
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—This paper focuses on the development and use of a 

nonlinear observer for tracking of vehicle motion trajectories 
while using a radar or laser sensor. Previous results on vehicle 
tracking have typically used an interacting multiple model filter 
that needs different models for different modes of vehicle motion. 
This paper uses a single nonlinear vehicle model that can be used 
for all modes of vehicle motion. Previous nonlinear observer 
design results from literature do not work for the nonlinear system 
under consideration due to the wide range of operating conditions 
that need to be accommodated. Hence, a new nonlinear observer 
design technique that utilizes better bounds on the coupled 
nonlinear functions in the dynamics is developed. The exponential 
stability of the observer is established using Lyapunov techniques. 
The observer design with the developed technique is then 
implemented in both simulations and experiments. Experimental 
results show that the observer can simultaneously and accurately 
estimate longitudinal position, lateral position, velocity and 
orientation variables for the vehicle from radar measurements. 
Results are presented both for tracking of vehicle maneuvers on 
highways and of maneuvers on urban roads at traffic intersections 
where turns and significant changes in vehicle orientation can 
occur. 
 

Index Terms—Nonlinear observer, vehicle motion estimation, 
vehicle tracking.  
 

I. INTRODUCTION 
EHICLE motion tracking is an important problem that is 
frequently encountered in autonomous driving, as well as 

in collision avoidance and adaptive cruise control (ACC) 
applications [1-5]. There has been significant recent interest in 
the autonomous control of vehicles [6-8, 17-18], but the topic 
of estimating the trajectories of other vehicles on a road in order 
to track them or avoid conflicts with them has not been 
sufficiently addressed. Collision avoidance and ACC systems 
typically use radar or laser sensors for measuring distances and 
azimuth angles [1-5] to vehicles. With such sensors, radial 
distances and azimuth angles can be measured.  

In the case of vehicles in urban traffic, including vehicles at 
traffic intersections, the radar-measured variables are 
inadequate in order to fully predict the trajectories of vehicles. 
Both lateral and longitudinal distances and orientation of the 
vehicles are needed in order to accurately predict vehicle 
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motion and provide appropriate warnings or automated driving 
actuation. Previous work in vehicle tracking has typically 
utilized interacting multiple model (IMM) filters for estimation 
of vehicle trajectories [9-11]. The models used in the IMM filter 
typically include a “straight line driving” model and a “constant 
turn rate” model. Each model can be used for its respective 
driving scenario and is not applicable for the other scenario. 

This paper develops a vehicle tracking algorithm that uses a 
single model to represent all possible vehicle motions involving 
both longitudinal and lateral maneuvers. By using a single 
vehicle model, stability of the state observer can be guaranteed 
and the real-time computational effort in estimating trajectories 
of multiple vehicles on the road is reduced in comparison with 
the IMM approach. The observer gains are obtained by off-line 
computation while the IMM approach uses multiple models and 
recomputes gains in real-time. 

Since the proposed vehicle model is nonlinear, an effective 
nonlinear observer design technique is required to ensure an 
exponentially stable observer. Two nonlinear observer design 
techniques from literature that are designed for bounded 
Jacobian systems are first used in an attempt to obtain a stable 
observer. However, their design procedures fail to yield stable 
observer gains for this application, due to infeasibility of the 
associated Linear Matrix Inequalities (LMIs). A new nonlinear 
observer design technique suitable for this application is 
therefore developed. The stability of the observer is proved, and 
an observer gain for the vehicle model application is obtained 
for a larger operating range than the previous observer design 
techniques from literature. The advantage of the developed 
observer is the increased feasibility of a solution due to less 
conservative LMIs in the observer design equation. 

The developed observer is used to track the lateral and 
longitudinal positions and orientation of a vehicle in both 
simulations and experiments. A radar sensor that measures 
radial distance and azimuth angle is used as the measurement 
unit. Vehicles maneuvers that include straight driving cars, a 
lane change maneuver, a double lane change maneuver, cross 
traffic driving at a traffic intersection, and a left turn maneuver 
are considered in this paper. Thus, the observer works for both 
highway driving and urban traffic that includes intersections. 

The outline of the rest of the paper is as follow: In the next 
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section, the proposed nonlinear observer design technique is 
presented. In Section III, we propose a single vehicle model that 
can represent both longitudinal and lateral maneuvers, and 
discuss vehicle motion tracking using the vehicle model and 
developed observer. Then, in Section IV and V, the proposed 
vehicle motion tracking algorithm is validated in both 
simulations and experiments. Conclusions are presented in 
Section VI.  

II. NONLINEAR OBSERVER DESIGN 

A. Problem Statement 
Before introducing the vehicle tracking problem, we start by 

proposing a new LMI-based nonlinear observer design method. 
This methodology provides less conservative LMI conditions 
for observer design than those existing in the literature. 

We consider the class of nonlinear systems described by 

 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) 
𝑦𝑦 = 𝐶𝐶𝐶𝐶 (1) 

where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 is the state vector, 𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚 is the input vector and 
𝑦𝑦 ∈ 𝑅𝑅𝑝𝑝 is the output vector. 𝐶𝐶 ∈ 𝑅𝑅𝑝𝑝×𝑛𝑛 is a matrix of appropriate 
dimensions. 𝑓𝑓(𝑥𝑥,𝑢𝑢): 𝑅𝑅𝑛𝑛 × 𝑅𝑅𝑚𝑚 → 𝑅𝑅𝑛𝑛 is a vector of 
differentiable nonlinear functions. 

The following Luenberger-like observer will be studied: 
 𝑥𝑥�̇ = 𝑓𝑓(𝑥𝑥�,𝑢𝑢) + 𝐿𝐿(𝑦𝑦 − 𝐶𝐶𝑥𝑥�) (2) 

where 𝐿𝐿 is the observer gain matrix to be designed such that 
exponential convergence of the estimation error 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥� 
towards zero is obtained. 

B. Existing Nonlinear Observer Design Methods 
Previous researchers have developed nonlinear observer 

design techniques suitable for bounded Jacobian systems using 
the mean value theorem [12, 13]. These studies define and use 
Jacobian bounds based on element-wise minimum and 
maximum values of the Jacobian. By considering the nonlinear 
system and observer described in (1) and (2), the following 
results can be summarized from the existing methods in 
literature.  

