

in a CNN framework to automatically learn the filter sizes

for all convolutional layers simultaneously from the train-

ing data along with learning the convolution filters. In par-

ticular, we proposed an Optimized Filter Size CNN (OFS-

CNN), where the optimal filter size of each convolutional

layer is estimated iteratively using stochastic gradient de-

scent (SGD) during the backpropagation process. As illus-

trated in Figure. 2, the filter size k of a convolutional layer,

which is a constant in the traditional CNNs, is defined as a

continuous variable in the OFS-CNN. During backpropaga-

tion, the filter size k will be updated, e.g., decreased when

the partial derivative of CNN loss with respect to the filter

size is positive, i.e., ∂L
∂k

> 0, and vice versa.

In this work, a forward-backward propagation algorithm

is proposed to estimate the filter size iteratively. To facili-

tate the convolution operation with a continuous filter size,

upper-bound and lower-bound filters with integer-sizes are

defined. In the forward process, an activation resulted from

a convolution operation with a continuous filter size can

be calculated as the interpolation of the activations using

the upper-bound and lower-bound filters. Furthermore, we

show that only one convolution operation is needed with

the upper-bound and lower-bound filters. Therefore, the

proposed OFS-CNN has similar computational complexity

as the traditional CNNs in the forward process as well as

in the testing process. During backpropagation, the partial

derivative of the activation with respect to the filter size k is

defined, from which ∂L
∂k

can be calculated. With a change in

the filter size k, the filter sizes of the upper-bound or lower-

bound filters may be updated via a transformation operation

proposed in this work.

Experimental results on two benchmark AU-coded spon-

taneous databases, i.e., FERA2015 BP4D database [26] and

Denver Intensity of Spontaneous Facial Action (DISFA)

database [20] have demonstrated that the proposed OFS-

CNN outperforms the traditional CNNs with the best filter

size obtained by exhaustive search and achieves state-of-

the-art performance for AU recognition. Furthermore, the

OFS-CNN also beats a deep CNN using multiple filter sizes

with a remarkable improvement in time efficiency during

testing, which is highly desirable for realtime applications.

In addition, the OFS-CNN is capable of estimating optimal

filter size for varying image resolution.

2. Related Work

Extensive efforts have been devoted to extracting the

most effective features that characterize facial appearance

and geometry changes caused by activation of facial ex-

pressions or AUs. The earlier approaches adopted vari-

ous handcrafted features such as Gabor wavelets [3], his-

tograms of Local Binary Patterns (LBP) [27], Histogram

of Oriented Gradients (HOG) [2], Scale Invariant Feature

Transform (SIFT) features [31], histograms of Local Phase

Quantization (LPQ) [14], and their spatiotemporal exten-

..
..

..
...

...

Increase

Filter size

B
a
c
k
w

a
rd

 P
ro

p
a
g

a
ti

o
n

F
o
rw

a
rd

 F
e
e
d

in
g

Decrease

Filter size

Figure 2: An overview of the proposed method to optimize the

convolution filter size k with the CNN loss backpropagation at the

tth iteration. ∂Lt

∂kt is the partial derivative of the loss with respect to

the filter size at the tth iteration (kt). The filter size k will decrease

when ∂Lt

∂kt > 0, and vice versa.

sions [14, 33, 29].

Most recently, CNNs have attracted increasing atten-

tion and shown great promise for facial expression and AU

recognition [7, 24, 19, 15, 9, 12, 34, 17, 30, 21, 28, 25].

For example, the top 3 methods [17, 30, 21] in the recent

EmotiW2015 challenge [5] are all based on CNNs and have

been demonstrated to be more robust to real world con-

ditions for facial expression recognition. All those CNN-

based methods use fixed-size convolution filters.

To achieve the best performance, the optimal filter size

is usually chosen empirically by either experimental valida-

tion or visualization for each convolutional layer [32]. For

example, Kim et al. [17] experimentally compared facial ex-

pression recognition performance using different filter sizes

and found that the CNN with 5×5, 4×4, and 5×5 filter

sizes in the three convolutional layer, respectively, has the

best performance on 42×42 input images. Zeiler and Fer-

gus [32] found that 7×7 filters can capture more distinctive

features than 11×11 filters on ImageNet dataset through vi-

sualization. However, such empirically selected filter sizes

may not be optimal for all applications as well as for dif-

ferent image resolutions. Furthermore, it is impractical to

perform an exhaustive search for the optimal combination

of filter sizes of all convolutional layers for deep CNNs.

To achieve scale invariance, CNNs with multiple filter

sizes have been developed. The inception module [23] con-

catenates the activation feature maps from 1×1, 3×3, and

5×5 filters. The Neural Fabrics [22] embeds an exponen-

tially large number of architectures with 3×3 filters. Multi-

5071

grid Neural Architecture [16] concatenates the feature maps

activated by pyramid filters. However, all those methods are

still based on fixed filter size and more importantly, demand

a significant increase in the time and space complexity due

to the complex model structure.

In contrast, the proposed OFS-CNN is capable of learn-

ing and optimizing the filter sizes for all convolutional lay-

ers simultaneously in a CNN learning framework, which is

desirable, especially when the CNNs go deeper and deeper.

Furthermore, we show that only one convolution operation

is needed in the proposed forward-backward propagation al-

gorithm. Thus, the proposed OFS-CNN has similar com-

putational complexity as the traditional CNNs and thus, is

more efficient than the structures using multiple filter sizes.

