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Abstract

Recognizing facial action units (AUs) during sponta-
neous facial displays is a challenging problem. Most re-
cently, Convolutional Neural Networks (CNNs) have shown
promise for facial AU recognition, where predefined and
fixed convolution filter sizes are employed. In order to
achieve the best performance, the optimal filter size is of-
ten empirically found by conducting extensive experimental
validation. Such a training process suffers from expensive
training cost, especially as the network becomes deeper.

This paper proposes a novel Optimized Filter Size CNN
(OFS-CNN), where the filter sizes and weights of all convo-
lutional layers are learned simultaneously from the training
data along with learning convolution filters. Specifically,
the filter size is defined as a continuous variable, which is
optimized by minimizing the training loss. Experimental re-
sults on two AU-coded spontaneous databases have shown
that the proposed OFS-CNN is capable of estimating opti-
mal filter size for varying image resolution and outperforms
traditional CNNs with the best filter size obtained by ex-
haustive search. The OFS-CNN also beats the CNN using
multiple filter sizes and more importantly, is much more ef-
ficient during testing with the proposed forward-backward
propagation algorithm.

1. Introduction

Facial behavior is a natural and powerful means for
human communications. Facial Action Coding System
(FACS) developed by Ekman and Friesen [6] describes fa-
cial behavior with a set of facial action units (AUs), each
of which is anatomically related to the contraction of a set
of facial muscles. An automatic AU recognition system has
various applications in human-computer interaction (HCI)
such as interactive games, advertisement impact analysis,
and synthesizing human expression. However, it is still a
challenging problem to recognize facial AUs from spon-
taneous facial displays, especially with large variations in
facial appearance caused by free head movements, occlu-

sions, and illumination changes.

Extensive efforts have been focused on extracting fea-
tures that are capable of capturing facial appearance and/or
geometrical changes caused by AUs. While most of the ear-
lier approaches employed handcrafted and general-purpose
features; deep learning, especially CNN based methods, has
shown great promise in recognizing facial expressions or
AUs [7, 24,19, 15,9, 12, 34, 17, 30, 21].

In CNNs, the size of the convo-
lution filters determines the size of
receptive field where information is
extracted. CNN-based methods em-
ploy predefined and fixed filter sizes
in each convolutional layer, which is
called the traditional CNN hereafter.
Howeyver, the fixed filter sizes are not
necessarily optimal for all applica-
tions/tasks as well as for different
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fer different filter sizes. For example, AU12 (lip corner
puller) is often activated in a smile, which lifts and may also
deepen the infraorbital triangle, consistent with the bright
triangular region in the activation map as shown in Fig. 1.
Hence, AU12 needs a larger receptive field. In contrast,
AUI17 (chin raiser) causes wrinkles on the chin boss and
has a smaller receptive field.

Given a predefined input image size, the best filter size
is often selected experimentally or by visualization [32] for
each convolutional layer. For example, Kim et al. [17],
who achieved the best expression recognition performance
of EmotiW2015 challenge [5], experimentally selected the
best filter sizes for the three convolutional layers. How-
ever, with CNNs becoming deeper and deeper [23, 11], it
is impractical to search for the best filter size by exhaustive
search, due to the highly expensive training cost.

In this work, we propose a novel and feasible solution
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in a CNN framework to automatically learn the filter sizes
for all convolutional layers simultaneously from the train-
ing data along with learning the convolution filters. In par-
ticular, we proposed an Optimized Filter Size CNN (OFS-
CNN), where the optimal filter size of each convolutional
layer is estimated iteratively using stochastic gradient de-
scent (SGD) during the backpropagation process. As illus-
trated in Figure. 2, the filter size k of a convolutional layer,
which is a constant in the traditional CNNs, is defined as a
continuous variable in the OFS-CNN. During backpropaga-
tion, the filter size k will be updated, e.g., decreased when
the partial derivative of CNN loss with respect to the filter
size is positive, i.e., g—i > (0, and vice versa.

In this work, a forward-backward propagation algorithm
is proposed to estimate the filter size iteratively. To facili-
tate the convolution operation with a continuous filter size,
upper-bound and lower-bound filters with integer-sizes are
defined. In the forward process, an activation resulted from
a convolution operation with a continuous filter size can
be calculated as the interpolation of the activations using
the upper-bound and lower-bound filters. Furthermore, we
show that only one convolution operation is needed with
the upper-bound and lower-bound filters. Therefore, the
proposed OFS-CNN has similar computational complexity
as the traditional CNNs in the forward process as well as
in the testing process. During backpropagation, the partial
derivative of the activation with respect to the filter size & is
defined, from which g—i can be calculated. With a change in
the filter size k, the filter sizes of the upper-bound or lower-
bound filters may be updated via a transformation operation
proposed in this work.