Lemma 1: Differential Mean Value Theorem using 
Canonical Basis [12, 13]. 

Let 𝑓𝑓(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 be a function continuous on [𝑎𝑎, 𝑏𝑏] ∈ 𝑅𝑅𝑛𝑛 
and differentiable on convex hull of the set (𝑎𝑎, 𝑏𝑏) with Lipschitz 
continuous gradient. For s1, s2 ∈ [𝑎𝑎, 𝑏𝑏], there exists 𝑧𝑧 ∈ (𝑎𝑎, 𝑏𝑏) 
such that 

 
 𝑓𝑓(𝑠𝑠2) − 𝑓𝑓(𝑠𝑠1) 

           = �∑ 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗) 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

(𝑧𝑧𝑖𝑖)
𝑛𝑛,𝑛𝑛
𝑖𝑖,𝑗𝑗=1 � (𝑠𝑠2 − 𝑠𝑠1) 

(3) 

where 𝑒𝑒𝑛𝑛(𝑖𝑖) = (0,⋯ ,0,1,0,⋯ ,0)𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 is a vector of the 
canonical basis of 𝑅𝑅𝑛𝑛 with 1 at 𝑖𝑖𝑡𝑡ℎ component. 

Theorem 1 [12]: If an observer gain matrix 𝐿𝐿 can be chosen 
such that 

 
𝑃𝑃�𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� + �𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�

𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃 < 0 

𝑃𝑃�𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� + �𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�
𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝐿𝐿𝑇𝑇𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃 < 0 

𝑃𝑃 > 0 

(4) 

∀𝑖𝑖 = 1,⋯ ,𝑛𝑛, and ∀𝑗𝑗 = 1,⋯ ,𝑛𝑛, where 
1) ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≥ max (𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝑥𝑥𝑖𝑖) and ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ min (𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝑥𝑥𝑖𝑖); 

2) 𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗)ℎ𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚; 
3) 𝑍𝑍𝐻𝐻 = 𝑛𝑛 × 𝑛𝑛 is the state scaling factor, 𝑛𝑛 being dimension 

of the state vector; 
4) 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑍𝑍𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻�𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑍𝑍𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚; 

then this choice of 𝐿𝐿 leads to asymptotically stable estimates by 
the observer for the system. 

Theorem 2 [13]: The observer estimation error converges 
exponentially towards zero if there exist matrices 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0 
and 𝑅𝑅 of appropriate dimensions such that the following LMIs 
are feasible: 

 
𝐴𝐴𝑇𝑇(𝜗𝜗)𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝜗𝜗) − 𝐶𝐶𝑇𝑇𝑅𝑅 − 𝑅𝑅𝑇𝑇𝐶𝐶 < 0 

                                                   ∀𝜗𝜗 ∈ 𝑣𝑣𝐻𝐻𝑛𝑛,𝑛𝑛 (5) 

where 
 𝐴𝐴(𝜗𝜗) = ∑ 𝑒𝑒𝑛𝑛(𝑖𝑖)𝑒𝑒𝑛𝑛𝑇𝑇(𝑗𝑗) 𝜕𝜕𝑓𝑓𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
(𝑧𝑧𝑖𝑖)

𝑛𝑛,𝑛𝑛
𝑖𝑖,𝑗𝑗=1   (6) 

and the domain 𝑣𝑣𝐻𝐻𝑛𝑛,𝑛𝑛   is defined by 

 
𝑣𝑣𝐻𝐻𝑛𝑛,𝑛𝑛 = {𝜗𝜗 = (𝜗𝜗11,⋯ ,𝜗𝜗1𝑛𝑛,⋯ ,𝜗𝜗𝑛𝑛𝑛𝑛)|𝜗𝜗𝑖𝑖𝑖𝑖

∈ �ℎ𝑖𝑖𝑖𝑖 , ℎ𝑖𝑖𝑖𝑖�} 
(7) 

 ℎ𝑖𝑖𝑖𝑖 = min�𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗� and ℎ𝑖𝑖𝑖𝑖 = max�𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗� (8) 
When these LMIs are feasible, the observer gain 𝐿𝐿 is given by 
𝐿𝐿 = 𝑃𝑃−1𝑅𝑅𝑇𝑇 .  

However, these methods do not work for the application of 
vehicle motion tracking considered in this paper. Specifically, 
the LMI toolbox in MATLAB fails to provide a feasible 
solution for the multiple LMIs that need to be simultaneously 
satisfied in both Theorems 1 and 2. It should be noted that an 
observer gain (and an associated 𝑃𝑃 matrix) that satisfy multiple 
LMIs need to be obtained in both methods. Hence, a new 
nonlinear observer design method suitable for the vehicle 
tracking application is presented herein.  

C. Analysis of Domain of Jacobian Matrix 
In order to further motivate the new nonlinear observer 

design method, we investigate the domain of the Jacobian 
matrix and the reason for failure of the observer design methods 
from [12] and [13].  

From (4) in Theorem 1 and (8) in Theorem 2, it is obvious 
that the element-wise minimum and maximum values of the 
Jacobian are used to satisfy stability conditions of the observers. 
However, this approach is likely to be conservative, especially 
when there are coupled terms in the Jacobian matrix of the 
nonlinear function. For example, let us consider the following 
nonlinear system: 

 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) 
𝑦𝑦 = 𝐶𝐶𝐶𝐶 (9) 

where 

 𝑓𝑓(𝑥𝑥) = �

𝑥𝑥3 cos 𝑥𝑥4
𝑥𝑥3 sin 𝑥𝑥4

0
0

� ,𝐶𝐶 = �1 0
0 1

0 0
0 0� (10) 

This nonlinear system is similar to the vehicle tracking 
application. The Jacobian matrix of the nonlinear function 
𝑥𝑥3𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥4 is 

  𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

= [0 0 cos 𝑥𝑥4 −𝑥𝑥3 sin 𝑥𝑥4] (11) 
Using element-wise inequalities with the assumption 5 ≤ 𝑥𝑥3 ≤
15 and −𝜋𝜋/3 ≤ 𝑥𝑥4 ≤ 𝜋𝜋/3, it can be concluded that the 
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Jacobian of the nonlinear function is in a bounded domain 
defined by vertices: 