3. Methodology

In this work, we propose an OFS-CNN, which is capable

of optimizing and learning the filter size k from the train-

ing data. In the following, we will first give a brief review

of the CNN, especially the convolutional layer, and then

present the forward and backward propagation processes of

the OFS-CNN.

3.1. A Brief Review of CNNs

A CNN consists of a stack of layers such as convolu-

tional layers, pooling layers, rectification layers, fully con-

nected (FC) layers, and loss layers. These layers transform

the input data to highly nonlinear representations. Convo-

lutional layers are used to perform convolution on input im-

ages or feature maps from the previous layer with filters.

Generally, the first convolutional layer is used to extract

low-level image features such as edges; while the upper lay-

ers can extract complex and task-related features.

Given an input image/feature map denoted by x, an ac-
tivation at the ith row and the jth column, denoted by yij ,
in a convolutional layer can be calculated using the convo-
lution operation by computing the inner product of the filter
and the input as follows:

yij(k) = w(k)⊤xij(k) + bij (1)

where w(k) is a convolution filter with the filter size k × k;

xij(k) denotes the input with a k × k receptive field cen-

tered at the ith row and the jth column; and bij is a bias.

Traditionally, the filter size k is a predefined integer and

fixed throughout the training/testing process. In this work,

k ∈ R
+ is defined as a continuous variable that can be

learned and optimized during CNN training.

3.2. Forward Processing of the OFS­CNN

In the forward process, convolution operations are con-

ducted to calculate activations using learned filters as in

Eq. 1. However, the convolution operation can only be per-

formed with integral size filters in the CNN.

Upper-bound and lower-bound filters: In order to build
the relationship between the activation yij and the contin-
uous filter size k, we first define an upper-bound filter de-
noted by w(k+) and a lower-bound filter denoted by w(k−).
Specifically, k+ is the upper-bound filter size and is the
smallest odd number that is bigger than k; while k− is the
lower-bound filter size and is the largest odd number that is
less than or equal to k. k+ and k− can be calculated as

k+ = ⌊
k + 1

2
⌋ ∗ 2 + 1, k− = ⌊

k + 1

2
⌋ ∗ 2− 1 (2)

Then, the activation yij(k) can be defined as the lin-

ear interpolation of the activations of the upper-bound and

lower-bound filters denoted by yij(k−) and yij(k+), re-

spectively:

yij(k) = αyij(k+) + (1− α)yij(k−) (3)

where yij(k+) and yij(k−) are calculated as in Eq. 1 with

the same bias, but with the upper-bound and lower-bound

filters, i.e., w(k+) and w(k−), respectively. α = (k−k
−
)

2 is

the linear interpolation weight.

Remark 1. A cubic interpolation can also be used to build

the relationship between the activation yij and the continu-

ous variable k. However, it requires a higher computational

complexity and needs at least three points; while the linear

interpolation only needs two points k− and k+.

Remark 2. The filter size k is actually a weight-related fil-
ter size in the interval [k−, k+) and can be calculated as:

k = k− + 2α (4)

Convolution with a continuous filter size: As in Re-
mark 2, we can explicitly define the filter w(k) with a
continuous size k. As shown in Fig. 3, the upper-bound
and lower-bound filters are defined to share the same co-
efficients in the region with green color and to differ by
the pink boundary denoted by △w(k+). Let △w(k+) =
w(k+) − w(k−) be the ring boundary with zeros inside as
shown in Fig. 3, then the filter w(k) with a continuous size
k can be defined as follows:

w(k) = α△ w(k+) + w(k−), (5)

Remark 3. In Eq. 5, w(k) and w(k−) have an actual filter

size of k+; while w(k−) is zero-padded.

Lemma 1. Given the definition of the filter w(k) as in Eq. 5,
the activation yij(k) in Eq. 3 can be simplified as:

yij(k) = w(k)⊤xij(k+) + bij (6)

Proof. Eq. 6 can be deduced from Eq. 3 as follows:

yij(k) =αyij(k+) + (1− α)yij(k−)

=αw(k+)
⊤

xij(k+) + (1− α)w(k−)
⊤

xij(k−) + bij (7)

After padding zeros for w(k−), w(k−)
⊤x(k−) is equiv-

alent to w(k−)
⊤x(k+). Then, Eq. 7 can be simplified as

follows:

5072

...

...

✁a1,1 �a1,2 ✂a1,n-1 ✄a1,n

☎a2,1 a2,2 a2,n-1 ✆a2,n

✝an-1,1 an-1,2 an-1,n-1 ✞an-1,n

✟an,1 ✠an,2 ✡an,n-1 ☛ann

...

......

...

...

...

...

w(k)

*☞

w(k-)

a2,2 ... a2,n-1

an-1,2 an-1,n-1

...

......

...

w(k+)

a11 a12 a1,n-1 a1,n

a21 a2,2 ... a2,n-1 a2,n

an-1,1 an-1,2 an-1,n-1 an-1,n

an,1 an,2 an,n-1 ann

...

......

...

...

...

...

...

Δw(k+)

a11 a12 a1,n-1 a1,n

a21 0 ... 0 a2,n

an-1,1 0 0 an-1,n

an,1 an,2 an,n-1 ann

...

......

...

...

...

...

...

w(k-)

a2,2 ... a2,n-1

an-1,2 an-1,n-1

...

......

...

Δw(k+)

a11 a12 a1,n-1 a1,n

a21 0 ... 0 a2,n

an-1,1 0 0 an-1,n

an,1 an,2 an,n-1 ann

...