Experimental results on two benchmark AU-coded spon-
taneous databases, i.e., FERA2015 BP4D database [26] and
Denver Intensity of Spontaneous Facial Action (DISFA)
database [20] have demonstrated that the proposed OFS-
CNN outperforms the traditional CNNs with the best filter
size obtained by exhaustive search and achieves state-of-
the-art performance for AU recognition. Furthermore, the
OFS-CNN also beats a deep CNN using multiple filter sizes
with a remarkable improvement in time efficiency during
testing, which is highly desirable for realtime applications.
In addition, the OFS-CNN is capable of estimating optimal
filter size for varying image resolution.

2. Related Work

Extensive efforts have been devoted to extracting the
most effective features that characterize facial appearance
and geometry changes caused by activation of facial ex-
pressions or AUs. The earlier approaches adopted vari-
ous handcrafted features such as Gabor wavelets [3], his-
tograms of Local Binary Patterns (LBP) [27], Histogram
of Oriented Gradients (HOG) [2], Scale Invariant Feature
Transform (SIFT) features [31], histograms of Local Phase
Quantization (LPQ) [14], and their spatiotemporal exten-
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Figure 2: An overview of the proposed method to optimize the
convolution filter size k£ with the CNN loss backpropagation at the
t*" iteration. g—i: is the partial derivative of the loss with respect to
the filter size at the t*" iteration (k). The filter size k will decrease
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sions [14, 33, 29].

Most recently, CNNs have attracted increasing atten-
tion and shown great promise for facial expression and AU
recognition [7, 24, 19, 15, 9, 12, 34, 17, 30, 21, 28, 25].
For example, the top 3 methods [17, 30, 21] in the recent
EmotiW2015 challenge [5] are all based on CNNs and have
been demonstrated to be more robust to real world con-
ditions for facial expression recognition. All those CNN-
based methods use fixed-size convolution filters.

To achieve the best performance, the optimal filter size
is usually chosen empirically by either experimental valida-
tion or visualization for each convolutional layer [32]. For
example, Kim et al. [17] experimentally compared facial ex-
pression recognition performance using different filter sizes
and found that the CNN with 5x5, 4x4, and 5x5 filter
sizes in the three convolutional layer, respectively, has the
best performance on 42x42 input images. Zeiler and Fer-
gus [32] found that 77 filters can capture more distinctive
features than 11 x 11 filters on ImageNet dataset through vi-
sualization. However, such empirically selected filter sizes
may not be optimal for all applications as well as for dif-
ferent image resolutions. Furthermore, it is impractical to
perform an exhaustive search for the optimal combination
of filter sizes of all convolutional layers for deep CNNs.

To achieve scale invariance, CNNs with multiple filter
sizes have been developed. The inception module [23] con-
catenates the activation feature maps from 1x1, 3x3, and
5x5 filters. The Neural Fabrics [22] embeds an exponen-
tially large number of architectures with 3 x 3 filters. Multi-
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grid Neural Architecture [16] concatenates the feature maps
activated by pyramid filters. However, all those methods are
still based on fixed filter size and more importantly, demand
a significant increase in the time and space complexity due
to the complex model structure.

In contrast, the proposed OFS-CNN is capable of learn-
ing and optimizing the filter sizes for all convolutional lay-
ers simultaneously in a CNN learning framework, which is
desirable, especially when the CNNs go deeper and deeper.
Furthermore, we show that only one convolution operation
is needed in the proposed forward-backward propagation al-
gorithm. Thus, the proposed OFS-CNN has similar com-
putational complexity as the traditional CNNs and thus, is
more efficient than the structures using multiple filter sizes.

3. Methodology

In this work, we propose an OFS-CNN, which is capable
of optimizing and learning the filter size k from the train-
ing data. In the following, we will first give a brief review
of the CNN, especially the convolutional layer, and then
present the forward and backward propagation processes of
the OFS-CNN.

3.1. A Brief Review of CNNs

A CNN consists of a stack of layers such as convolu-
tional layers, pooling layers, rectification layers, fully con-
nected (FC) layers, and loss layers. These layers transform
the input data to highly nonlinear representations. Convo-
lutional layers are used to perform convolution on input im-
ages or feature maps from the previous layer with filters.
Generally, the first convolutional layer is used to extract
low-level image features such as edges; while the upper lay-
ers can extract complex and task-related features.

Given an input image/feature map denoted by x, an ac-
tivation at the i*" row and the j'* column, denoted by y;;,
in a convolutional layer can be calculated using the convo-
lution operation by computing the inner product of the filter
and the input as follows:

yij (k) = w(k) "xi; (k) + bi )]

where w(k) is a convolution filter with the filter size k x k;
x;; (k) denotes the input with a & x k receptive field cen-
tered at the i*" row and the j'* column; and b;; is a bias.
Traditionally, the filter size k is a predefined integer and
fixed throughout the training/testing process. In this work,
k € RT is defined as a continuous variable that can be
learned and optimized during CNN training.

