a function of the slip angle could be utilized. However,
such a model becomes a function of a large number of tire and
vehicle parameters. Since the vehicle that is encountered and is
being tracked is unknown, the values of these parameters
cannot be known. Hence, the above model is more appropriate,
in spite of the zero-slip-at-tire assumption.

It should be noted that the sum l¢ + [, is constant for each
vehicle, even if exact center of gravity of the vehicle is not
known. This sum is assumed to be 2.8 meters for all vehicles.
While the actual length may have erros of 10 — 15% from this
value, this does not lead to much error in the orientation
estimates. One reason for this is the dependence of X and Y on
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the ¥ in the dynamic model. This enables 1 to be estimated
correctly.

It should be noted that this model has two unknown inputs
(steering angle 8y and longitudinal acceleration a). Both of
these unknown inputs can be assumed to be constants (or slowly
changing) and equations with their derivates as zero can be
appended to the dynamic model used for tracking.

B. Observer Design for Vehicle Motion Tracking
The nonlinear observer is designed by the method proposed
in section II. D with the nonlinear vehicle motion model (34) —
(38). First, note that
Vcos(y + B)
Vsin(y + B)
a

V cos(B)
e tan(Sf)

Hence, A(¢,u) in (15) can be computed from the Jacobian of
the vehicle motion model and is found to be:

fGouw) = (41)

A, w)

0 0 cos(@+pB) =Vsin(y+p)

0 0 sin(+p) Vcos@@+p) (42)
={0 O 0 0

0 Cl(;(f) tan(df) 0

The Jacobian in (42) has 3 time-varying variables: V, §; and ¢
over which gridding is required. We need to define the
operating ranges of these variables. Then, a finite 3-
dimensional grid is constructed, consisting of the entire range
of operating conditions. A(¢, u) is evaluated at each grid point
on this 3-demensional grid. Finally, we solve (12) — (16) for the
observer gain using the LMI toolbox in MATLAB, so as to
obtain a single observer gain valid for all values of A(¢, u).

Preliminary results were presented by us on an observer for
vehicle motion on just highways in a conference publication
[21]. Since only highway driving was involved, the operating
range of Y was limited. In this paper, we deal with both
highway and urban road driving involving a very large
operating range for 1 and hence the need for a switched gain
observer. It turns out that a constant gain matrix cannot be used
for the entire operating range 0 < ¢ < 2m. However, stable
observers can be designed for more limited operating ranges, if
the 0 < i < 2m region is divided into 4 sub-regions. Using the
observer gains obtained from these 4 sub-regions, a switched
gain approach is needed to cover the full range 0 < ¢ < 2m. It
should be noted that the new observer design technique
developed in this paper based on a grid still yields exponential
stability for a much larger operating range than the existing
observer design methods [12, 13] described earlier. The
observer design method using Theorem [ fails to provide an
observer gain, and the observer design method using 7heorem
2 provides an observer gain for very limited operating range:
-19° < <19° with 3m/s <V <15m/s, and —10" <
5 <10

As a result, the proposed observer works for most vehicle
motions: straight driving, lane change, double lane change, and
cross traffic motions without using a switched gain approach.

[ AY = 5m &Y < P min
s

or
AY = 5m & Convexity with Right turn,

[ AY 2 5m &P 2 Py
N or

AY = 5m & Convexity with Left turn

L,

210" < ¢ <330

Fig. 3. Finite state machine for gain switching.

Only left and right turn vehicle motions are required to use a
switched gain approach.

C. Switched Gain Approach

By using the proposed nonlinear observer design method in
Theorem 3, four constant gain matrices L, L,, L3 and L, can be
obtained for use in the following operating ranges respectively:

1) —60" <y <60,

2) 30" < <150,

3) 120° <y < 240,

4) 210" < <330,
with 3m/s <V < 15m/s, and —10° < §; < 10°. By using
proper initial target vehicle orientation and switching the gain
properly, the observer can estimate vehicle motion for the entire
operating range.

