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ABSTRACT

Data-snooping is a serious security threat in NoC fabrics that can lead to
theft of sensitive information from applications executing on manycore
processors. Hardware Trojans (HTs) covertly embedded in NoC
components can carry out such snooping attacks. In this paper, we first
describe a low-overhead snooping invalidation module (SM) to prevent
malicious data replication by HTs in NoCs. We then devise a snooping
detection module (THANOS) to also detect malicious applications that
utilize such HTs. Experimental analysis shows that unlike state-of-the-
art mechanisms, SIM and THANOS not only mitigate snooping attacks
but also improve NoC performance by 48.4% in the presence of these
attacks, with a minimal ~2.15% area and ~5.5% power overhead.

1. INTRODUCTION

With the rise in number of processing cores and growing parallelism
in applications, the communication traffic in a manycore processor has
been increasing. Chip designers and manufacturers are moving towards
network-on-chip (NoC) as their de-facto intra-chip communication
fabric [1]-[2]. Typically, emerging manycore processors have tens to
hundreds of components that are designed either by in-house engineers
or obtained from third-party vendors (3PIP), and then finally integrated
together in a single global facility. With the growing complexity in NoC
design, designers are opting for third-party NoC IPs, e.g., [3], to connect
the components in their processors. This global trend of distributed
design, validation, and fabrication has led to major challenges in
ensuring secure execution of applications on manycore platforms, in the
presence of potentially untrusted hardware and software components.

Much work has been done to mitigate side-channel attacks on shared
resources and to detect counterfeit ICs that compromise manycore chip
performance [4], [6]. This work focuses on an orthogonal attack scenario
where an adversary can insert a hardware Trojan (HT) into the RTL or
the netlist of a manycore processor to disrupt or alter the integrity of its
behavior without being detected at the post silicon verification stage.
HTs can be inserted by an intellectual property (IP) vendor, untrusted
CAD tool/designer, or at the foundry via reverse engineering [5]. We
focus on one such attack called a data-snooping attack where a malicious
software and an HT work together to steal information from applications
executing on manycore processors.

NoCs are ideal candidates for such attacks as they have a complex
design that can be used to hide an HT which cannot be easily detected
via functional verification. HTs can be placed in NoC links, routers, or
network interfaces (NIs) to secretly snoop on the data or corrupt data
passing through them. Typically, in data-snooping attacks HTs create
duplicate packets with modified headers and send them into the NoC for
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an accomplice thread to receive them [11]. Several works propose packet
encoding/error correction mechanisms such as parity bits and ECC in
NoC packets to detect faulty data packets at the receiver [7]-[8]. Other
works such as [9]-[12] have also proposed data protection mechanisms
in the presence of an HT in NoC components. However, there are three
major shortcomings with the state-of-the-art: (1) these works assume the
presence of HTs in NoC routers or links which can be detected by
physical inspection or functional verification, without employing costly
security mechanisms; (2) the mechanisms proposed in prior works
protect application data from snooping attacks but do not detect the
attack and mitigate future attacks; and (3) most of the security
enhancement mechanisms are costly to implement and increase NoC
latency and power consumption which worsens the overall performance.
1t is important to design and deploy lightweight mechanisms that can
detect the operation of malicious HTs embedded in NoCs and
accomplice threads, and secure against their data-snooping attacks in
emerging manycore processors.

In this work we focus on security enhancement that do not notably
increase performance and power overheads. We provide robust yet low-
power mechanisms to detect the source of the attacks by utilizing
controlled aging in circuits at runtime, which is not easy to obfuscate or
tamper with in the design and fabrication process. Our novel
contributions in this work are as follows:

e We first design and demonstrate a data-snooping attack using an
HT in the NoC interface that duplicates packets and injects them
into the NoC with a minimal area and power footprint, making it
difficult to detect by traditional functional verification mechanisms;

e We then protect against such data-snooping attacks by proposing a
novel snooping invalidation module (S/M) that uses an encoding-
based duplicate packet detection mechanism;

e We further propose a novel data-snooping detection circuit called
THANOS that uses threshold voltage degradation as a means to
detect an on-going attack at runtime and blacklist the malicious
software task that initiated the attack;

e Experimental analysis shows that SIM with THANOS provides
security against HT's with minimal area and power overhead.