......

...

...

...

...

...

...

...

Figure 3: An illustrative definition of a filter with a continuous

filter size k ∈ R
+. w(k+) and w(k−) are the upper-bound and

lower-bound filters, respectively, and share the same elements in

the green region. The pink region △w(k+) denotes the difference

between the upper-bound and lower-bound filters and has a ring

shape with zeros inside. α is the linear interpolation weight asso-

ciated with the upper-bound filter w(k+). w(k) is a weight-related

filter with a continuous filter size k.

yij(k) =αw(k+)
⊤

x(k+) + (1− α)w(k−)
⊤

x(k+) + bij

=
[

αw(k+)
⊤ + (1− α)w(k−)

⊤

]

x(k+) + bij

=
[

α△ w(k+)
⊤ + w(k−)

⊤

]

x(k+) + bij (8)

By substituting Eq. 5 into Eq. 8, we have

yij(k) = w(k)⊤xij(k+) + bij (9)

Thus, the activation of yij(k) can be simplified as Eq. 6.

Remark 4. According to Eq. 6, only one convolution op-

eration needs to be performed to calculate each activation

yij(k). Therefore, the time complexity does not increase

compared with the traditional CNN in the forward training

process as well as in the testing process.

3.3. Backward propagation of the OFS­CNN

3.3.1 Optimizing filter size in the OFS-CNN

Calculating the partial derivative: Since the relationship
between the activation and the filter size has been defined
as in Eq. 3, the partial derivative of the activation yij w.r.t.
the filter size can be calculated based on the derivative defi-
nition as follows:

∂yij(k)

∂k
= lim

△k→0

yij(k +△k)− yij(k −△k)

2△ k
(10)

When k +△k and k −△k are in the interval [k−, k+),

the derivative of each point
∂yij(k)

∂k
is equal to the gradient

of the line because of the linear interpolation. Hence, the
partial derivative can be calculated as follows:

∂yij(k)

∂k
=
yij(k+)− yij(k−)

k+ − k−
(11)

Substituting Eq. 1 into Eq. 11, we have

∂yij(k)

∂k
=

w(k+)
⊤xij(k+)− w(k−)

⊤xij(k−)

k+ − k−
(12)

By padding zeros for w(k−), we can simplify Eq. 12 as

∂yij(k)

∂k
=

w(k+)
⊤xij(k+)− w(k−)

⊤xij(k+)

k+ − k−

=

[

w(k+)
⊤ − w(k−)

⊤
]

xij(k+)

k+ − k−

=
△w(k+)

⊤xij(k+)

k+ − k−
(13)

Based on Eq. 13, the partial derivative of the loss L w.r.t.
k can be calculated as follows with chain rule:

∂L

∂k
=

∑

i,j

∂L

∂yij

∂yij

∂k
(14)

Updating the filter size: Given the partial derivative of the
loss L w.r.t. k, the filter size k can be updated iteratively
with the SGD strategy for the (t+1)th iteration as follows:

k
t+1 = k

t − γ
∂Lt

∂kt
(15)

where γ is the learning rate. Note that the kernel sizes of

different convolutional layers are updated sequentially dur-

ing the backward propagation by using SGD.

3.3.2 Updating convolution filters w(k)

Updating the upper-bound and lower-bound filters:
Since the lower-bound filter wt(k−) is defined as the in-
ner part of the upper-bound filter wt(k+), we only need to
perform backpropagation for the upper-bound filter wt(k+),
which can be divided into two parts as wt(k+) = wt(k−)+
△wt(k+), where △wt(k+) is the ring boundary with zeros
inside and w(k−) is padded with zeros. Then, the forward
activation function in Eq. 6 can be reorganized as:

y
t
ij(k

t) =w
t(kt)⊤x

t
ij(k

t
+) + b

t
ij

=
[

α
t △ w

t(kt
+)

⊤ + w
t(kt

−)
⊤

]

x
t
ij(k

t
+) + b

t
ij

=α
t△w(kt

+)
⊤△x

t
ij(k

t
+)+w

t(kt
−)

⊤
x
t
ij(k

t
−)+b

t
ij (16)

where △xtij(k
t
+) is the ring boundary of xt

ij(k
t
+) in the

input image/feature map with zeros inside and xtij(k
t
−) is

padded with zeros.
Hence, the partial derivative of the activation ytij w.r.t.

the upper-bound filter wt(kt+) can be calculated as follows:

∂yt
ij

∂wt(kt
+)

= x
t
ij(k

t
−)

⊤ + α
t △ x

t
ij(k

t
+)

⊤
(17)

With the chain rule, the derivative of CNN loss w.r.t.
wt(k+) can be calculated as

∂Lt

∂wt(kt
+)

=
∑

i,j

∂Lt

∂yt
ij

∂yt
ij

∂wt(kt
+)

(18)

5073

Figure 4: When the updated filter size k is out of the interval [kt
−, k

t
+), transformation operations are needed to update the sizes of the

upper-bound and lower-bound filters after updating their coefficients. Specifically, an expanding operation is employed to increase the

sizes of both upper-bound and lower-bound filters; whereas a shrinking operation is used to decrease the filter sizes.

Thus, the upper-bound filter w(k+) can be updated iter-

atively using the SGD strategy. As a result, the filter w(k)
with a continuous size k can be updated as in Eq. 5.