 𝑣𝑣1 = (0.5, 12.99), 𝑣𝑣2 = (1, 12.99), 
𝑣𝑣3 = (1,−12.99), 𝑣𝑣4 = (05,−12.99)  

However, designing the observer to be stable over this entire 
domain is challenging. In fact, some parts of the domain do not 
need to be considered. For instance, the vertex 𝑣𝑣3 spans from 
𝑥𝑥4 = 0 for the cosine function and 𝑥𝑥4 = 𝜋𝜋/3 for the sine 
function in (11) which are contradictory to each other. The sine 
and cosine functions are never going to be maximum at the 
same values of their identical arguments. Fig. 1 illustrates both 
the bounded domain based on the vertices, and the actual 
domain that needs to be considered of the Jacobian. It is true 
that the Jacobian always evolves within the bounded domain of 
the vertices. However, it is possible that the bounded domain 
based on the vertices becomes too conservative as the Jacobian 
of the system has many coupled terms.  

D. Nonlinear Observer 
In this section, we present a modified nonlinear observer 

design method for the nonlinear system described in the 
previous three sections.  

Theorem 3: Consider the nonlinear system (1) and observer 
form (2). If there exist matrices 𝑃𝑃 ≥ 𝐼𝐼 and 𝑅𝑅 of appropriate 
dimensions such that the following problem is solvable: 

 min 𝛾𝛾 
subject to (12) 

 𝑃𝑃 ≥ 𝐼𝐼 (13) 

 �𝑃𝑃 𝑅𝑅𝑇𝑇
𝑅𝑅 𝛾𝛾𝛾𝛾 � ≥ 0 (14) 

 

 A(𝜉𝜉,𝑢𝑢)𝑇𝑇𝑃𝑃 + 𝑃𝑃A(𝜉𝜉,𝑢𝑢) − 𝐶𝐶𝑇𝑇𝑅𝑅 − 𝑅𝑅𝑇𝑇𝐶𝐶 
                                                         +2𝛼𝛼𝛼𝛼 ≤ 0, 
                                           ∀𝑢𝑢 ∈ 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝜉𝜉 ∈ 𝜉𝜉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
  where A(𝜉𝜉,𝑢𝑢) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜉𝜉,𝑢𝑢), 𝜉𝜉 ∈ 𝑅𝑅𝑛𝑛  

(15) 

then, the observer gain 𝐿𝐿 is given by 
 𝐿𝐿 = 𝑃𝑃−1𝑅𝑅𝑇𝑇  (16) 

and with this value of the observer gain, the estimation error of 
the observer (2) converges exponentially towards zero. 

Proof: Let the Lyapunov function candidate for observer 
design be defined as 𝑉𝑉 = 𝑥𝑥�𝑇𝑇𝑃𝑃𝑥𝑥� where 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0 and 𝑃𝑃 ∈
𝑅𝑅𝑛𝑛×𝑛𝑛. For exponential stability, we will require that the 
derivative of 𝑉𝑉 satisfies the following differential inequality: 

 𝑉̇𝑉 ≤ −2𝛼𝛼𝛼𝛼 (17) 
where 𝛼𝛼 is a positive constant. The inequality (17) implies the 
exponential stability condition [14]: 

 ‖𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)‖ ≤ 𝜅𝜅‖𝑥𝑥(0) − 𝑥𝑥�(0)‖𝑒𝑒−𝛼𝛼𝛼𝛼 (18) 
where 𝜅𝜅 is a positive constant. From the Lyapunov function 
candidate, the derivative of 𝑉𝑉 can be represented as 

 𝑉̇𝑉 = −𝑥𝑥�𝑇𝑇{(𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐿𝐿𝐿𝐿)}𝑥𝑥� + 2𝑥𝑥�𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 (19) 
where 𝛿𝛿𝛿𝛿 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) − 𝑓𝑓(𝑥𝑥�,𝑢𝑢). The difference of the functions 
𝛿𝛿𝛿𝛿 can be presented by using the integral form of the mean 
value theorem [15] for vector functions: 

 𝛿𝛿𝛿𝛿 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠=𝑥𝑥+𝜂𝜂(𝑥𝑥�−𝑥𝑥)

𝑑𝑑𝑑𝑑
1

0
� (𝑥𝑥 − 𝑥𝑥�) (20) 

Then, we can write 

 

𝑉̇𝑉 + 2𝛼𝛼𝛼𝛼 

= � �𝑥𝑥�𝑇𝑇 ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠=𝑥𝑥−𝜂𝜂(𝑥𝑥−𝑥𝑥�)

− 𝐿𝐿𝐿𝐿�
𝑇𝑇

𝑃𝑃
1

0

+ 𝑃𝑃 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑠𝑠=𝑥𝑥−𝜂𝜂(𝑥𝑥−𝑥𝑥�)

− 𝐿𝐿𝐿𝐿� + 2𝛼𝛼𝛼𝛼� 𝑥𝑥��𝑑𝑑𝑑𝑑 

(21) 

Using the notation 
 𝜉𝜉 ≜ 𝑥𝑥 − 𝜂𝜂(𝑥𝑥 − 𝑥𝑥�) (22) 

 A(𝜉𝜉,𝑢𝑢) ≜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜉𝜉,𝑢𝑢) (23) 

(21) becomes 

 

𝑉̇𝑉 + 2𝛼𝛼𝛼𝛼 

= � (𝑥𝑥�𝑇𝑇{[A(𝜉𝜉,𝑢𝑢) − 𝐿𝐿𝐿𝐿]𝑇𝑇𝑃𝑃
1

0
+ 𝑃𝑃[A(𝜉𝜉,𝑢𝑢) − 𝐿𝐿𝐿𝐿] + 2𝛼𝛼𝛼𝛼}𝑥𝑥�)𝑑𝑑𝑑𝑑 

(24) 

Since 𝜉𝜉 varies with the value of 𝑥𝑥 and 𝑥𝑥�, A is an unknown and 
continuously time varying matrix. From (24), (17) is satisfied 
when following condition is satisfied: 