2. RELATED WORK

Significant research has been done to increase robustness against
attacks by HTs in NoCs by assuming that an HT tampers or snoops data
passing through it. In [9], bit shuffling and Hamming ECC are used to
reduce the effectiveness of HTs that corrupt data. In [10], security zones
managed by a centralized security manager are proposed to protect
sensitive information from being accessed by malicious agents. In [11]
data scrambling, packet authentication, and node obfuscation are
proposed to prevent data stealing by a compromised NoC. Data
scrambling, and packet-authentication mechanisms use a one-time pad
XOR cipher that can be broken by the malicious tasks when enough
encrypted packets are accumulated. In [12], CRC and algebraic
manipulation detection (AMD) are used to encode packet headers to
safeguard from faults and snooping attacks. In[13], a novel wave-based
scheduling mechanism for NoCs is proposed that eliminates the need for
TDMA-based NoC resource sharing, hence providing non-interference
between different domains of applications. In [14], a process variation-
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based packet encoding and decoding mechanism is proposed to prevent
data-snooping in silicon photonic NoCs. Most of these schemes that
protect application data from NoC security attacks lack an efficient and
low-power attack detection mechanism which makes them incomplete in
providing security.

A few works address HT detection in NoC components at design-time
and runtime. At design time, techniques such as physical inspection [15],
functional testing [16], and side channel analysis [17] have been
proposed. But testing for HTs at design time is still in infancy, and the
growing complexity of NoC components make this even more difficult.
Hence, designers are now exploring runtime detection methods. A key
logic built-in self-test (LBIST) was proposed in [ 18] that uses test vectors
generated by programmable keys to detect Trojans. However, LBIST
requires that the chip operation should be paused while testing at regular
and frequent intervals, which is not suitable for NoCs that should
function seamlessly. A few other works such as [19], [20] propose in-
situ HT detection modules that rely on verification units placed in NoC
components to detect HTs. There are two limitations with all of these
works: (1) the verification units used to detect HTs can also be reverse-
engineered and tampered, (2) these mechanisms are used to detect only
HT induced data-corruption attacks. Data-snooping attacks unlike data-
corruption attacks attempt to leak critical application data to malicious
software tasks. None of the prior works have addressed the problem of
detecting the sofiware task that initiates data-snooping attacks to
blacklist and prevent future attacks.

In [21], a run-time technique called NoCAlert is proposed to detect
failures in the control logic of NoC components. This technique is further
enhanced by [22] that proposes modules which alert the host system if
the control logic in NoC routers detects invariance violations caused by
HTs placed in its control-path, e.g., logic for route computation (RC) or
virtual channel allocation (VCA). However, these techniques focus on
NoC components that have substantial control logic, such as routers.
They ignore the network interface (NI) which prevents easy placement
of model checkers to detect packet duplication. In this paper we propose
a novel snooping invalidation module (S/M) in the NI that can mitigate
snooping attacks. We then propose low-overhead techniques to detect
the source of data-snooping attacks in NoCs. To the best of our
knowledge, this is the first work that mitigates snooping attacks in NoCs
with minimal performance and power overheads, while also detecting
the source of snooping attack to protect against future attacks.