3.2. Forward Processing of the OFS-CNN

In the forward process, convolution operations are con-
ducted to calculate activations using learned filters as in
Eq. 1. However, the convolution operation can only be per-
formed with integral size filters in the CNN.

Upper-bound and lower-bound filters: In order to build
the relationship between the activation y;; and the contin-
uous filter size &, we first define an upper-bound filter de-
noted by w(k ) and a lower-bound filter denoted by w(k_).
Specifically, &y is the upper-bound filter size and is the
smallest odd number that is bigger than k; while k_ is the
lower-bound filter size and is the largest odd number that is
less than or equal to k. k4 and k_ can be calculated as
E+1 k+1
he=1 5

|%2+1, k=] |%2-1 (@

Then, the activation y;;(k) can be defined as the lin-
ear interpolation of the activations of the upper-bound and
lower-bound filters denoted by y;;(k_) and y;;(k+), re-
spectively:

Yij (k) = ayij(ky) + (1 = a)yij (k-) 3)

where y;;(k+) and y;;(k_) are calculated as in Eq. 1 with
the same bias, but with the upper-bound and lower-bound
filters, i.e., w(ky) and w(k_), respectively. o« = Lﬁ is
the linear interpolation weight.

Remark 1. A cubic interpolation can also be used to build
the relationship between the activation y;; and the continu-
ous variable k. However, it requires a higher computational
complexity and needs at least three points; while the linear
interpolation only needs two points k_ and k..

Remark 2. The filter size k is actually a weight-related fil-
ter size in the interval [k_, k) and can be calculated as:

k=k_+ 2« “4)

Convolution with a continuous filter size: As in Re-
mark 2, we can explicitly define the filter w(k) with a
continuous size k. As shown in Fig. 3, the upper-bound
and lower-bound filters are defined to share the same co-
efficients in the region with green color and to differ by
the pink boundary denoted by Aw(k;). Let Aw(ky) =
w(ky) — w(k_) be the ring boundary with zeros inside as
shown in Fig. 3, then the filter w(k) with a continuous size
k can be defined as follows:

w(k) =aAw(ky)+w(k-), ®)

Remark 3. In Eq. 5, w(k) and w(k_) have an actual filter
size of k; while w(k_) is zero-padded.

Lemma 1. Given the definition of the filter w(k) as in Eq. 5,
the activation y;; (k) in Eq. 3 can be simplified as:
yis (k) = w(k) xij (ki) + bij (©)
Proof. Eq. 6 can be deduced from Eq. 3 as follows:
Yij (k) =ayij(k+) + (1 — @)yiz (k-)
=aw(ky) "xij (k) + (1= a)w(k-) "xij (k=) + bij (7)
After padding zeros for w(k_), w(k_) "x(k_) is equiv-

alent to w(k_)"x(ky). Then, Eq. 7 can be simplified as
follows:
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Figure 3: An illustrative definition of a filter with a continuous
filter size k € R™. w(ky) and w(k_) are the upper-bound and
lower-bound filters, respectively, and share the same elements in
the green region. The pink region Aw(k) denotes the difference
between the upper-bound and lower-bound filters and has a ring
shape with zeros inside. « is the linear interpolation weight asso-
ciated with the upper-bound filter w(k ). w(k) is a weight-related
filter with a continuous filter size k.

yii (k) =aw(ky) "x(ky) + (1 — a)w(k-) x(k) + by
= [aw(ks) T+ (1= a)w(bo) "] x(h) + b
= [a A W(k‘+)T + W(k‘f)T:| X(k+) + bij (8)

By substituting Eq. 5 into Eq. 8, we have
yis (k) = w(k) "xij (ks ) + bij ©

Thus, the activation of y;; (k) can be simplified as Eq. 6.
O

Remark 4. According to Eq. 6, only one convolution op-
eration needs to be performed to calculate each activation
yij (k). Therefore, the time complexity does not increase
compared with the traditional CNN in the forward training
process as well as in the testing process.

3.3. Backward propagation of the OFS-CNN
3.3.1 Optimizing filter size in the OFS-CNN

Calculating the partial derivative: Since the relationship
between the activation and the filter size has been defined
as in Eq. 3, the partial derivative of the activation y;; w.r.t.
the filter size can be calculated based on the derivative defi-
nition as follows:

Ayij(k) _ vig(k+ &) — i (k= 8k)
Ok £k—0 2A K
When k + Ak and k — Ak are in the interval [k_, k),

the derivative of each point 9y k) i equal to the gradient
of the line because of the linear interpolation. Hence, the
partial derivative can be calculated as follows:

Oyij (k) _yij(kt) — ij (k)
Ok ey — ko

(1)
Substituting Eq. 1 into Eq. 11, we have

Qyij (k) _ wlk) "xij (ki) — w(k—) "xi;(k—) (12)
ok P—

By padding zeros for w(k_ ), we can simplify Eq. 12 as

Ayij (k) _ wlk) (ki) — w(k-) "xi; (k+)
ok ke — ko
W) T —wko) ] xi (k)
ko
_Aw(k )Txij(k )
7—k: — + (13)

Based on Eq. 13, the partial derivative of the loss L w.r.t.
k can be calculated as follows Wlth chain rule:

yij
Z 8yu ok (14

Updating the filter size: Given the partial derivative of the
loss L w.r.t. k, the filter size k& can be updated iteratively
with the SGD strategy for the (¢ + 1)!" iteration as follows:

L'
T okt
where v is the learning rate. Note that the kernel sizes of
different convolutional layers are updated sequentially dur-
ing the backward propagation by using SGD.

ET =gt — (15)

3.3.2 Updating convolution filters w(k)

Updating the upper-bound and lower-bound filters:
Since the lower-bound filter w’(k_) is defined as the in-
ner part of the upper-bound filter w! (k. ), we only need to
perform backpropagation for the upper-bound filter w? (k.,.),
which can be divided into two parts as w' (k4. ) = w'(k_) +
Aw' (k4 ), where Aw' (k) is the ring boundary with zeros
inside and w(k_) is padded with zeros. Then, the forward
activation function in Eq. 6 can be reorganized as:
ity (k') =w' () T (L) +
_ [at Aw (KD + wf(ki)T] xt; (kL) + bl
=a'Aw(kh) At (KY) +wh (k) X5 (KL)+b);  (16)

where Axj; (k%) is the ring boundary of x; (k:lt ) in the
input 1mage/feature map with zeros inside and x! (kt ) is
padded with zeros.

Hence, the partial derivative of the activation yfj w.I.t.
the upper-bound filter w* (k) can be calculated as follows:

ayfj ot (T t t ot N\T

With the chain rule, the derivative of CNN loss w.r.t.

w'(k,) can be calculated as

t
Z 8L ayu (18)

8wt kt t owt( k:t
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Figure 4: When the updated filter size k is out of the interval [k’ , k% ), transformation operations are needed to update the sizes of the

upper-bound and lower-bound filters after updating their coefficients.

Specifically, an expanding operation is employed to increase the

sizes of both upper-bound and lower-bound filters; whereas a shrinking operation is used to decrease the filter sizes.

Thus, the upper-bound filter w(k_) can be updated iter-
atively using the SGD strategy. As a result, the filter w(k)
with a continuous size k can be updated as in Eq. 5.
Transforming the upper-bound and lower-bound filters:
According to Eq. 15, the filter size k£ can be continuously
updated over time. As long as k‘*! is in the interval of
[k, k%), the upper-bound and lower bound filters remain
the same sizes as those in the ¢" iteration, i.e., kTt = kt
and ki“ = ki However, as the filter size k is updated,
k**1 may across the boundary of the interval of [k’ , k% ).
Consequently, both the sizes of the upper-bound and lower-
bound filters should be updated. As illustrated in Fig. 4,
we define transformation operations, including expanding
and shrinking to update the upper-bound and lower-bound
filters to accommodate a size change.

Note that the transformation operations are conducted
after updating coefficients of the upper-bound and lower-
bound filters.

Expanding: When k'*1 > k! | the upper-bound and lower-
bound filters w'™! (k") and w'* (k") should be up-
dated by an expanding operation as follows:

Wt+1 (ki+1) :Wt+1 (ki+1)

wH (k) =eapand(w T (KT)) (19)

where expand|(-) is a function to increase the filter size, par-
ticularly by padding values from the nearest neighbors of
the original filter as illustrated in Figure 5.
Shrinking: As opposed to the expand(-) function, when
k1 < k', the upper-bound and lower-bound filters
witL (k') and wi (k") will be shrunk as follows:
Wt+1 (ki+1) :wt+1 (ki+1)
wHEY) =shrink(w' T (ETTY)) (20)

where shrink(-) is a function to decrease the filter size,
specifically by filling the boundary with zeros as shown in
Figure 5.
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Figure 5: An illustration of the shrink and expand operations
to change the filter size. The shrink operation sets zeros to the
outside boundary; while the expand operation is to pad the outside
boundary with the nearest neighbors from the original filter.

Updating other parameters: In addition to updating the

filter size k and the convolution filter w(k), we should also

update the bias b;; and the feature x;; during backpropaga-

tion. Based on the forward activation function as deﬁned in

Eq. 6, the derivative of feature activation v, j WLt x! (kt )

can be calculated as below:
yij o toqt

RGN e

With the chain rule, the derivative of CNN loss w.r.t.
x;; (k%) can be calculated as:

oLt oLt Oyl

= __"ZY 22
oxt, (k) ay, ax, (k) ¢

Hence, the feature x;; can be updated using the SGD
strategy and will be further backpropagated to update the
parameters in the lower layers. The backpropagation of bt
is exactly the same as that in the traditional CNNs. The
forward and backward propagation process for the proposed
OFS-CNN is summarized in Algorithm 1.