Fig. 3 shows a finite state machine for gain switching. Each
finite state is for a different operating range ¥; i, <P <
Vi max and uses a different observer gain L; for i =1, ,4.
Since vehicle motion is nonholonomic, there are only two
possible options for switching from current state. For example,
if initial orientation of vehicle (heading angle) is within —60° <
¥ < 60°, the vehicle cannot suddenly be oriented in 120° <
P < 240° without going through either 30" < < 150" or
210" < ¢ < 330"

The stability of the hybrid observer in Fig. 3 consisting of 4
different constant observer gain regions needs to be considered.
It should be noted that inside each region, a single observer gain
is used and exponential stability is guaranteed using the
Lyapunov function analysis of Theorem 3. However, the 4
regions may use 4 different values of the matrix P > 0 in their
individual Lyapunov functions. The stability of the overall
switched system can be guaranteed if the system satisfies a
minimum dwell time constraint in each region, according to
results from hybrid system theory [22]. The minimum dwell
time in region j when switching from region i to region j needs
to be greater than T where T is the amount of time needed for
Vi(x(t + T)) < V;(x(t)). This minimum dwell time guarantees
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global asymptotic stability. This result can be understood as
follows: In each individual region, the estimation error ¥ keeps
decreasing due to the Lyapunov exponentially stable design. In
switching between regions, the P matrix may be different in the
two regions. However, if the system remains in the same region
for a minimum dwell time, the error will become smaller than
the initial value at the time the region was entered (due to local
exponential stability). Thus, if the system is constrained to
remain in one region for a minimum dwell time, the value of
the Lyapunov function after the dwell time in region j is less
than its value in region i at the time the switch from i to j
occurred. This guarantees overall asymptotic stability [22].

In the case of the observer design application for the 4
separate regions of 1, the values of 1 at which the region is
entered and at which it switches back are different (as shown in
Fig. 3). This hysteresis between entering and switching back
ensures that the minimum dwell time constraint is met.

Initial conditions of the vehicle motion are decided based on
an initial small number of measurements. Predominantly, initial
target vehicle orientation is one of four cases: 0° or 180" when
the target vehicle is driving longitudinally from the sensor
orientation point of view, and 90° or 270" when the target
vehicle is driving laterally from the sensor orientation point of
view. First, rough relative velocity between target vehicle and
sensor platform can be calculated based on initial couple of
position measurements and its time information. By using the
relative velocities (V. , V., ), an angle can be calculated as

Y, = tan_l(Vr,y/Vr,x) 43)
From the calculated angle, it is possible to determine whether
or not the vehicle constitutes cross-traffic. By comparing with
the velocity of sensor platform, the moving direction of target
vehicle is obtained and the vehicle orientation 1, is selected
among the four orientations. Therefore, initial target vehicle
orientation can be determined without ambiguity.

This method provides initial conditions that are close enough
to the true values to choose correct initial state (gain) and to
make the observer converge quickly.

In this paper, two methods 4 and B are proposed for the gain
switching in the observer to estimate vehicle motion for the
entire range 0 < ¢ < 2m. In practice, common maneuvers such
as straight line motion and lane change motion do not need gain
switching. However, left or right turning motion at intersections
requires gain switching. For instance, consider a typical left turn
vehicle motion in which the orientation of the vehicle evolves
from 0° to 90°. When 1) exceeds 60°, gain switching should be
conducted from L; to L, since L; works only for the operating
range —60° < 1 < 60°. As we can see, the observer gain needs
to switch based on the value of 1. However, ¥ is not a directly
measurable variable. Therefore, it is important to develop
methods that detect vehicle turn motion without knowing 1. It
should be noted that lane change maneuvers should be
distinguished from turn maneuvers because a lane change
maneuver has a smaller orientation change and does not need
gain switching.

Method A: The first method utilizes estimated orientation 1)
and lateral movement of target vehicle. State (gain) is switched

Fig. 4. Illustration of how Method B distinguishes between (a) Left turn
maneuver, and (b) Lane change maneuver.

to next available region based on the operating range if

1) Lateral movement AY exceeds 5m, and

2) 1 is exceeding upper (or lower) bound of operating

range of Y at the current state, as shown in Fig. 3.