R: Routers
NI: Network interface
PE: Processing element

Figure 1: Baseline NoC architecture with example routers, a PE and an NI

3. BACKGROUND AND ATTACK MODEL
3.1 Background
In this section we discuss our assumed baseline NoC design. We
consider a traditional 2D mesh based NoC with processing elements (PE)
connected to the NoC via a network interface (NI). The packets entering
the NoC are routed towards their destination by routers that use a hop-
by-hop, turn-based distributed deadlock free XY routing algorithm.
Figure 1 shows the schematic of the baseline 2D mesh NoC with an NI
and PE connected to routers. We use traditional 3-stage {buffer write,
RC+VCA+SA4, LT} pipelined routers in the NoC with wormhole
switching and 4-VC buffers at each input port. PEs communicate using
messages that are passed to the NI which packetizes them before sending
them to the NoC. The packets received by the NI from the NoC are de-
packetized and sent to the connected PE. We consider ARM Cortex-A73
cores in our PEs that use the AXI interface for communication. Each PE

has a private L1 cache and a shared distributed L2 cache that uses a
scalable directory-based cache coherence protocol to send messages in
the form of NoC packets.

3.2 Attack Model

Prior works [9]-[12] assumed data-snooping attacks to be carried out
by HTs embedded in NoC routers or by compromised links that enable
HTs to modify the packet headers. These HTs, once activated by a flit
with a special activation sequence, make copies of packets passing
through the router and transmit them to the PE that has a malicious
accomplice task running on it. Once an HT is activated in a router, it
generates new packets, or diverts an existing packet to the PE running
the accomplice task. This type of HT, that has a high 4% area overhead
[11], may be noticed by testers while conducting physical inspection or
side channel analysis. Moreover, this type of attack can lead to illegal
utilization of router resources such as buffers, VCs, and switch
allocators, which cause control logic violations that can be detected by
secure model checkers [22]. We thus focus on a harder-to-detect attack
with an HT embedded in the NI where packets are generated, and hence
packets can be duplicated with relatively simpler logic without
interfering with the basic NI functionality.

. = Network interface with
disabled HT
- Network interface with
enabled HT
Router with malicious task
receiving snooped packets

4===~ Path taken by duplicate
packets fromHT activated NIs

AXI interface

write addr buff] y Y
| F\'rite data buff H
y ead addr buff

Packetizer

Packet
generator

ardware Trojan

Network-on-chip

Processing element

Al frite ack buff |«
Eesd data buff <

Depacketizer

( r_data

Network interface
(b)
Figure 2: (a) Overview of attack model on a NoC with a malicious software
task coordinating the data-snooping attack, (b) microarchitecture of network

interface (NI) with a hardware Trojan embedded in packetizer module, (c)
FIFO queue modification by hardware Trojan.

Figure 2(a) shows an overview of an on-going data-snooping attack
taking place in a 2D NoC based manycore processor with multiple HTs
activated in the NoC NI modules shown in red, and a malicious task
running on a PE connected to the yellow router and NI. The HTs make
duplicate copies of packets in NIs that are sent to the malicious task.

3.3 Design Details: Network Interface with a Hardware Trojan

Figure 2(b) shows the microarchitecture of an NI with an embedded
HT in the packetizer module. The NI receives messages from the PE via
the AXI interface that are then stored in its buffers. The messages usually
are read/write commands with address and data fields. The packetizer
module appends source ID, destination ID, and virtual channel ID
information to the commands and creates packets. A packet is further
divided into flits, with the header flit containing the NoC routing related
information. The packet flits are then injected into the circular flit queue
that is accessed via head and tail pointers. After the packetizer injects a
flit, the tail pointer of the queue is incremented. After a flit is transmitted
to a router, the head pointer is incremented to transmit the next flit.