4. Experiments

To demonstrate the effectiveness of the proposed model,
extensive experiments have been conducted on two bench-
mark AU-coded databases, i.e., the BP4D database [26]
and the DISFA database [20], containing spontaneous fa-
cial behavior with moderate head movements. Specifically,
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Algorithm 1 The forward-backward propagation algorithm for
the OFS-CNN
Input: Input images or feature maps from the previous
layer x and an initial filter size k° € RT.
Initialization:
Initialize k¢ and k° as Eq. 2.
Randomly initialize the convolution filter w° (k9 ).
for iteration ¢ from 0 to 7" do
/[Forward:
wh (kL) = shrink(w' (k%))
Calculate the convolution filter w' (k') based on Eq. 5
Calculate the forward activation y;; (k) based on Eq. 6
//Backward:
Calculate the derivative of activation w.r.t. k%, w* (k' ),
and x?, based on Egs.13, 17, and 21, respectively
Calculate the derivative of loss w.r.t. k', w'(k.), and
x?, based on Eqgs.14, 18, and 22, respectively
Update k1, w1 (£*"), and x'*! based on SGD
Update the bias using standard CNN backpropagation
/[Transformation:
if k1 > k. then
t+1 _ .t
llzt_“ = ]/ij +2
+ TRy
Expand the upper-bound and lower bound filters
wiL (B ) and wit (K1) as in Eq. 19
else if k'™ < k' then

B =kt
k{“ =kt —2

Shrink the upper-bound and lower bound filters
witL(k!T!) and w1 (KU as in Eq. 20
end if
end for

the BP4D database [26] has 11 AUs and 41 subjects with
146,847 images; and the DISFA database [20] has 12 AUs
and 27 subjects with 130,814 images. Following the exper-
imental setup of the state-of-the-art methods (DRML [34]
and PL-CNN [28]), two AUs, i.e., AUS and AU20, which
appear less than 5% of the frames in the DISFA database,
are not considered in the experiments.

4.1. Pre-Processing

First, facial landmarks are detected, from which face
alignment can be conducted to reduce the variations
from scaling and in-plane rotation.  For the DISFA
database [20], 66 landmarks are detected using a state-of-
the-art method [1]. For the BP4D database [26], the 49
landmarks provided in the database are used for face align-
ment. Based on the extracted facial landmarks, face regions
are aligned based on three fiducial points: the centers of the
two eyes and the mouth, and then scaled to 64 x 48 !. Fol-

n the experiments, three resolutions, i.e., 64 x 48, 128 X 96, 256 x 192
are employed to evaluate the proposed OFS-CNN on different resolutions.

lowing the work [10], each face image is warped to a frontal
view to reduce variations from face pose; and then sequence
normalization is performed by subtracting the mean and di-
viding the standard deviation calculated from the video se-
quence to reduce the identity-related information and to en-
hance appearance and geometrical changes caused by AUs.

4.2. CNN Implementation Details

The proposed OFS-CNN is modified from cifar10_quick
in Caffe [13], which consists of three convolutional layers,
two average pooling layers, two FC layers, and ending with
the weighted sigmoid cross entropy loss layer for calculat-
ing the loss. Specifically, all the convolutional layers have
a stride of 1. The first two convolutional layers have 32
filters, whose output feature maps are sent to a ReLU layer
followed by the average pooling layer with a downsampling
stride of 3. The last convolutional layer has 64 filters, whose
output feature maps are fed into an FC layer with 64 nodes.
Finally, the output of the last FC layer, which contains a
single node, is sent to the sigmoid cross entropy loss layer.
The SGD, with a momentum of 0.9 and a mini-batch size of
100, is used for training the CNN. Each AU has one trained
CNN model with binary classification.

All filter sizes are 5 x 5 in the original cifar10_quick [13]
and will be used for the baseline CNN for comparison. In
the OFS-CNN, all filter sizes are initialized with 4, implying
o® =05k} =5,and k0 = 3.

4.3. Experimental Results

The proposed OFS-CNN is compared with the baseline
CNN with fixed convolution filter sizes on the two bench-
mark datasets. Since the BP4D database [26] provides
the training and development partitions, an average perfor-
mance of five runs is reported to reduce the influence of the
randomness during training. For the DISFA database [20],
a 9-fold cross-validation strategy is employed, such that the
training and testing subjects are mutually exclusive. Exper-
imental results are reported in terms of the average F1 score
and 2AFC score (area under ROC curve).