 (A(𝜉𝜉,𝑢𝑢) − 𝐿𝐿𝐿𝐿)𝑇𝑇𝑃𝑃 + 𝑃𝑃(A(𝜉𝜉,𝑢𝑢) − 𝐿𝐿𝐿𝐿) + 2𝛼𝛼𝛼𝛼
≤ 0 (25) 

By introducing a new variable 𝑅𝑅 = 𝐿𝐿𝑇𝑇𝑃𝑃, (25) can be expressed 
as 

 A(𝜉𝜉,𝑢𝑢)𝑇𝑇𝑃𝑃 + 𝑃𝑃A(𝜉𝜉,𝑢𝑢) − 𝐶𝐶𝑇𝑇𝑅𝑅 − 𝑅𝑅𝑇𝑇𝐶𝐶 + 2𝛼𝛼𝛼𝛼
≤ 0 (26) 

Since 𝜉𝜉 and 𝑢𝑢 vary infinitely in a given set, (26) gives us 
infinitely many LMIs. This can be reduced to a finite number 
of LMIs using gridding techniques. We fix a finite subset of the  
𝜉𝜉 and 𝑢𝑢 within its bounds such that 

 
𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ {𝑢𝑢1,⋯ ,𝑢𝑢𝑁𝑁} 
𝜉𝜉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ {𝜉𝜉1,⋯ , 𝜉𝜉𝑁𝑁} (27) 

It is noted that the dimension of the grid is proportional to the 
number of varying variables in 𝜉𝜉 and 𝑢𝑢. Also, the points of the 
finite subset need to be chosen sufficiently dense so that solving 
LMIs for the finite subset is equivalent to satisfying the original 
stability condition. Therefore, the observer design condition 
(15) can be obtained. 

Unfortunately, the observer gain L can be arbitrarily large, if 
only the design condition (26) is utilized. Hence, we use the 
following additional specification [16] for L. If (15) with 𝑃𝑃 =
𝑃𝑃𝑇𝑇 > 0 has a solution for 𝑃𝑃 and 𝑅𝑅, the following size condition 
must be satisfied for 𝛾𝛾 sufficiently large: 

 ‖𝐿𝐿‖ ≤ �𝛾𝛾 (28) 

 
Fig. 1.  Illustration of domains from Jacobian of nonlinear function. 
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This means that √𝛾𝛾 is an upper bound on the norm of the gain 
L. Without loss of generality, we can assume that  𝑃𝑃 ≥ 𝐼𝐼. Since 
𝐿𝐿 = 𝑃𝑃−1𝑅𝑅𝑇𝑇  and 𝛾𝛾 is sufficiently large, the condition (28) 
becomes 

 𝐿𝐿𝑇𝑇𝐿𝐿 ≤ 𝐿𝐿𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑃𝑃−1𝑅𝑅𝑇𝑇 ≤ 𝛾𝛾𝛾𝛾 (29) 
From this, we obtain 

 𝛾𝛾𝛾𝛾 − 𝑅𝑅𝑃𝑃−1𝑅𝑅𝑇𝑇 ≥ 0 (30) 
Using the Schur complement, (30) can be represented as (14). 

∎ 

III. VEHICLE MOTION TRACKING PROBLEM 

A. Proposed Vehicle Motion Model 
Previous models used for tracking of vehicle motion in active 

safety or autonomous driving applications have primarily 
involved longitudinal motion variables (and sometimes 
additional lateral position variables) of the vehicle. For 
instance, a popular approach for radar based vehicle tracking 
consists of an interacting multiple model filter with two models 
– a “constant velocity” model and a “nearly coordinated turn” 
model [19]. The state vector is assumed to be 

 𝑥𝑥 = [𝑋𝑋 𝑌𝑌 𝑣𝑣 𝜃𝜃 𝜔𝜔]  (31) 
where (𝑋𝑋,𝑌𝑌), 𝑣𝑣, 𝜃𝜃, and 𝜔𝜔 are the target vehicle position in 
Cartesian coordinates, speed, orientation, and turn rate in the 
sensor body frame. The discrete-time state space equation for 
the constant velocity model is given by 

 𝑥𝑥𝑘𝑘+1 =

⎣
⎢
⎢
⎢
⎡
𝑋𝑋 + 𝑣𝑣𝑣𝑣 cos 𝜃𝜃
𝑌𝑌 + 𝑣𝑣𝑣𝑣 sin 𝜃𝜃

𝑣𝑣
𝜃𝜃
0 ⎦

⎥
⎥
⎥
⎤

𝑘𝑘

+ 𝑤𝑤𝑣𝑣,𝑘𝑘   (32) 

where 𝑤𝑤𝑣𝑣,𝑘𝑘 is process noise sequence represented by zero mean 
gaussian noise. The discrete-time state space equation for the 
nearly coordinated turn model is given by 

 

 𝑥𝑥𝑘𝑘+1 

 =

⎣
⎢
⎢
⎢
⎢
⎡𝑋𝑋 + 2𝑣𝑣

𝜔𝜔
�sin �𝜔𝜔𝜔𝜔

2
� cos �𝜃𝜃 + 𝜔𝜔𝜔𝜔

2
��

𝑌𝑌 + 2𝑣𝑣
𝜔𝜔
�sin �𝜔𝜔𝜔𝜔

2
� sin �𝜃𝜃 + 𝜔𝜔𝜔𝜔

2
��

𝑣𝑣
𝜃𝜃 + 𝜔𝜔𝜔𝜔
𝜔𝜔 ⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘

+ 𝑤𝑤𝑡𝑡,𝑘𝑘 (33) 

where 𝑤𝑤𝑡𝑡,𝑘𝑘 is process noise sequence represented by zero mean 
gaussian noise. 

It should be noted that the constant velocity model is 
applicable to straight line motion and the coordinated turn 
model only applies while turning. Neither model can be used 
for both scenarios and the coordinated turn model, in fact, 
becomes singular when the rotation rate becomes zero. 

Another disadvantage of the above approach is that all the 
three degrees of freedom have independent unknown inputs – 
lateral, longitudinal and orientation variables are all driven by 
unknown terms. 