Transforming the upper-bound and lower-bound filters:

According to Eq. 15, the filter size k can be continuously

updated over time. As long as kt+1 is in the interval of

[kt−, k
t
+), the upper-bound and lower bound filters remain

the same sizes as those in the tth iteration, i.e., kt+1
−

= kt
−

and kt+1
+ = kt+. However, as the filter size k is updated,

kt+1 may across the boundary of the interval of [kt−, k
t
+).

Consequently, both the sizes of the upper-bound and lower-

bound filters should be updated. As illustrated in Fig. 4,

we define transformation operations, including expanding

and shrinking to update the upper-bound and lower-bound

filters to accommodate a size change.

Note that the transformation operations are conducted

after updating coefficients of the upper-bound and lower-

bound filters.
Expanding: When kt+1 > kt+, the upper-bound and lower-

bound filters wt+1(kt+1
+) and wt+1(kt+1

−
) should be up-

dated by an expanding operation as follows:

w
t+1(kt+1

−) =w
t+1(kt+1

+)

w
t+1(kt+1

+) =expand(wt+1(kt+1

+)) (19)

where expand(·) is a function to increase the filter size, par-

ticularly by padding values from the nearest neighbors of

the original filter as illustrated in Figure 5.
Shrinking: As opposed to the expand(·) function, when
kt+1 < kt

−
, the upper-bound and lower-bound filters

wt+1(kt+1
−

) and wt+1(kt+1
+) will be shrunk as follows:

w
t+1(kt+1

+) =w
t+1(kt+1

−)

w
t+1(kt+1

−) =shrink(wt+1(kt+1

−)) (20)

where shrink(·) is a function to decrease the filter size,

specifically by filling the boundary with zeros as shown in

Figure 5.

shrink expand

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

a11 a12 a13 a14 a15

a51 a52 a53 a54 a55

a15

a25

a35

a45

a55

a15

a55

a11

a21

a31

a41

a51

a11

a51

0 0 0 0 0

0 a22 a23 a24 0

0 a32 a33 a34 0

0 a42 a43 a44 0

0 0 0 0 0

Figure 5: An illustration of the shrink and expand operations

to change the filter size. The shrink operation sets zeros to the

outside boundary; while the expand operation is to pad the outside

boundary with the nearest neighbors from the original filter.

Updating other parameters: In addition to updating the
filter size k and the convolution filter w(k), we should also
update the bias bij and the feature xij during backpropaga-
tion. Based on the forward activation function as defined in
Eq. 6, the derivative of feature activation ytij w.r.t. xtij(k

t
+)

can be calculated as below:
∂yt

ij

∂xt
ij(k

t
+)

= w
t(kt) (21)

With the chain rule, the derivative of CNN loss w.r.t.
xtij(k

t
+) can be calculated as:

∂Lt

∂xt
ij(k

t
+)

=
∂Lt

∂yt
ij

∂yt
ij

∂xt
ij(k

t
+)

(22)

Hence, the feature xij can be updated using the SGD

strategy and will be further backpropagated to update the

parameters in the lower layers. The backpropagation of btij
is exactly the same as that in the traditional CNNs. The

forward and backward propagation process for the proposed

OFS-CNN is summarized in Algorithm 1.

4. Experiments

To demonstrate the effectiveness of the proposed model,

extensive experiments have been conducted on two bench-

mark AU-coded databases, i.e., the BP4D database [26]

and the DISFA database [20], containing spontaneous fa-

cial behavior with moderate head movements. Specifically,

5074

Algorithm 1 The forward-backward propagation algorithm for

the OFS-CNN

Input: Input images or feature maps from the previous

layer x and an initial filter size k0 ∈ R
+.

Initialization:

Initialize k0+ and k0
−

as Eq. 2.

Randomly initialize the convolution filter w0(k0+).
for iteration t from 0 to T do

//Forward:

wt(kt−) = shrink(wt(kt+))
Calculate the convolution filter wt(kt) based on Eq. 5

Calculate the forward activation yij(k) based on Eq. 6

//Backward:

Calculate the derivative of activation w.r.t. kt, wt(kt+),
and xt, based on Eqs.13, 17, and 21, respectively

Calculate the derivative of loss w.r.t. kt, wt(kt+), and

xt, based on Eqs.14, 18, and 22, respectively

Update kt+1, wt+1(kt+1
+), and xt+1 based on SGD

Update the bias using standard CNN backpropagation

//Transformation:

if kt+1 > kt+ then

kt+1
− = kt+

kt+1
+ = kt+ + 2

Expand the upper-bound and lower bound filters

wt+1(kt+1
+) and wt+1(kt+1

−) as in Eq. 19

else if kt+1 < kt
−

then

kt+1
+ = kt

−

kt+1
−

= kt− − 2
Shrink the upper-bound and lower bound filters

wt+1(kt+1
+) and wt+1(kt+1

−
) as in Eq. 20

end if

end for

the BP4D database [26] has 11 AUs and 41 subjects with

146,847 images; and the DISFA database [20] has 12 AUs

and 27 subjects with 130,814 images. Following the exper-

imental setup of the state-of-the-art methods (DRML [34]

and PL-CNN [28]), two AUs, i.e., AU5 and AU20, which

appear less than 5% of the frames in the DISFA database,

are not considered in the experiments.