An HT can potentially tamper with the pointer values to re-send
duplicate packets intelligently. Once a flit has been transmitted from NI
to the router, it stays in the cyclic queue until a new flit is overwritten on
that location. The HT can keep track of these locations to read a header



flit that has already been transmitted to the router, append it with a
duplicate destination ID of the malicious node, and update the head-
pointer. Figure 2(c) shows how the HT modifies the head pointer. By
moving the head pointer at regular intervals, the HT can send duplicate
packet flits without having to store them externally. The duplicate packet
is re-sent to the router for transmission. If the flit queue is full (head
pointer = tail pointer), both the HT and packetizer do not inject new flits
into the queue, and do not accept any more incoming data from the PE
until the outstanding flits are transmitted. The HT does not interfere with
the control logic which is mostly present in the AXI interface, and an
attacker can snoop on data using this HT in NIs between two PEs, or
between a PE and a memory controller that is connected to main memory
channels.

We now perform an overhead analysis of this HT. The proposed HT
requires an internal memory to save the head flit to modify its destination
ID, save the header pointer of the queue, and save the current state of the
HT (~72 bits). We designed the NI shown in figure 2(b) by modifying
the CONNECT open-source NoC model [24] and used Xilinx’s Vivado
HLS [25] tool to analyze the overheads. Table 1 shows the clock cycle
period, number of flipflops and LUTs used for an FPGA implementation
of the packetizer. The optimized design indicates that the NI with an HT
requires an additional ~5% FFs and ~1% LUTs (1.3% area overhead)
without incurring additional timing latency. This low overhead HT can
be inserted at the RTL level, or by reverse engineering and changing the
netlist at the place and routing stage [5], [15]. The small size of the HT
makes it hard to detect by physical inspection or by side-channel
analysis. Also, the run-time secure model checkers from [21], [22] are
not able to check the validity of flits in the NI as it does not interfere with
the control logic. Hence, there is a need to design a low-overhead flit
validation module in Nis to check flit validity before injecting them into
the NoC.

Table 1. FPGA Implementation of NI packetizer with and without

Hardware Trojan (HT)
Timing (ns) | Number of FFs | Number of LUTs |
NI without HT 3.45 258 535
NI with HT 3.45 273 549

4. MITIGATION OF NOC SNOOPING ATTACKS

We propose a novel framework that integrates two mechanisms to
mitigate data snooping attacks from taking place, as well as to detect the
source of an on-going attack, and protect against future snooping attacks.
We rule-out data corruption attacks as they can be detected and corrected
using ECC codes such as in [12]. Our proposed framework consists of
two security mechanisms, (1) a snooping invalidator module at the NI
output queue to discard duplicate packets, (2) detection of data-snooping
attacks at the PE where an accomplice thread is executing. This
comprehensive protection framework ensures that we proactively
mitigate future attacks and safeguard the application data for the entire
lifetime of the processor. We have designed our security mechanism to
be hard to be tampered by adversaries that use reverse engineering
techniques to insert HTs in the netlist. Our approach also works
irrespective of the HT triggering process to start snooping attacks such
as special flit data, circuit aging, or temperature [23]. The following
sections discuss our two security mechanisms.

4.1 Security enhanced NI: preventing data-snooping attack
The first security enhancement mechanism is to prevent a snooping
attack with the help of a snooping invalidator module (S/M) at the NI.
Using SIM, we aim to discard packets with invalid header flits from
being injected into the NoC. Unlike traditional ECC-based security
enhancement mechanisms, SIM incurs low-power and low latency
overheads because of its lightweight computations that are designed
solely to mitigate snooping attacks. Figure 3 (a) shows an overview of
the security enhancement in NI using SIM.
We divide the implementation of SIM across the PE and NI to prohibit
3PIP NoC designers/testers to reverse engineer or tamper with the secret

encoding/decoding information at runtime. The PE and NI communicate
using the standard AXI hand-shake protocol (ready, valid, and valid
ready signals). A typical NI receives messages from the PE to be
packetized and sent to the NoC and vice-versa. In the security enhanced
NI, additional encoding information (key) is attached with the data
received from the PE to validate the uniqueness of data packets. The
numbered sequence of steps shown in Figure 3 describe how a packet is
validated using SIM. These steps are discussed next.
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Figure 3: (a) Security enhanced NI using SIM (b) Flowchart of
snooping invalidation mechanism in NI