The value of 5m is used as a threshold because typical road
width and turning radius are of the order of 4m and 5m
respectively. This method works well in practice since
relatively good initial condition can be obtained as described
earlier and the initial condition makes estimates converge
quickly to the true values. Furthermore, each operating range
for an observer gain is overlapped with nearby regions by 30
degrees. This overlap and the proposed switching rule prevent
repeated switching behavior. For example, the value of 1 at
which the switch from regon 1 to 2 occurs is different from the
value of ¢ at which the reverse switch from region 2 to 1 occurs.
The specific values are specified in the transition rules for
switching between the different regions. Importantly, the
overlap improves robustness of the switching against estimation
error. A switched gain still makes the observer stable if the true
orientation is within the overlapped range. Once a vehicle is in

(a)

) = g
i

Fig. 5. Vehicle motions: (a) Straight driving, (b) Lane change, (c) Double lane
change, (d) Cross traffic and (e) Left turn vehicle motions.
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Fig. 6. Simulation results of (a) Straight driving maneuver, (b) Lane change maneuver, (c) Double lane change maneuver, and (d) Cross traffic maneuver.

straight line motion mode, i.e., estimated orientation of the
vehicle is near 0°, 90°, 180" or 270°, the reference lateral
position of the vehicle is updated for next switching.
Method B: Switching can be determined by only using
measured information. The procedure is as follows:
1) Initiate collection of position measurements when AY
exceeds 0.3m (point 4 in Fig. 4).
2) Store the measurement until AY exceeds Sm (point B in
Fig. 4), and then go to the next step.
3) Check the convexity of polygon drawn by the line 4B
and measurements (curve 4B), as shown in Fig. 4.
4) If the polygon is convex and the curve 4B is on the

downstream side of the line, state (gain) is switched to
next available state based on the turning direction, as
shown in Fig. 3.
Fig. 4 shows the difference between lane change motion and
turning motion based on the proposed method. It is obvious that
the polygon from turning motion is convex and the polygon
from lane change motion cannot be convex. Once lateral
movements are within the threshold 0.3m for an adequate time
window, reference lateral position of the vehicle is updated for
next switching.
Finally, it should be noted that while the inputs of steering
angle and acceleration in the vehicle model were assumed to be
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Fig. 8. Simulation results of the performance in the presence of tire slip angles.

constant, the influence of non-zero inputs on estimation error
can be calculated using Lyapunov analysis [13]. A bounded
non-zero input for an exponentially stable observer will result
in a bounded estimation error, as shown in [13]. The bound on
the estimation error can be designed to be small by using a LMI-
based H,, design condition, as was done in [13].

IV. SIMULATION RESULTS

The nonlinear observer for vehicle motion tracking described
in the previous section has first been evaluated using Matlab
simulations. Simulation studies are conducted for various
scenarios of highway vehicle motion: straight driving, lane
change, and double lane change motion as shown in Fig. 5 (a),
(b), and (c). Also, cross traffic and left turn vehicle at
intersections, as shown in Fig. 5 (d) and (e) are simulated, as
scenarios specific local driving. I and [, are assumed to be
1.35m and 1.45m. A sensor is assumed to be located at the
origin of the coordinate system in Fig. 5. The trajectories of the
vehicle are generated by using the nonlinear vehicle motion
model. Each trajectory and the inputs for the trajectories are
shown in Fig. 6 and 7.

The observer gains are calculated by using the four operating
conditions with the exponential stability parameter & = 0.3:

623.0134 —1.0612 x 10712
L = 1.3971 x 10712 1069.0838
5388.3054  —5.5343 x 10712[
[2.1559 x 10712 1528.5641 |
[ 1069.0849  —6.9367 x 1071°]
L, = 8.7541 x 10711 623.0136
3.8624 x 107° 5388.3040 [
—1528.5669 7.2656 x 10710 |
623.0134 5.5367 x 10712 (44)
L, = 2.4022 x 10712 1069.0838
—5388.3056  —3.3334 x 10711|
—2.0986 x 10712 —1528.5640
and
1069.0850 —2.7240 x 10714
_[14141 x 1073 623.0136
* 7171552 x 10712 —5388.3049

1528.5668 —9.2341 x 1071
As described earlier, relatively good initial conditions can be

obtained by using first few samples from sensor measurements.
However, in this simulation study, we intentionally use
inaccurate initial conditions for the velocity and orientation to
show the convergence of the observer.

The estimation results using the nonlinear observer with a
single gain are shown in Fig. 6. Only small estimation errors are
presented during transient periods. Also, Fig. 7 shows
estimation results of a left turn vehicle. The switched gain
approach is utilized to track vehicle motion over a large
operating range. Both methods 4 and B conduct gain switching
properly and track vehicle motion successfully. Overall, the
proposed nonlinear observer provides good performance for
vehicle motion tracking. The estimates of the vehicle motion
converge to the true vehicle motion, even with unknown
steering and acceleration inputs.