Exhaustive search vs optimization of filter size: We first
show that the proposed OFS-CNN is capable of learning
the optimal filter sizes. Specifically, baseline CNNs are de-
signed with varying filter sizes including 3 X 3,5 x 5,7 x 7,
and 9 x 9 in the first convolutional layer. In addition to the
3-layer OFS-CNN, where the filter sizes in all three convo-
lutional layers are learned, a /-layer OFS-CNN is designed
where the filter size is learned only for the first layer. All the
baseline CNNs and the /-layer OFS-CNN used the fixed fil-
ter sizes (5 x 5) for the other two convolutional layers. All
the models in comparison are trained on the training parti-
tion and tested on the development partition of the BP4D
database [26]. The results are reported in Table 1, which
are calculated as the average of 5 runs. The average filter
size of OFS-CNNs is reported for each AU at the 2000t"
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Table 1: Performance comparison of the proposed OFS-CNNs and traditional CNNs with varying filter size on the BP4D database [26].
In the I-layer OFS-CNN, the filter size is learned only for the first layer. The average converged filter size is reported for each AU,
respectively. The results are calculated from 5 runs in terms of the average F1 score and the 2AFC score. The underline highlights the best

performance among the 4 fixed filter sizes. The bold highlights the best performance among all models.

AUs CNN-Filter3 CNN-Filters CNN-Filter7 CNN-Filter9 1-layer OFS-CNN 3-layer OFS-CNN
F1 2AFC Fl 2AFC F1 2AFC F1 2AFC F1 2AFC | Converged Size F1 2AFC | Converged Size
AUl 0.315 0.577 | 0.313 0.578 | 0.310 0.577 | 0.315  0.583 | 0.320 0.586 6.0 0.348  0.628 5.2,5.1,5.1
AU2 0.291  0.591 | 0.277 0.573 | 0.284 0.586 | 0.279 0.575 | 0.291 0.592 5.8 0.312  0.626 5.2,53,49
AU4 | 0362 0.654 | 0358 0.649 | 0.361 0.653 | 0.367 0.661 | 0.362 0.661 6.0 0.376  0.673 5.1,5.5,4.8
AU6 | 0.677 0.754 | 0.693 0.775 | 0.688 0.771 | 0.689  0.773 | 0.685 0.764 6.0 0.723 0.811 5.1,4.7,4.7
AU7 | 0.640 0.654 | 0.643 0.658 | 0.652 0.661 | 0.646 0.659 | 0.658 0.660 6.0 0.634  0.652 5.0,4.8,4.7
AU10 | 0.706  0.720 | 0.726 ~ 0.728 | 0.716 ~ 0.720 | 0.711  0.723 | 0.720  0.725 6.0 0.739 0.758 4.6,5.1,4.8
AU12 | 0.749 0.786 | 0.763 0.805 | 0.759  0.805 | 0.750 0.791 | 0.768 0.801 6.1 0.799 0.855 4.8,5.9,4.8
AUI4 | 0.505 0.582 | 0.517 0.597 | 0.525 0.600 | 0.523 0.593 | 0.521 0.600 54 0.532  0.635 5.1,4.6,4.5
AUIS5 | 0298 0.603 | 0.296 0.599 | 0306 0.611 | 0.316 0.622 | 0.305 0.609 6.0 0.300  0.607 5.2,49,4.8
AU17 | 0.547 0.676 | 0.550 0.683 | 0.553 0.683 | 0.544 0.678 | 0.532 0.673 5.7 0.542  0.694 4.9,4.7,4.6
AU23 | 0337 0.651 | 0.348 0.658 | 0.352 0.657 | 0.350  0.659 | 0.345 0.655 6.1 0.355  0.659 54,4.6,4.7
AVE | 0493 0.659 | 0.499 0.664 | 0.501 0.666 | 0.499 0.665 | 0.501 0.666 5.9 0.515  0.691 5.0,5.0,4.8
Table 2: Performance comparison of the proposed OFS-CNN Table 3: The average converged filter sizes for varying image

and the baseline CNN for varying image resolutions on the BP4D
database [26] in terms of the average F1 score. The bold highlights
the best performance among all models.

Resolution 64x48 128x 96 256x192
Layer CNN | OFS-CNN | CNN | OFS-CNN | CNN | OFS-CNN
AUl 0.313 0.348 0.340 0.345 0.332 0.416
AU2 0.277 0.312 0.307 0.303 0.278 0.305
AU4 0.358 0.376 0411 0.415 0.324 0.391
AU6 0.693 0.723 0.721 0.729 0.676 0.745
AU7 0.643 0.634 0.642 0.649 0.504 0.628
AU10 0.726 0.739 0.718 0.754 0.690 0.743
AUI12 0.763 0.799 0.774 0.805 0.697 0.812
AU14 0.517 0.532 0.552 0.562 0.544 0.555
AU15 0.296 0.300 0.331 0.337 0.323 0.326
AU17 0.550 0.542 0.561 0.563 0.540 0.568
AU23 0.348 0.355 0.381 0.398 0.354 0.413
AVE 0.499 0.515 0.522 0.533 0.478 0.537

iteration, where most of the CNN models are converged in
our experiments.