In step 1, the PE data dispatcher sends a count (C: increments with
each outgoing data) value to the NI controller along with the AXI ready
signal. In step 2, the NI controller sends a buffer id (B_id) that is reserved
to store the incoming data along with the AXI valid signal to the PE data
dispatcher. The NI controller simultaneously sends C to SIM that stores
it in a “validation table”. The PE uses an XOR function f'to generate an
encoded key k as a function of C, B_id, and destination ID (dest_id) of
the packet, as shown in eq. (1) below. In step 3, the PE sends a message
{data, k} combination to the data buffers and toggles the valid ready
signal to high. At the same time, the validation table sends a c_id
(location where count is stored in the table) to the NI controller. This is
stored with the message sent by the PE. The {data, k, c_id} combination
is stored as a unit in read/write buffers till the packet is sent out of the
NI. While the size of payload data varies from 8B to 128B depending on
message type, the values of k, C and c_id require only few bits of storage
(see legend of figure 3(a)).

k=C ®B_id ®dest_id 0

B_id=C @®k ®dest_id 2)
In step 4, the {data, k, c id} combination is sent to the packetizer to
generate packets. In step 5, flits are generated with k and ¢_id copied into
the header flit. We save k and c_id in the 24-bits reserved in the header
flit to store destinations of source-routing path [26] which are unused as
we adopt distributed routing for our NoC. The flits are then saved in the
output flit queue. Steps 6-9 are part of snooping invalidation flow
explained in more detail in figure 3(b). SIM tries to retrieve the encoded
key k from the C entry in the validation table as a part of packet
validation. In step 6, SIM reads dest_id, k, and c_id bits of the header flit,
and performs a decoding operation shown in eq. (2) to obtain B_id of the



buffers that stored the corresponding packet data, and & sent by the PE
(step 7). In steps 8 and 9, SIM retrieves the value of &’ stored in the buffer
located at B_id and compares with k that is read from the header flit. If
k=k’, SIM sends a valid signal that the header flit is valid, and it is
injected into the NoC. If SIM sends an invalid signal, the flit queue
discards all the flits corresponding to the duplicate packet. SIM
efficiently detects duplicate packets because, if the value of dest_id is
modified by the HT, eq. (2) leads to an incorrect value of B_id that does
not retrieve the £ value corresponding to the data of packet sent in step
3. Note that for broadcast/multicast packets, multiple keys are generated
for each dest_id value and key verification steps 8 and 9 are performed
on each of them separately. After a packet is sent out, the corresponding
read/write data buffer and validation table entries are reused for new
data. This low-overhead SIM module with minor modifications can also
be used to curb potential data duplication at router-link interfaces or
within a router.

4.1.1 Overhead analysis

Several steps in the SIM module can be performed in parallel. The
existing communication data channel between the PE and the NI that is
established by AXI interface is used to communicate both packet data
and SIM metadata (C, k, B_id in steps 1 and 2). Hence, no additional
wires are needed to transmit S/M metadata. Steps 1 and 2 are performed
in parallel with AXI interface’s ready and valid signal exchange to
minimize the latency overhead. Also, there is no additional overhead
involved in steps 3 to 5. Steps 6 to 9 take one cycle in a NoC that is
clocked at 1GHz frequency which was verified via FPGA synthesis of
the modified NI [25]. This increases the number of pipeline stages of the
NI microarchitecture. SIM takes additional memory to maintain a
validation table, and additional logic to perform XOR and comparison
operations. SIM incurs ~5.5% more power and ~2.15% more area
overhead compared to the baseline NI with a buffer capacity of 16
packets, at the 22nm technology node.