4.1. Pre­Processing

First, facial landmarks are detected, from which face

alignment can be conducted to reduce the variations

from scaling and in-plane rotation. For the DISFA

database [20], 66 landmarks are detected using a state-of-

the-art method [1]. For the BP4D database [26], the 49

landmarks provided in the database are used for face align-

ment. Based on the extracted facial landmarks, face regions

are aligned based on three fiducial points: the centers of the

two eyes and the mouth, and then scaled to 64× 48 1. Fol-

1In the experiments, three resolutions, i.e., 64×48, 128×96, 256×192

are employed to evaluate the proposed OFS-CNN on different resolutions.

lowing the work [10], each face image is warped to a frontal

view to reduce variations from face pose; and then sequence

normalization is performed by subtracting the mean and di-

viding the standard deviation calculated from the video se-

quence to reduce the identity-related information and to en-

hance appearance and geometrical changes caused by AUs.

4.2. CNN Implementation Details

The proposed OFS-CNN is modified from cifar10 quick

in Caffe [13], which consists of three convolutional layers,

two average pooling layers, two FC layers, and ending with

the weighted sigmoid cross entropy loss layer for calculat-

ing the loss. Specifically, all the convolutional layers have

a stride of 1. The first two convolutional layers have 32

filters, whose output feature maps are sent to a ReLU layer

followed by the average pooling layer with a downsampling

stride of 3. The last convolutional layer has 64 filters, whose

output feature maps are fed into an FC layer with 64 nodes.

Finally, the output of the last FC layer, which contains a

single node, is sent to the sigmoid cross entropy loss layer.

The SGD, with a momentum of 0.9 and a mini-batch size of

100, is used for training the CNN. Each AU has one trained

CNN model with binary classification.

All filter sizes are 5×5 in the original cifar10 quick [13]

and will be used for the baseline CNN for comparison. In

the OFS-CNN, all filter sizes are initialized with 4, implying

α0 = 0.5, k0+ = 5, and k0
−
= 3.

4.3. Experimental Results

The proposed OFS-CNN is compared with the baseline

CNN with fixed convolution filter sizes on the two bench-

mark datasets. Since the BP4D database [26] provides

the training and development partitions, an average perfor-

mance of five runs is reported to reduce the influence of the

randomness during training. For the DISFA database [20],

a 9-fold cross-validation strategy is employed, such that the

training and testing subjects are mutually exclusive. Exper-

imental results are reported in terms of the average F1 score

and 2AFC score (area under ROC curve).

Exhaustive search vs optimization of filter size: We first

show that the proposed OFS-CNN is capable of learning

the optimal filter sizes. Specifically, baseline CNNs are de-

signed with varying filter sizes including 3×3, 5×5, 7×7,

and 9× 9 in the first convolutional layer. In addition to the

3-layer OFS-CNN, where the filter sizes in all three convo-

lutional layers are learned, a 1-layer OFS-CNN is designed

where the filter size is learned only for the first layer. All the

baseline CNNs and the 1-layer OFS-CNN used the fixed fil-

ter sizes (5 × 5) for the other two convolutional layers. All

the models in comparison are trained on the training parti-

tion and tested on the development partition of the BP4D

database [26]. The results are reported in Table 1, which

are calculated as the average of 5 runs. The average filter

size of OFS-CNNs is reported for each AU at the 2000th

5075

Table 1: Performance comparison of the proposed OFS-CNNs and traditional CNNs with varying filter size on the BP4D database [26].

In the 1-layer OFS-CNN, the filter size is learned only for the first layer. The average converged filter size is reported for each AU,

respectively. The results are calculated from 5 runs in terms of the average F1 score and the 2AFC score. The underline highlights the best

performance among the 4 fixed filter sizes. The bold highlights the best performance among all models.

AUs
CNN-Filter3 CNN-Filter5 CNN-Filter7 CNN-Filter9 1-layer OFS-CNN 3-layer OFS-CNN

F1 2AFC F1 2AFC F1 2AFC F1 2AFC F1 2AFC Converged Size F1 2AFC Converged Size

AU1 0.315 0.577 0.313 0.578 0.310 0.577 0.315 0.583 0.320 0.586 6.0 0.348 0.628 5.2, 5.1, 5.1

AU2 0.291 0.591 0.277 0.573 0.284 0.586 0.279 0.575 0.291 0.592 5.8 0.312 0.626 5.2, 5.3, 4.9

AU4 0.362 0.654 0.358 0.649 0.361 0.653 0.367 0.661 0.362 0.661 6.0 0.376 0.673 5.1, 5.5, 4.8

AU6 0.677 0.754 0.693 0.775 0.688 0.771 0.689 0.773 0.685 0.764 6.0 0.723 0.811 5.1, 4.7, 4.7

AU7 0.640 0.654 0.643 0.658 0.652 0.661 0.646 0.659 0.658 0.660 6.0 0.634 0.652 5.0, 4.8, 4.7

AU10 0.706 0.720 0.726 0.728 0.716 0.720 0.711 0.723 0.720 0.725 6.0 0.739 0.758 4.6, 5.1, 4.8

AU12 0.749 0.786 0.763 0.805 0.759 0.805 0.750 0.791 0.768 0.801 6.1 0.799 0.855 4.8, 5.9, 4.8

AU14 0.505 0.582 0.517 0.597 0.525 0.600 0.523 0.593 0.521 0.600 5.4 0.532 0.635 5.1, 4.6, 4.5

AU15 0.298 0.603 0.296 0.599 0.306 0.611 0.316 0.622 0.305 0.609 6.0 0.300 0.607 5.2, 4.9, 4.8

AU17 0.547 0.676 0.550 0.683 0.553 0.683 0.544 0.678 0.532 0.673 5.7 0.542 0.694 4.9, 4.7, 4.6

AU23 0.337 0.651 0.348 0.658 0.352 0.657 0.350 0.659 0.345 0.655 6.1 0.355 0.659 5.4, 4.6, 4.7

AVE 0.493 0.659 0.499 0.664 0.501 0.666 0.499 0.665 0.501 0.666 5.9 0.515 0.691 5.0, 5.0, 4.8

Table 2: Performance comparison of the proposed OFS-CNN

and the baseline CNN for varying image resolutions on the BP4D

database [26] in terms of the average F1 score. The bold highlights

the best performance among all models.