As shown in Table 1, the I-layer OFS-CNN achieves
similar performance as CNN-Filter7 that has the best perfor-
mance among all baseline CNNs. Furthermore, the 3-layer
OFS-CNN beats all models compared to in terms of the av-
erage F1 score and 2AFC score. This demonstrates that the
proposed OFS-CNN is superior to the best CNN model ob-
tained by exhaustive search. In addition, the learned filter
size is often consistent with the best filter size obtained by
exhaustive search, which is either the upper-bound or lower-
bound filter size in the OFS-CNN.

OFS-CNNs on different image resolutions: We also show
that the learned filter sizes adapt well to changes in image
resolution. Specifically, experiments have been conducted
to compare the proposed OFS-CNN and the baseline CNN
on the BP4D database [26] with different resolutions of the
input images. All the CNN models have similar CNN struc-
ture as described in Section 4.2. In order to accommodate
the changes in the resolution, the number of nodes in the
first FC layer is set to 64, 128, and 256 for resolutions of
64 %48, 128 x 96, and 256 x 192, respectively, for all models

resolutions on the BP4D database [26]. The bold highlights the
filter sizes with the best performance.

Resolution 64x48 128x 96 256x192
Layer convl | conv2 | conv3 | convl | conv2 | conv3 | convl | conv2 | conv3
AUl 52 5.1 5.1 55 49 5.1 6.2 49 4.9
AU2 52 53 4.9 6.0 4.8 4.9 59 53 5.1
AU4 5.1 55 4.8 5.7 58 5.7 5.8 5.8 5.8
AU6 5.1 4.7 4.7 54 4.7 4.7 5.7 4.8 4.8
AU7 5.0 4.8 4.7 53 4.6 4.7 5.6 4.8 4.8
AUI0 4.6 5.1 4.8 55 4.8 4.8 55 55 4.9
AUI12 4.8 5.9 4.8 52 5.5 59 5.7 55 54
AU14 5.1 4.6 45 53 4.6 4.6 59 4.6 45
AUI5 52 49 4.8 5.5 4.8 4.8 5.5 4.8 4.8
AU17 49 4.7 4.6 5.6 45 4.5 53 4.6 4.5
AU23 5.4 4.6 4.7 6.0 4.7 4.7 59 4.8 4.7
AVE 5.0 5.0 4.8 5.5 5.0 5.0 5.7 5.0 5.0

in comparison. In this set of experiments, the 3-layer OFS-
CNN is employed and the average converged filter sizes for
each AU under each resolution are reported in Table 3.

As shown in Table 2, most of AUs prefer a higher im-
age resolution to preserve subtle cues of facial appearance
changes. However, the performance of the baseline CNN
decreases for the highest resolution 256 x 192. When
the image resolution increases, the receptive field covers a
smaller actual area of the whole face when using the same
5 x b filter size, compared to lower resolutions. In contrast,
the proposed OFS-CNN can optimize filter size at various
image resolutions. As shown in Table 3, the OFS-CNN has
the largest average filter size of 5.7 for conv1 (the first con-
volutional layer) for 256 x 192 and thus, can benefit from an
increased receptive field because of the 7 x 7 upper-bound
filter. As a result, the OFS-CNN outperforms the baseline
CNN for all image resolutions, especially for 256 x 192 by
6%, in terms of the average F1 score.

Furthermore, a small change in filter size across bound-
ary can cause a big change in the receptive filed. As shown
in Table 3, the average converged filter sizes for AU12 are
5.7, 5.5, and 5.4 under the resolution of 256 x 192 for the
three convolutional layers and hence, the receptive field is
increased to 79 from 53 as compared to that of the baseline
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CNN with filter size 5, 5, and 5. As a result, the proposed
method outperforms the baseline method (0.812 vs 0.697).
For AU17, the converged filter sizes are 5.3, 4.6, and 4.5
corresponding to a receptive field of 55, similar to that of
the baseline. Accordingly, the proposed method has a simi-
lar performance as the baseline (0.568 vs 0.540).

Comparison with the CNNs using multiple filter sizes:
We also compare the proposed 3-layer OFS-CNN to the
CNN structure with multiple filter sizes, i.e., the incep-
tion module [23]. In particular, the GoogleNet [23] with
7 inception modules is trained and evaluated on the BP4D
database with an image resolution of 240 x 240.

Table 4: Comparison with the GoogLeNet on the BP4D database
in terms of F1 score.