4.2 Detecting the source of a data-snooping attack
Using our security enhanced NI with the integrated S/M, we can curb
packet duplication at the NI. However, the malicious task that is the
source of the attack is still not detected that could initiate attacks from
compromised routers or links [12]. In this section, we propose a module
called THANOS, a novel threshold activated snooping attack detector
that is implemented at the interface between an NI and a PE, as shown

in figure 4(a) to detect the source of the snooping attack.
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Figure 4: (a) Overview of THANOS (b) block diagram of THANOS showing
inputs and outputs (c) snooping detecting circuit used in THANOS
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A PE sends and receives various types of messages into the NoC that
can be broadly classified into two types: (1) direct messages between
cores for inter-core communication, and (2) cache-coherence messages
between a PE and directory table. Figure 5 (blue bars) shows the average
incoming-outgoing message ratio sent over 64 cores in a NoC by
different PARSECv2.1 [27] benchmark applications with 64 tasks each.
The error-bars in figure 5 represent variance across NoC nodes. Figure 5
shows that the ratio is less than 1 over all the benchmarks with each node
receiving a smaller number of messages than the messages it sends out
(number of “packets” in a “message” can vary based on message type).

Another important observation from figure 5 is that the incoming-
outgoing message ratio is much greater than 1 (red points) when a data-
snooping attack takes place, because a PE receives significantly higher
number of messages (and packets) than it sends out. This phenomenon
can be easily detected in the short term by placing a counter in the NI
and observing the number of incoming and outgoing messages over an
epoch of time. However, observing messages in the short term can lead
to false positives, e.g., due to periodic bursts of messages from a task that
requires higher volumes of input data. Also, a message counter is not the
most secure way to detect a snooping attack, given the reverse
engineering techniques available to tamper digital logic [15].

In THANOS we devise a mechanism that observes the ratio of
incoming and outgoing messages over a period of few hours and
identifies the source of a snooping attack. THANOS is designed using a
combination of analog and digital logic to detect if a PE is snooping on
messages over a duration of time. As THANOS is not entirely a digital
logic implementation, it is hard to reverse engineer or tamper with, and
can be used as a final frontier to mitigate data-snooping attacks.
THANOS receives inputs from the PE and sends a security alert signal to
the PE as shown in figure 4(b). The PE then identifies the source of data-
snooping attacks and takes preventive steps to mitigate future attacks.
THANOS is designed as a standalone module that can also be used with
prior data protection schemes [9]-[12] to detect the source of attack.
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Figure 5: Average incoming-outgoing message ratio at normal PE (left), and
at snooping PE (right) across different applications

4.2.1 Overview of snooping detection circuit

We take inspiration from a controlled aging module [6] that uses
threshold degradation of NMOS transistors due to aging phenomenon
such as bias temperature instability (BTI) and hot carrier injection (HCI)
to detect chip usage, which helps identifying counterfeit ICs. In
THANOS we use NMOS threshold voltage degradation to detect a PE
that is receiving duplicate packets injected by multiple HT activated NIs
in the NoC. NMOS transistors undergo stress-recovery periods in their
ON and OFF operations that leads to threshold voltage (Vin) degradation
[28]. Figure 6 shows the Vin degradation observed across different ratios
of stress and recovery in an NMOS transistor at 22nm using the long-
term aging model proposed in [28]. At 100% stress (no recovery) the Vin
of a transistor increases by ~ 100mV in about two hours duration. We
use this phenomenon to detect snooping attacks.

4.2.2 Operation of snooping detection circuit

In our snooping detecting circuit shown in figure 4(c), there are 2
transistors; V; that acts as a diode connected load and V> that acts as gate-
source voltage (Vg) sensor. P; P> P; are diode-connected PMOS
transistors that pull the drain voltages of S;, Sz, S5 to high. Transistors S,
S>, 83 are driven using low over-drive voltages Iny, Inz, In; that barely
switch them ON. We artificially induce stress in a selected transistor
among S1/52/S3 when a message is received and induce recovery when a
message is sent out. Hence, we call them stress-transistors. At any point
only one of 51,852,835 are connected to the circuit (using /n and se/ signals).
When S1/52/S3 is turned ON, the source (Vx) of N: is pulled low, which
turns ON N2, leading to a “low” out state. But, when a stressed transistor
(81/52/85) undergoes Vi degradation, its over-drive voltage (/n =Vgs-Vin)
is not high enough to turn ON the stress-transistor and hence drives it
into the triode region. When S1/52/S3 is in the triode-region, the source
voltage (Vx) of N1 is not pulled low and the out signal is set to “high”.
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Table 2: State transition of snooping detection circuit