This paper proposes the use of a single nonlinear model that 
encompasses both straight line and turning motions. 
Considering only planar motion for the vehicle, the motion of 
the vehicle can be described by 𝑋𝑋, 𝑌𝑌 and 𝜓𝜓 as shown in Fig. 2. 
𝑋𝑋 and 𝑌𝑌 are coordinates of longitudinal and lateral locations of 

the vehicle with respect to the sensor (radar or LIDAR) 
location, and 𝜓𝜓 is orientation angle of the vehicle with respect 
to the 𝑋𝑋 axis, i.e., the orientation angle is with respect to the 
sensor (ego vehicle). Assuming that the slip angles at the tires 
are zero (but the slip angle of the vehicle itself is not zero), the 
model equations can be described by 

 𝑋̇𝑋 = 𝑉𝑉 cos(𝜓𝜓 + 𝛽𝛽) (34) 
 𝑌̇𝑌 = 𝑉𝑉 sin(𝜓𝜓 + 𝛽𝛽) (35) 

  𝜓̇𝜓 = 𝑉𝑉 cos(𝛽𝛽)
𝑙𝑙𝑓𝑓+𝑙𝑙𝑟𝑟

tan�𝛿𝛿𝑓𝑓� (36) 

  𝛽𝛽 = tan−1 �𝑙𝑙𝑟𝑟 tan�𝛿𝛿𝑓𝑓�
𝑙𝑙𝑓𝑓+𝑙𝑙𝑟𝑟

� (37) 

and 
 𝑉̇𝑉 = 𝑎𝑎 (38) 

where 𝑉𝑉 is the speed of the vehicle, 𝛽𝛽 is the slip angle of the 
vehicle. 𝑙𝑙𝑓𝑓 and 𝑙𝑙𝑟𝑟  are the distances from the center of gravity of 
the vehicle to the front and rear wheelbases of the vehicle, 𝛿𝛿𝑓𝑓 is 
steering angle of front wheel and 𝑎𝑎 is the acceleration of the 
vehicle. 𝛿𝛿𝑓𝑓 and 𝑎𝑎 are unknown inputs. More understanding of 
the nonlinear vehicle model can be found by reading [20]. 

The location of the vehicle is assumed to be measured by 
using a radar or LIDAR sensor. Therefore, the output equations 
can be written as 

 𝑦𝑦 = �𝑋𝑋𝑌𝑌� = 𝐶𝐶𝐶𝐶 (39) 
where 

 𝐶𝐶 = �1 0 0 0
0 1 0 0�, and 𝑥𝑥 = [𝑋𝑋 𝑌𝑌 𝑉𝑉 𝜓𝜓]𝑇𝑇 (40) 

Then, the form of the system and output equations above is the 
same as the form of (1) used for the nonlinear observer 
development. 

It should be noted that the “zero slip angle at the tires” 
assumption could be avoided, and a model that assumes the tire 
force as a function of the slip angle could be utilized.  However, 
such a model becomes a function of a large number of tire and 
vehicle parameters. Since the vehicle that is encountered and is 
being tracked is unknown, the values of these parameters 
cannot be known. Hence, the above model is more appropriate, 
in spite of the zero-slip-at-tire assumption. 

It should be noted that the sum 𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟  is constant for each 
vehicle, even if exact center of gravity of the vehicle is not 
known. This sum is assumed to be 2.8 meters for all vehicles. 
While the actual length may have erros of 10 – 15% from this 
value, this does not lead to much error in the orientation 
estimates. One reason for this is the dependence of 𝑋̇𝑋 and 𝑌̇𝑌 on 

 
Fig. 2.  Vehicle motion model. 
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the 𝜓𝜓 in the dynamic model. This enables 𝜓𝜓 to be estimated 
correctly. 

It should be noted that this model has two unknown inputs 
(steering angle 𝛿𝛿𝑓𝑓 and longitudinal acceleration 𝑎𝑎). Both of 
these unknown inputs can be assumed to be constants (or slowly 
changing) and equations with their derivates as zero can be 
appended to the dynamic model used for tracking. 

B. Observer Design for Vehicle Motion Tracking 
The nonlinear observer is designed by the method proposed 

in section II. D with the nonlinear vehicle motion model (34) – 
(38). First, note that 

 𝑓𝑓(𝑥𝑥,𝑢𝑢) =

⎩
⎪
⎨

⎪
⎧ 𝑉𝑉 cos(𝜓𝜓 + 𝛽𝛽)
𝑉𝑉 sin(𝜓𝜓 + 𝛽𝛽)

𝑎𝑎
𝑉𝑉 cos(𝛽𝛽)
𝑙𝑙𝑓𝑓+𝑙𝑙𝑟𝑟

tan�𝛿𝛿𝑓𝑓�⎭
⎪
⎬

⎪
⎫

  (41) 

Hence, A(𝜉𝜉,𝑢𝑢) in (15) can be computed from the Jacobian of 
the vehicle motion model and is found to be: 

 

 A(𝜉𝜉,𝑢𝑢) 

 =

⎣
⎢
⎢
⎢
⎡0 0 cos(𝜓𝜓 + 𝛽𝛽) −𝑉𝑉 sin(𝜓𝜓 + 𝛽𝛽)
0 0 sin(𝜓𝜓 + 𝛽𝛽) 𝑉𝑉 cos(𝜓𝜓 + 𝛽𝛽)
0 0 0 0
0 0 cos(𝛽𝛽)

𝑙𝑙𝑓𝑓+𝑙𝑙𝑟𝑟
tan�𝛿𝛿𝑓𝑓� 0 ⎦

⎥
⎥
⎥
⎤
 (42) 

The Jacobian in (42) has 3 time-varying variables: 𝑉𝑉, 𝛿𝛿𝑓𝑓 and 𝜓𝜓 
over which gridding is required. We need to define the 
operating ranges of these variables. Then, a finite 3-
dimensional grid is constructed, consisting of the entire range 
of operating conditions. A(𝜉𝜉,𝑢𝑢) is evaluated at each grid point 
on this 3-demensional grid. Finally, we solve (12) – (16) for the 
observer gain using the LMI toolbox in MATLAB, so as to 
obtain a single observer gain valid for all values of A(𝜉𝜉,𝑢𝑢). 