Resolution 64×48 128× 96 256×192

Layer CNN OFS-CNN CNN OFS-CNN CNN OFS-CNN

AU1 0.313 0.348 0.340 0.345 0.332 0.416

AU2 0.277 0.312 0.307 0.303 0.278 0.305

AU4 0.358 0.376 0.411 0.415 0.324 0.391

AU6 0.693 0.723 0.721 0.729 0.676 0.745

AU7 0.643 0.634 0.642 0.649 0.504 0.628

AU10 0.726 0.739 0.718 0.754 0.690 0.743

AU12 0.763 0.799 0.774 0.805 0.697 0.812

AU14 0.517 0.532 0.552 0.562 0.544 0.555

AU15 0.296 0.300 0.331 0.337 0.323 0.326

AU17 0.550 0.542 0.561 0.563 0.540 0.568

AU23 0.348 0.355 0.381 0.398 0.354 0.413

AVE 0.499 0.515 0.522 0.533 0.478 0.537

iteration, where most of the CNN models are converged in

our experiments.

As shown in Table 1, the 1-layer OFS-CNN achieves

similar performance as CNN-Filter7 that has the best perfor-

mance among all baseline CNNs. Furthermore, the 3-layer

OFS-CNN beats all models compared to in terms of the av-

erage F1 score and 2AFC score. This demonstrates that the

proposed OFS-CNN is superior to the best CNN model ob-

tained by exhaustive search. In addition, the learned filter

size is often consistent with the best filter size obtained by

exhaustive search, which is either the upper-bound or lower-

bound filter size in the OFS-CNN.

OFS-CNNs on different image resolutions: We also show

that the learned filter sizes adapt well to changes in image

resolution. Specifically, experiments have been conducted

to compare the proposed OFS-CNN and the baseline CNN

on the BP4D database [26] with different resolutions of the

input images. All the CNN models have similar CNN struc-

ture as described in Section 4.2. In order to accommodate

the changes in the resolution, the number of nodes in the

first FC layer is set to 64, 128, and 256 for resolutions of

64×48, 128×96, and 256×192, respectively, for all models

Table 3: The average converged filter sizes for varying image

resolutions on the BP4D database [26]. The bold highlights the

filter sizes with the best performance.

Resolution 64×48 128× 96 256×192

Layer conv1 conv2 conv3 conv1 conv2 conv3 conv1 conv2 conv3

AU1 5.2 5.1 5.1 5.5 4.9 5.1 6.2 4.9 4.9

AU2 5.2 5.3 4.9 6.0 4.8 4.9 5.9 5.3 5.1

AU4 5.1 5.5 4.8 5.7 5.8 5.7 5.8 5.8 5.8

AU6 5.1 4.7 4.7 5.4 4.7 4.7 5.7 4.8 4.8

AU7 5.0 4.8 4.7 5.3 4.6 4.7 5.6 4.8 4.8

AU10 4.6 5.1 4.8 5.5 4.8 4.8 5.5 5.5 4.9

AU12 4.8 5.9 4.8 5.2 5.5 5.9 5.7 5.5 5.4

AU14 5.1 4.6 4.5 5.3 4.6 4.6 5.9 4.6 4.5

AU15 5.2 4.9 4.8 5.5 4.8 4.8 5.5 4.8 4.8

AU17 4.9 4.7 4.6 5.6 4.5 4.5 5.3 4.6 4.5

AU23 5.4 4.6 4.7 6.0 4.7 4.7 5.9 4.8 4.7

AVE 5.0 5.0 4.8 5.5 5.0 5.0 5.7 5.0 5.0

in comparison. In this set of experiments, the 3-layer OFS-

CNN is employed and the average converged filter sizes for

each AU under each resolution are reported in Table 3.

As shown in Table 2, most of AUs prefer a higher im-

age resolution to preserve subtle cues of facial appearance

changes. However, the performance of the baseline CNN

decreases for the highest resolution 256 × 192. When

the image resolution increases, the receptive field covers a

smaller actual area of the whole face when using the same

5× 5 filter size, compared to lower resolutions. In contrast,

the proposed OFS-CNN can optimize filter size at various

image resolutions. As shown in Table 3, the OFS-CNN has

the largest average filter size of 5.7 for conv1 (the first con-

volutional layer) for 256×192 and thus, can benefit from an

increased receptive field because of the 7 × 7 upper-bound

filter. As a result, the OFS-CNN outperforms the baseline

CNN for all image resolutions, especially for 256× 192 by

6%, in terms of the average F1 score.

Furthermore, a small change in filter size across bound-

ary can cause a big change in the receptive filed. As shown

in Table 3, the average converged filter sizes for AU12 are

5.7, 5.5, and 5.4 under the resolution of 256 × 192 for the

three convolutional layers and hence, the receptive field is

increased to 79 from 53 as compared to that of the baseline

5076

CNN with filter size 5, 5, and 5. As a result, the proposed

method outperforms the baseline method (0.812 vs 0.697).