Stress-transistors (S1/S2/S3) Vi N out
Saturated Low ON Low
Triode High OFF High

Table 2 gives the states of different transistors and the corresponding
changes in out signal state. When a PE is not receiving snooped packets,
its incoming-outgoing message ratio is less than 1 as shown in figure 5.
Hence, for normal NoC traffic the stress-recovery ratio of stress-
transistors (S1/52/53) is less than 40%. Generally, BTI and HCI are slow
wear-out phenomenon in logic circuits. But, we input low over-drive
(Ves-Vin) voltage of ~100mV to the stress-transistors through input
signals Ini/In2/Ins. Hence, the circuit would set the out signal to high
state in a duration of 2-3 days. However, when a malicious task on a PE
is snooping with up to four HT activated in NIs, its incoming-outgoing
message ratio is 3x the average ratio (shown in figure 5). As a result, the
stress-transistors in 7THANOS undergo 80-90% more stress than recovery
when there is a snooping attack. From figure 6, when a stress-transistor
receives ~90% stress, its threshold voltage increases over a shorter
duration (~3-4 hours). Hence the snooping detection circuit toggles the
out signal to “high” state quicker when PE receives snooped packets.

In THANOS, we use a counter to track the time taken for the out
signal to change its state and compare it with a threshold time that is
configured by a trusted PE firmware, as shown in figure 4(c). THANOS
sends an ALERT signal when the time taken by the ouf signal to switch
the state is less than the threshold. Overall, THANOS sends a notification
about a potential malicious task anywhere from ~2 hours to ~2 days
based on the number of HTs that are active. The trusted PE firmware
then alerts the OS about the malicious application task executing on the
PE, so that preventive measures can be taken.

The snooping detection circuit should last for the lifetime of the
processor to detect snooping attacks. However, due to artificially
induced stress and recovery cycles, the stress-transistors (S1, Sz, S3) wear-
out much more rapidly than the rest of the chip. To increase the lifetime
of THANOS we take two measures: (1) We input low over-drive voltage
(In-Vin = 100mV) and high Vas using separate power lines for stress-
transistors; after every state change of the out signal, we increment the
In signal by ~100mV until we satisfy the MOS saturation condition (/n-
Vin< Vad); (2) The stress-transistors are over-provisioned; we use only
one stress-transistor at any time to detect an attack and when an In
voltage of a stress-transistor can no longer be incremented without
violating the saturation condition, THANOS switches to the next stress-
transistor using the se/ signal. Using three stress-transistors and Vad =
3V, THANOS can seamlessly detect snooping attacks for up to 1.5 years.
The number of stress-transistors in THANOS is hence left to the decision
of the designer. The overhead of THANOS is negligible in power (~50
uW) and area (~0.9 um?) compared to the PE (~1W, ~318mm?) at 22nm
technology node as it requires just 8 MOSFETs, a counter, a comparator,
and a simple control logic block to send input signals.