Preliminary results were presented by us on an observer for 
vehicle motion on just highways in a conference publication 
[21]. Since only highway driving was involved, the operating 
range of 𝜓𝜓 was limited.  In this paper, we deal with both 
highway and urban road driving involving a very large 
operating range for 𝜓𝜓 and hence the need for a switched gain 
observer. It turns out that a constant gain matrix cannot be used 
for the entire operating range 0 ≤ 𝜓𝜓 ≤ 2𝜋𝜋. However, stable 
observers can be designed for more limited operating ranges, if 
the 0 ≤ 𝜓𝜓 ≤ 2𝜋𝜋 region is divided into 4 sub-regions. Using the 
observer gains obtained from these 4 sub-regions, a switched 
gain approach is needed to cover the full range 0 ≤ 𝜓𝜓 ≤ 2𝜋𝜋. It 
should be noted that the new observer design technique 
developed in this paper based on a grid still yields exponential 
stability for a much larger operating range than the existing 
observer design methods [12, 13] described earlier. The 
observer design method using Theorem 1 fails to provide an 
observer gain, and the observer design method using Theorem 
2 provides an observer gain for very limited operating range: 
−19° ≤ 𝜓𝜓 ≤ 19° with 3𝑚𝑚/𝑠𝑠 ≤ 𝑉𝑉 ≤ 15𝑚𝑚/𝑠𝑠, and −10° ≤
𝛿𝛿𝑓𝑓  ≤ 10°. 

As a result, the proposed observer works for most vehicle 
motions: straight driving, lane change, double lane change, and 
cross traffic motions without using a switched gain approach. 

Only left and right turn vehicle motions are required to use a 
switched gain approach.  

C. Switched Gain Approach 
By using the proposed nonlinear observer design method in 

Theorem 3, four constant gain matrices 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3 and 𝐿𝐿4 can be 
obtained for use in the following operating ranges respectively:  

1) −60° ≤ 𝜓𝜓 ≤ 60°, 
2) 30° ≤ 𝜓𝜓 ≤ 150°, 
3) 120° ≤ 𝜓𝜓 ≤ 240°, 
4) 210° ≤ 𝜓𝜓 ≤ 330°, 

with 3𝑚𝑚/𝑠𝑠 ≤ 𝑉𝑉 ≤ 15𝑚𝑚/𝑠𝑠, and −10° ≤ 𝛿𝛿𝑓𝑓  ≤ 10°. By using 
proper initial target vehicle orientation and switching the gain 
properly, the observer can estimate vehicle motion for the entire 
operating range. 

Fig. 3 shows a finite state machine for gain switching. Each 
finite state is for a different operating range 𝜓𝜓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜓𝜓 ≤
𝜓𝜓𝑖𝑖,𝑚𝑚𝑎𝑎𝑥𝑥  and uses a different observer gain 𝐿𝐿𝑖𝑖 for 𝑖𝑖 = 1,⋯ ,4. 
Since vehicle motion is nonholonomic, there are only two 
possible options for switching from current state. For example, 
if initial orientation of vehicle (heading angle) is within −60° ≤
𝜓𝜓 ≤ 60°, the vehicle cannot suddenly be oriented in 120° ≤
𝜓𝜓 ≤ 240° without going through either 30° ≤ 𝜓𝜓 ≤ 150° or 
210° ≤ 𝜓𝜓 ≤ 330°.  

The stability of the hybrid observer in Fig. 3 consisting of 4 
different constant observer gain regions needs to be considered. 
It should be noted that inside each region, a single observer gain 
is used and exponential stability is guaranteed using the 
Lyapunov function analysis of Theorem 3. However, the 4 
regions may use 4 different values of the matrix 𝑃𝑃 > 0 in their 
individual Lyapunov functions. The stability of the overall 
switched system can be guaranteed if the system satisfies a 
minimum dwell time constraint in each region, according to 
results from hybrid system theory [22]. The minimum dwell 
time in region 𝑗𝑗 when switching from region 𝑖𝑖 to region 𝑗𝑗 needs 
to be greater than 𝑇𝑇 where 𝑇𝑇 is the amount of time needed for  
𝑉𝑉𝑗𝑗(𝑥𝑥(𝑡𝑡 + 𝑇𝑇)) < 𝑉𝑉𝑖𝑖(𝑥𝑥(𝑡𝑡)). This minimum dwell time guarantees 

 
Fig. 3.  Finite state machine for gain switching. 
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global asymptotic stability. This result can be understood as 
follows: In each individual region, the estimation error 𝑥𝑥� keeps 
decreasing due to the Lyapunov exponentially stable design. In 
switching between regions, the 𝑃𝑃 matrix may be different in the 
two regions. However, if the system remains in the same region 
for a minimum dwell time, the error will become smaller than 
the initial value at the time the region was entered (due to local 
exponential stability). Thus, if the system is constrained to 
remain in one region for a minimum dwell time, the value of 
the Lyapunov function after the dwell time in region 𝑗𝑗 is less 
than its value in region 𝑖𝑖 at the time the switch from 𝑖𝑖 to 𝑗𝑗 
occurred. This guarantees overall asymptotic stability [22]. 

In the case of the observer design application for the 4 
separate regions of 𝜓𝜓, the values of 𝜓𝜓 at which the region is 
entered and at which it switches back are different (as shown in 
Fig. 3). This hysteresis between entering and switching back 
ensures that the minimum dwell time constraint is met.  

Initial conditions of the vehicle motion are decided based on 
an initial small number of measurements. Predominantly, initial 
target vehicle orientation is one of four cases: 0° or 180° when 
the target vehicle is driving longitudinally from the sensor 
orientation point of view, and 90° or 270° when the target 
vehicle is driving laterally from the sensor orientation point of 
view. First, rough relative velocity between target vehicle and 
sensor platform can be calculated based on initial couple of 
position measurements and its time information. By using the 
relative velocities (𝑉𝑉𝑟𝑟,𝑥𝑥,𝑉𝑉𝑟𝑟,𝑦𝑦), an angle can be calculated as 

 𝜓𝜓𝑟𝑟 = tan−1(𝑉𝑉𝑟𝑟,𝑦𝑦/𝑉𝑉𝑟𝑟,𝑥𝑥) (43) 
From the calculated angle, it is possible to determine whether 
or not the vehicle constitutes cross-traffic. By comparing with 
the velocity of sensor platform, the moving direction of target 
vehicle is obtained and the vehicle orientation 𝜓𝜓0 is selected 
among the four orientations. Therefore, initial target vehicle 
orientation can be determined without ambiguity.  