For AU17, the converged filter sizes are 5.3, 4.6, and 4.5

corresponding to a receptive field of 55, similar to that of

the baseline. Accordingly, the proposed method has a simi-

lar performance as the baseline (0.568 vs 0.540).

Comparison with the CNNs using multiple filter sizes:

We also compare the proposed 3-layer OFS-CNN to the

CNN structure with multiple filter sizes, i.e., the incep-

tion module [23]. In particular, the GoogLeNet [23] with

7 inception modules is trained and evaluated on the BP4D

database with an image resolution of 240× 240.

Table 4: Comparison with the GoogLeNet on the BP4D database

in terms of F1 score.

AUs % GoogLeNet OFS-CNN 128× 96 OFS-CNN 256× 192
AU1 23.1 0.369 0.345 0.416

AU2 17.9 0.267 0.303 0.305

AU4 22.7 0.498 0.415 0.391

AU6 46.0 0.746 0.729 0.745

AU7 52.6 0.657 0.649 0.628

AU10 59.6 0.768 0.754 0.743

AU12 55.8 0.836 0.805 0.812

AU14 52.1 0.503 0.562 0.555

AU15 18.0 0.325 0.337 0.326

AU17 32.6 0.511 0.563 0.568

AU23 17.0 0.376 0.398 0.413

AVE - 0.531 0.533 0.537

As shown in Table 4, the OFS-CNN with a shallow struc-

ture (15 layers, trained in 3,000 iterations) achieves compa-

rable performance as the GoogLeNet (100 layers, trained

in 20,000 iterations) that is much more complex and thus,

demands more training data. With fewer parameters, the

OFS-CNN is more suitable for tasks with insufficient train-

ing data. For example, the improvement is more substan-

tial for the AUs with a lower occurrence rate such as AU2

(17.9%) and AU23 (17.0%). Note that the proposed OFS-

CNN runs more than 8 times faster on a 128 × 96 image

and more than 6 times faster on a 256× 192 image than the

GoogLeNet (240×240) during testing, which is critical and

hence, highly desirable for real-time applications.

Comparison with the baseline CNN on the DISFA

database [20]: As illustrated in Table 5, the proposed OFS-

CNN also outperforms the baseline CNN with a notable

margin in terms of the average F1 score on the DISFA

database [20]. The experiments are conducted on the im-

age resolution of 128× 96 using the 3-layer OFS-CNN.

Comparison with state-of-the-art methods: In addition to

the baseline CNN, we further compare the proposed OFS-

CNN with state-of-the-art methods, particularly the most re-

cent approaches based on CNNs [8, 9, 34, 28], on the two

benchmark databases. As shown in Table 6, the proposed

OFS-CNN achieves the state-of-the-art performance of AU

recognition on the two databases 2.

2The performance of the ML-CNN was reported for 10 AUs on the

Table 5: Performance comparison with the baseline CNN on the

DISFA database [20] in terms of the average F1 score and the

2AFC score.

AUs
CNN (baseline) OFS-CNN

F1 2AFC F1 2AFC

AU1 0.321 0.778 0.437 0.833

AU2 0.424 0.865 0.400 0.812

AU4 0.567 0.833 0.672 0.862

AU6 0.610 0.896 0.590 0.896

AU9 0.417 0.876 0.497 0.873

AU12 0.786 0.950 0.758 0.956

AU15 0.298 0.794 0.378 0.799

AU17 0.452 0.831 0.523 0.823

AU25 0.716 0.847 0.724 0.849

AU26 0.564 0.827 0.548 0.800

AVE 0.515 0.850 0.553 0.850

Table 6: Performance comparison with the state-of-the-art CNN

based methods on the BP4D and the DISFA databases in terms of

F1 score and 2AFC score.

BP4D DISFA

Methods F1 2AFC Methods F1 2AFC

DL [9] 0.522 N/A ML-CNN [8] N/A 0.757

AlexNet [34] 0.384 0.422 AlexNet [34] 0.236 0.491

LCN [34] 0.466 0.544 LCN [34] 0.240 0.468

ConvNet [34] 0.470 0.518 ConvNet [34] 0.231 0.458

DRML [34] 0.483 0.560 DRML [34] 0.267 0.523

PL-CNN [28] 0.491 N/A PL-CNN [28] 0.584 N/A

OFS-CNN 0.537 0.722 OFS-CNN 0.553 0.850

5. Conclusion and Future Work

In this work, we proposed a novel OFS-CNN with a

forward-backward propagation algorithm to iteratively op-

timize the filter size while learning the convolution filters.

Upper-bound and lower-bound filters are defined to facil-

itate the convolution operations with continuous-size fil-

ters; and transformation operations are developed to accom-

modate the size changes of the filters. Experimental re-

sults on two benchmark AU-coded spontaneous databases

have shown that the OFS-CNN outperforms the baseline

CNNs with the best filter size found by exhaustive search

and achieves better or at least comparable performance to

the state-of-the-art CNN-based methods. Furthermore, the

OFS-CNN has been shown to be effective for automati-

cally adapting filter sizes to different image resolutions. In

the current practice, different channels of a single convo-

lutional layer share a single filter size. In the future, the

OFS-CNN will be extended to learn a filter size for each

channel, which would be more effective for learning vari-

ously sized patterns. Furthermore, the OFS-CNN will be

applied to other applications such as object classification or

detection as well as various CNN structures.