AUs % | GoogLeNet | OFS-CNN 128 x 96 | OFS-CNN 256 x 192
AUI | 23.1 0.369 0.345 0.416
AU2 | 179 0.267 0.303 0.305
AU4 | 22.7 0.498 0.415 0.391
AU6 | 46.0 0.746 0.729 0.745
AU7 | 52.6 0.657 0.649 0.628
AUI0 | 59.6 0.768 0.754 0.743
AUI2 | 55.8 0.836 0.805 0.812
AUI4 | 52.1 0.503 0.562 0.555
AUIS | 18.0 0.325 0.337 0.326
AUI7 | 32.6 0.511 0.563 0.568
AU23 | 17.0 0.376 0.398 0.413
AVE - 0.531 0.533 0.537

As shown in Table 4, the OFS-CNN with a shallow struc-
ture (15 layers, trained in 3,000 iterations) achieves compa-
rable performance as the GoogLeNet (100 layers, trained
in 20,000 iterations) that is much more complex and thus,
demands more training data. With fewer parameters, the
OFS-CNN is more suitable for tasks with insufficient train-
ing data. For example, the improvement is more substan-
tial for the AUs with a lower occurrence rate such as AU2
(17.9%) and AU23 (17.0%). Note that the proposed OFS-
CNN runs more than 8 times faster on a 128 x 96 image
and more than 6 times faster on a 256 x 192 image than the
GoogLeNet (240 x 240) during testing, which is critical and
hence, highly desirable for real-time applications.
Comparison with the baseline CNN on the DISFA
database [20]: As illustrated in Table 5, the proposed OFS-
CNN also outperforms the baseline CNN with a notable
margin in terms of the average F1 score on the DISFA
database [20]. The experiments are conducted on the im-
age resolution of 128 x 96 using the 3-layer OFS-CNN.
Comparison with state-of-the-art methods: In addition to
the baseline CNN, we further compare the proposed OFS-
CNN with state-of-the-art methods, particularly the most re-
cent approaches based on CNNs [8, 9, 34, 28], on the two
benchmark databases. As shown in Table 6, the proposed
OFS-CNN achieves the state-of-the-art performance of AU
recognition on the two databases 2.

2The performance of the ML-CNN was reported for 10 AUs on the

Table 5: Performance comparison with the baseline CNN on the
DISFA database [20] in terms of the average F1 score and the
2AFC score.

CNN (baseline) OFS-CNN
F1 2AFC F1  2AFC
AUl | 0321 0.778 | 0.437 0.833
AU2 | 0.424 0.865 | 0.400 0.812
AU4 | 0.567 0.833 | 0.672 0.862
AU6 | 0.610 0.896 | 0.590 0.896
AU9 | 0417 0876 | 0.497 0.873
AU12 | 0.786  0.950 | 0.758 0.956
AUIS | 0298  0.794 | 0.378  0.799
AU17 | 0.452  0.831 | 0.523 0.823
AU25 [ 0.716  0.847 | 0.724  0.849
AU26 | 0.564 0.827 | 0.548 0.800
AVE | 0515 0.850 | 0.553 0.850

AUs

Table 6: Performance comparison with the state-of-the-art CNN
based methods on the BP4D and the DISFA databases in terms of
F1 score and 2AFC score.

BP4D DISFA

Methods F1 2AFC Methods F1 2AFC
DL [9] 0.522 | N/A | ML-CNN [8] | N/A | 0.757
AlexNet [34] | 0.384 | 0.422 | AlexNet [34] | 0.236 | 0.491
LCN [34] 0.466 | 0.544 LCN [34] 0.240 | 0.468
ConvNet [34] | 0.470 | 0.518 | ConvNet [34] | 0.231 | 0.458
DRML [34] | 0.483 | 0.560 | DRML [34] | 0.267 | 0.523
PL-CNN [28] | 0.491 | N/A | PL-CNN [28] | 0.584 | N/A
OFS-CNN | 0.537 | 0.722 OFS-CNN | 0.553 | 0.850

5. Conclusion and Future Work

In this work, we proposed a novel OFS-CNN with a
forward-backward propagation algorithm to iteratively op-
timize the filter size while learning the convolution filters.
Upper-bound and lower-bound filters are defined to facil-
itate the convolution operations with continuous-size fil-
ters; and transformation operations are developed to accom-
modate the size changes of the filters. Experimental re-
sults on two benchmark AU-coded spontaneous databases
have shown that the OFS-CNN outperforms the baseline
CNNs with the best filter size found by exhaustive search
and achieves better or at least comparable performance to
the state-of-the-art CNN-based methods. Furthermore, the
OFS-CNN has been shown to be effective for automati-
cally adapting filter sizes to different image resolutions. In
the current practice, different channels of a single convo-
lutional layer share a single filter size. In the future, the
OFS-CNN will be extended to learn a filter size for each
channel, which would be more effective for learning vari-
ously sized patterns. Furthermore, the OFS-CNN will be
applied to other applications such as object classification or
detection as well as various CNN structures.
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