This method provides initial conditions that are close enough 
to the true values to choose correct initial state (gain) and to 
make the observer converge quickly.  

In this paper, two methods A and B are proposed for the gain 
switching in the observer to estimate vehicle motion for the 
entire range 0 ≤ 𝜓𝜓 ≤ 2𝜋𝜋. In practice, common maneuvers such 
as straight line motion and lane change motion do not need gain 
switching. However, left or right turning motion at intersections 
requires gain switching. For instance, consider a typical left turn 
vehicle motion in which the orientation of the vehicle evolves 
from 0° to 90°. When 𝜓𝜓 exceeds 60°, gain switching should be 
conducted from 𝐿𝐿1 to 𝐿𝐿2 since 𝐿𝐿1 works only for the operating 
range −60° ≤ 𝜓𝜓 ≤ 60°. As we can see, the observer gain needs 
to switch based on the value of 𝜓𝜓. However, 𝜓𝜓 is not a directly 
measurable variable. Therefore, it is important to develop 
methods that detect vehicle turn motion without knowing 𝜓𝜓.  It 
should be noted that lane change maneuvers should be 
distinguished from turn maneuvers because a lane change 
maneuver has a smaller orientation change and does not need 
gain switching. 

Method A: The first method utilizes estimated orientation 𝜓𝜓� 
and lateral movement of target vehicle. State (gain) is switched 

to next available region based on the operating range if  
1) Lateral movement ∆𝑌𝑌 exceeds 5m, and 
2) 𝜓𝜓� is exceeding upper (or lower) bound of operating 

range of 𝜓𝜓 at the current state, as shown in Fig. 3.  
The value of 5m is used as a threshold because typical road 
width and turning radius are of the order of 4m and 5m 
respectively. This method works well in practice since 
relatively good initial condition can be obtained as described 
earlier and the initial condition makes estimates converge 
quickly to the true values. Furthermore, each operating range 
for an observer gain is overlapped with nearby regions by 30 
degrees. This overlap and the proposed switching rule prevent 
repeated switching behavior. For example, the value of 𝜓𝜓 at 
which the switch from regon 1 to 2 occurs is different from the 
value of 𝜓𝜓 at which the reverse switch from region 2 to 1 occurs. 
The specific values are specified in the transition rules for 
switching between the different regions. Importantly, the 
overlap improves robustness of the switching against estimation 
error. A switched gain still makes the observer stable if the true 
orientation is within the overlapped range. Once a vehicle is in 

 
Fig. 4.  Illustration of how Method B distinguishes between (a) Left turn 
maneuver, and (b) Lane change maneuver.  

 
 

 
Fig. 5.  Vehicle motions: (a) Straight driving, (b) Lane change, (c) Double lane 
change, (d) Cross traffic and (e) Left turn vehicle motions. 
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straight line motion mode, i.e., estimated orientation of the 
vehicle is near 0°, 90°, 180° or 270°, the reference lateral 
position of the vehicle is updated for next switching.  

Method B: Switching can be determined by only using 
measured information. The procedure is as follows: 

1) Initiate collection of position measurements when ∆𝑌𝑌 
exceeds 0.3m (point A in Fig. 4). 

2) Store the measurement until ∆𝑌𝑌 exceeds 5m (point B in 
Fig. 4), and then go to the next step. 

3) Check the convexity of polygon drawn by the line AB 
and measurements (curve AB), as shown in Fig. 4. 

4) If the polygon is convex and the curve AB is on the 

downstream side of the line, state (gain) is switched to 
next available state based on the turning direction, as 
shown in Fig. 3. 

Fig. 4 shows the difference between lane change motion and 
turning motion based on the proposed method. It is obvious that 
the polygon from turning motion is convex and the polygon 
from lane change motion cannot be convex. Once lateral 
movements are within the threshold 0.3m for an adequate time 
window, reference lateral position of the vehicle is updated for 
next switching.  

Finally, it should be noted that while the inputs of steering 
angle and acceleration in the vehicle model were assumed to be 

                                                                                    
                                                        (a)                                                                                                                (b) 

 

          
                                                        (c)                                                                                                                (d) 

 

Fig. 6.  Simulation results of (a) Straight driving maneuver, (b) Lane change maneuver, (c) Double lane change maneuver, and (d) Cross traffic maneuver. 
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constant, the influence of non-zero inputs on estimation error 
can be calculated using Lyapunov analysis [13]. A bounded 
non-zero input for an exponentially stable observer will result 
in a bounded estimation error, as shown in [13]. The bound on 
the estimation error can be designed to be small by using a LMI-
based 𝐻𝐻∞ design condition, as was done in [13]. 

IV. SIMULATION RESULTS 
The nonlinear observer for vehicle motion tracking described 

in the previous section has first been evaluated using Matlab 
simulations. Simulation studies are conducted for various 
scenarios of highway vehicle motion: straight driving, lane 
change, and double lane change motion as shown in Fig. 5 (a), 
(b), and (c). Also, cross traffic and left turn vehicle at 
intersections, as shown in Fig. 5 (d) and (e) are simulated, as 
scenarios specific local driving. 𝑙𝑙𝑓𝑓 and 𝑙𝑙𝑟𝑟  are assumed to be 
1.35m and 1.45m. A sensor is assumed to be located at the 
origin of the coordinate system in Fig. 5. The trajectories of the 
vehicle are generated by using the nonlinear vehicle motion 
model. Each trajectory and the inputs for the trajectories are 
shown in Fig. 6 and 7.  