6. Acknowledgement
This work is supported by National Science Foundation

under CAREER Award IIS-1149787.

DISFA database [20].

5077

References

[1] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Robust

discriminative response map fitting with constrained local

models. In CVPR, pages 3444–3451, 2013.

[2] T. Baltrusaitis, M. Mahmoud, and P. Robinson. Cross-dataset

learning and person-specific normalisation for automatic ac-

tion unit detection. In FG, volume 6, pages 1–6, 2015.

[3] M. S. Bartlett, G. Littlewort, M. G. Frank, C. Lainscsek,

I. Fasel, and J. R. Movellan. Recognizing facial expression:

Machine learning and application to spontaneous behavior.

In CVPR, pages 568–573, 2005.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014.

[5] A. Dhall, O. Ramana Murthy, R. Goecke, J. Joshi, and

T. Gedeon. Video and image based emotion recognition chal-

lenges in the wild: Emotiw 2015. In ICMI, pages 423–426.

ACM, 2015.

[6] P. Ekman, W. V. Friesen, and J. C. Hager. Facial Action

Coding System: the Manual. Research Nexus, Div., Network

Information Research Corp., Salt Lake City, UT, 2002.

[7] B. Fasel. Head-pose invariant facial expression recognition

using convolutional neural networks. In ICMI, pages 529–

534, 2002.

[8] S. Ghosh, E. Laksana, S. Scherer, and L. Morency. A multi-

label convolutional neural network approach to cross-domain

action unit detection. ACII, 2015.

[9] A. Gudi, H. E. Tasli, T. M. den Uyl, and A. Maroulis. Deep

learning based FACS action unit occurrence and intensity es-

timation. In FG, 2015.

[10] S. Han, Z. Meng, S. KHAN, and Y. Tong. Incremental boost-

ing convolutional neural network for facial action unit recog-

nition. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, editors, NIPS, pages 109–117. Curran Asso-

ciates, Inc., 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[12] S. Jaiswal and M. F. Valstar. Deep learning the dynamic ap-

pearance and shape of facial action units. In WACV, 2016.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, pages

675–678. ACM, 2014.

[14] B. Jiang, B. Martinez, M. F. Valstar, and M. Pantic. Deci-

sion level fusion of domain specific regions for facial action

recognition. In ICPR, pages 1776–1781, 2014.

[15] H. Jung, S. Lee, J. Yim, S. Park, and J. Kim. Joint fine-tuning

in deep neural networks for facial expression recognition. In

ICCV, pages 2983–2991, 2015.

[16] T. W. Ke, M. Maire, and X. Y. Stella. Multigrid neural archi-

tectures. 2017.

[17] B.-K. Kim, H. Lee, J. Roh, and S.-Y. Lee. Hierarchical com-

mittee of deep cnns with exponentially-weighted decision fu-

sion for static facial expression recognition. In ICMI, pages

427–434, 2015.

[18] G. Levi and T. Hassner. Age and gender classification using

convolutional neural networks. In CVPR Workshops, pages

34–42, 2015.

[19] M. Liu, S. Li, S. Shan, R. Wang, and X. Chen. Deeply learn-

ing deformable facial action parts model for dynamic expres-

sion analysis. In ACCV, 2014.

[20] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F.

Cohn. Disfa: A spontaneous facial action intensity database.

IEEE Trans. on Affective Computing, 4(2):151–160, 2013.

[21] H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler.

Deep learning for emotion recognition on small datasets us-

ing transfer learning. In ICMI, pages 443–449, 2015.

[22] S. Saxena and J. Verbeek. Convolutional neural fabrics. In

Advances in Neural Information Processing Systems, pages

4053–4061, 2016.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

[24] Y. Tang. Deep learning using linear support vector machines.

In ICML, 2013.

[25] Z. Tősér, L. Jeni, A. Lőrincz, and J. Cohn. Deep learning for

facial action unit detection under large head poses. In ECCV,

pages 359–371. Springer, 2016.

[26] M. Valstar, J. Girard, T. Almaev, G. McKeown, M. Mehu,

L. Yin, M. Pantic, and J. Cohn. FERA 2015 - second facial

expression recognition and analysis challenge. FG, 2015.

[27] M. F. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer.

Meta-analysis of the first facial expression recognition chal-

lenge. IEEE T-SMC-B, 42(4):966–979, 2012.

[28] S. Wu, S. Wang, B. Pan, and Q. Ji. Deep facial action

unit recognition from partially labeled data. In ICCV, pages

3951–3959, 2017.

[29] P. Yang, Q. Liu, and M. D. N. Boosting encoded dynamic

features for facial expression recognition. Pattern Recogni-

tion Letters, 30(2):132–139, Jan. 2009.

[30] Z. Yu and C. Zhang. Image based static facial expression

recognition with multiple deep network learning. In ICMI,

pages 435–442, 2015.

[31] A. Yuce, H. Gao, and J. Thiran. Discriminant multi-label

manifold embedding for facial action unit detection. In FG,

2015.

[32] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833, 2014.

[33] G. Zhao and M. Pietiäinen. Dynamic texture recognition us-

ing local binary patterns with an application to facial expres-

sions. IEEE T-PAMI, 29(6):915–928, June 2007.

[34] K. Zhao, W. Chu, and H. Zhang. Deep region and multi-

label learning for facial action unit detection. In CVPR, pages

3391–3399, 2016.

5078