[

. £l
- o

Fig. 9. (a) Delphi ESR, and (b) Expefimental setup using a tripod.
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Fig. 10. Experimental results of (a) Straight driving maneuver, (b) Lane change maneuver, (c) Double lane change maneuver, and (d) Cross traffic maneuver.

Simulation studies in the presence of large tire slip angles are
also conducted. As shown in Fig. §, two steering actions are
considered to evaluate the performance of the proposed
observer in the presence of large tire slip angles. A vehicle first
changes the orientation using a small steering action, and then
suddely change the vehicle orientation to the opposite direction
using a large steering action. Large tire slip angles (traction
limited event) occur due to the abrupt large steering action. In
the simulation studies, Dugoff’s tire model [20] is utilized.
Simulation results in Fig. 8 with a nolinear tire force model
show that while the observer continues to track lateral and
longitudinal positions very accurately, the estimation of vehicle

orientation experiences larger errors in the presence of large tire
slip angles.

V. EXPERIMENTAL RESULTS

Experiments are conducted to validate the proposed
nonlinear observer design in situations corresponding to all the
five scenarios in Fig. 5, of 1) Straight Driving, ii) Lane Change,
iii) Double Lane Change, iv) Cross Traffic, and v) Left Turn
maneuvers. The Delphi Electronically Scanning Radar (ESR)
shown in Fig. 9 is used for the experimental evaluation. The
radar was mounted on a tripod, and measured all vehicle
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Fig. 11. Experimental results of left turn maneuver.

positions in the experiment. The radar provides vehicle radial
position information within 174 meters of maximum range and
45 degrees of maximum field of view [23]. A low pass filter is
used to smoothen the radar’s vehicle position data, before
supplying it to the observer. Also, the radial velocity of the
target can be obtained from the radar. However, we only use the
velocity information as a reference to compare with estimates,
for the validation of the proposed nonlinear observer.

The observer gains are obtained by using the four operating
conditions with the exponential stability parameter a = 0.1.
Initial conditions are calculated by using first two samples from
the radar measurement. Fig. 10 and 11 show the experimental
results for the five scenarios. It is seen that the proposed
nonlinear observer can estimate the vehicle motion based on
radar measurements, without knowing the steering and
acceleration of the vehicle. The estimates from the experimental
data provide very reasonable evolutions of the orientation of the
vehicle which are quite similar as the orientation results from
the simulations. Also, the radial velocity of the target vehicle
measured by the radar can be used to evaluate the performance
of the proposed observer. The estimated radial velocity of the
target vehicle can be computed by using estimates:

5 _ XV cos(i)+7V sin(9)

7= i (45)
The error between the radial velocity and estimated radial
velocity is shown in Fig 10 and 11. Mostly, the error is less than

TABLEI
ERROR OF RADIAL VELOCITY ESTIMATE
Vehicle maneuver Max. Error [m/s] RMSE [m/s]
Straight driving 1.0827 0.6045
Lane change 1.0659 0.5571
Double lane change 1.1917 0.4867
Cross traffic 1.2715 0.4532
Left turn (Method A) 0.7654 0.3638
Left turn (Method B) 09111 0.3759

1m/s. Detailed values of the maximum and root mean square
error (RMSE) are shown in Table I.

VI. CONCLUSIONS

A vehicle tracking algorithm that uses a single model to
represent all possible vehicle motions is presented in this paper.
By using a single vehicle model, nonlinear observer design
techniques can be utilized. The developed nonlinear observer
guarantees stability of the estimates over large operating
regions and requires less real-time computational effort in
estimating trajectories of multiple vehicles on the road,
compared to a traditional interacting multiple model filter.

The developed observer is used to track vehicle motion
including the lateral and longitudinal positions, velocity and
yaw orientation of a vehicle. Simulation results were presented
to show the performance of the developed observer in the
application of vehicle motion tracking. Experimental results
were also presented using a radar sensor that measures polar
distance and azimuth angle as the measurement unit. Both
simulations and experiments show excellent results in vehicle
motion tracking on vehicle maneuvers including straight
driving cars, a lane change maneuver, a double lane change
maneuver, a cross traffic maneuver, and a left turn maneuver.

The developed observer successfully estimates vehicle
motion for a larger operating range than existing observer
techniques from literature. One disadvantage of the proposed
method is the high computational effort in computing a gain
using the gridding technique. However, it should be noted that
this computation is done offline and not in real-time. Future
work will include further development of the vehicle tracking
observer design method to reduce the high offline
computational burden in computing the observer gain.
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