The observer gains are calculated by using the four operating 
conditions with the exponential stability parameter 𝛼𝛼 = 0.3: 

 

𝐿𝐿1 = �
623.0134 −1.0612 × 10−12

1.3971 × 10−12 1069.0838
5388.3054 −5.5343 × 10−12

2.1559 × 10−12 1528.5641

�,  

𝐿𝐿2 = �
1069.0849 −6.9367 × 10−10

8.7541 × 10−11 623.0136
3.8624 × 10−9 5388.3040
−1528.5669 7.2656 × 10−10

�,  

𝐿𝐿3 = �
623.0134 5.5367 × 10−12

2.4022 × 10−12 1069.0838
−5388.3056 −3.3334 × 10−11

−2.0986 × 10−12 −1528.5640

�, 

and  

𝐿𝐿4 = �
1069.0850 −2.7240 × 10−14

1.4141 × 10−13 623.0136
7.1552 × 10−12 −5388.3049

1528.5668 −9.2341 × 10−11
�  

(44) 

As described earlier, relatively good initial conditions can be 
obtained by using first few samples from sensor measurements. 
However, in this simulation study, we intentionally use 
inaccurate initial conditions for the velocity and orientation to 
show the convergence of the observer.  

The estimation results using the nonlinear observer with a 
single gain are shown in Fig. 6. Only small estimation errors are 
presented during transient periods. Also, Fig. 7 shows 
estimation results of a left turn vehicle. The switched gain 
approach is utilized to track vehicle motion over a large 
operating range. Both methods A and B conduct gain switching 
properly and track vehicle motion successfully. Overall, the 
proposed nonlinear observer provides good performance for 
vehicle motion tracking. The estimates of the vehicle motion 
converge to the true vehicle motion, even with unknown 
steering and acceleration inputs.   

 
Fig. 7.  Simulation results of left turn maneuver. 

 

 
Fig. 8.  Simulation results of the performance in the presence of tire slip angles. 
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Fig. 9.  (a) Delphi ESR, and (b) Experimental setup using a tripod. 
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Simulation studies in the presence of large tire slip angles are 
also conducted. As shown in Fig. 8, two steering actions are 
considered to evaluate the performance of the proposed 
observer in the presence of large tire slip angles. A vehicle first 
changes the orientation using a small steering action, and then 
suddely change the vehicle orientation to the opposite direction 
using a large steering action. Large tire slip angles (traction 
limited event) occur due to the abrupt large steering action. In 
the simulation studies, Dugoff’s tire model [20] is utilized. 
Simulation results in Fig. 8 with a nolinear tire force model 
show that while the observer continues to track lateral and 
longitudinal positions very accurately, the estimation of vehicle 

orientation experiences larger errors in the presence of large tire 
slip angles.  

V. EXPERIMENTAL RESULTS 
Experiments are conducted to validate the proposed 

nonlinear observer design in situations corresponding to all the 
five scenarios in Fig. 5, of i) Straight Driving, ii) Lane Change, 
iii) Double Lane Change, iv) Cross Traffic, and v) Left Turn 
maneuvers. The Delphi Electronically Scanning Radar (ESR) 
shown in Fig. 9 is used for the experimental evaluation. The 
radar was mounted on a tripod, and measured all vehicle 

                                                                                    
                                                        (a)                                                                                                                (b) 

 

          
                                                        (c)                                                                                                                (d) 

 

Fig. 10.  Experimental results of (a) Straight driving maneuver, (b) Lane change maneuver, (c) Double lane change maneuver, and (d) Cross traffic maneuver. 
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positions in the experiment. The radar provides vehicle radial 
position information within 174 meters of maximum range and 
45 degrees of maximum field of view [23]. A low pass filter is 
used to smoothen the radar’s vehicle position data, before 
supplying it to the observer. Also, the radial velocity of the 
target can be obtained from the radar. However, we only use the 
velocity information as a reference to compare with estimates, 
for the validation of the proposed nonlinear observer.  

The observer gains are obtained by using the four operating 
conditions with the exponential stability parameter 𝛼𝛼 = 0.1. 
Initial conditions are calculated by using first two samples from 
the radar measurement. Fig. 10 and 11 show the experimental 
results for the five scenarios. It is seen that the proposed 
nonlinear observer can estimate the vehicle motion based on 
radar measurements, without knowing the steering and 
acceleration of the vehicle. The estimates from the experimental 
data provide very reasonable evolutions of the orientation of the 
vehicle which are quite similar as the orientation results from 
the simulations. Also, the radial velocity of the target vehicle 
measured by the radar can be used to evaluate the performance 
of the proposed observer. The estimated radial velocity of the 
target vehicle can be computed by using estimates:  

  𝑟̇̂𝑟 = 𝑋𝑋�𝑉𝑉� cos�𝜓𝜓��+𝑌𝑌�𝑉𝑉� sin�𝜓𝜓��
�𝑋𝑋�2+𝑌𝑌�2

 (45) 

The error between the radial velocity and estimated radial 
velocity is shown in Fig 10 and 11. Mostly, the error is less than 

1m/s. Detailed values of the maximum and root mean square 
error (RMSE) are shown in Table I. 

VI. CONCLUSIONS 
A vehicle tracking algorithm that uses a single model to 

represent all possible vehicle motions is presented in this paper. 
By using a single vehicle model, nonlinear observer design 
techniques can be utilized. The developed nonlinear observer 
guarantees stability of the estimates over large operating 
regions and requires less real-time computational effort in 
estimating trajectories of multiple vehicles on the road, 
compared to a traditional interacting multiple model filter.   

The developed observer is used to track vehicle motion 
including the lateral and longitudinal positions, velocity and 
yaw orientation of a vehicle. Simulation results were presented 
to show the performance of the developed observer in the 
application of vehicle motion tracking. Experimental results 
were also presented using a radar sensor that measures polar 
distance and azimuth angle as the measurement unit. Both 
simulations and experiments show excellent results in vehicle 
motion tracking on vehicle maneuvers including straight 
driving cars, a lane change maneuver, a double lane change 
maneuver, a cross traffic maneuver, and a left turn maneuver. 

The developed observer successfully estimates vehicle 
motion for a larger operating range than existing observer 
techniques from literature. One disadvantage of the proposed 
method is the high computational effort in computing a gain 
using the gridding technique. However, it should be noted that 
this computation is done offline and not in real-time. Future 
work will include further development of the vehicle tracking 
observer design method to reduce the high offline 
computational burden in computing the observer gain.  
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