5. EXPERIMENTS

We target a 64-core manycore chip with low power ARM cortex-A73

cores and a 2D mesh NoC with 8x8 dimension to test the performance,

latency, energy, and area overheads of the proposed lightweight
snooping invalidation module (S/M) and snooping detection circuit
(THANOS) compared to the state-of-the-art. For simulations, we
modeled the behavior of SIM and THANOS as part of the cycle-accurate
NoC simulator Noxim [29]. We obtained the power and area overheads
of SIM and THANOS modules from post-synthesis vectorless estimation
in Vivado [25], and Cadence Virtuoso [31], at 22nm. We integrate the
latency and energy overheads of SIM and THANOS with Noxim for our
simulations. We tested our framework using PARSECv2.1 benchmark
NoC traces generated by netrace [30] to capture the request-response
dependencies to accurately simulate parallel application performance.
We compare our work with a baseline NoC (with a configuration that
is described in section 3.1) with no security mechanism employed, and
with two prior works, FortNoCs [11], and P-Sec [12]. In [11], only data
obfuscation and data scrambling techniques are implemented for a fair
comparison. In [12] end-to-end algebraic manipulation detection (AMD)
and cyclic redundancy codes (CRC) are appended to the header flit for
reliability against faults and HT attacks. We set the threshold time in the
snooping detection circuit of THANOS as ~2.5 days to get a security
violation alert. We first present results of application performance, NoC
latency and NoC energy consumption for 4 actively snooping HTs that
are randomly placed in NoC. Subsequently we present results for

scenarios with 1 and 2 HTs operating in the NoC.
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Figure 7: (a) Normalized application execution time, (b) normalized
network latency, (¢) normalized NoC energy consumption, across NoCs with
different security mechanisms in the presence of 4 active HTs attempting to
inject duplicate packets to an accomplice thread.

Figure 7(a) shows the comparison of application execution time across
different NoC security mechanisms. P-Sec and FortNoCs cannot prevent
the injection of duplicate packets at the NI, and only discard faulty
packets at the receiver, which leads to higher NoC traffic. Moreover, P-
Sec takes two extra cycles for CRC+AMD encoding/decoding, and
FortNoCs takes at least four extra cycles at the NI for node obfuscation
and data scrambling techniques on the entire packet. This leads to poor



application performance with P-Sec and FortNoCs compared to the
baseline. SIM mitigates duplicate data packets near the source, resulting
in less NoC, thereby actually achieving 48.4% average improvement in
application execution time, compared to the baseline.

A similar trend is observed for network latency, shown in figure 7(b).
The network latency of FortNoCs is higher due to the packet scrambling
mechanism that encrypts/decrypts the entire packet using XOR
operation, which is time consuming for packets with high payload size.
FortNoCs incurs additional overhead due to packet authentication as an
additional security mechanism. SIM, in comparison, takes one cycle only
at the sending NI to detect duplicate packets, and THANOS has no
latency overhead. In the absence of duplicate packets in the NoC, SIM
has the lowest NoC latency, and achieves an average of 67.8%, 77.3%
and 68.1% latency reduction compared to the baseline, FortNoCs, and P-
Sec in the presence of active data-snooping HTs.

Next, we analyze NoC energy consumption. Although SIM+THANOS
consumes ~5.5% additional NI power, its energy consumption is 47.8%
lower compared to baseline on average due to the lower application
execution time as shown in figure 7(c). FortNoCs consumes around
41.8% additional energy compared to the baseline due to increased
execution time and the overheads incurred to employ XOR encryption/
decryption logic in the NI. P-Sec consumes up to 200% more energy
compared to the baseline due to its costly AMD, and CRC codec engines
present in NIs and NoC routers. P-Sec is thus much more expensive,
although it provides combined safety against faults and snooping attacks.

3 '[MBASE MFortNoCs [IP-Sec [ JSIM+THANOS| '
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Figure 8: Normalized average values of application execution time, network
latency, and NoC energy consumption across different security mechanisms
with 1 HT (top), 2 HTs (bottom).

Normalized results
o a2 N W O 2N

We observe similar trends in application execution time, NoC energy,
and latency even when fewer number of HTs are active as shown in
figure 8, with SIM+THANOS performing better than the baseline unlike
FortNoCs and P-Sec. This shows that our proposed snooping
invalidation and snooping detection mechanisms, SIM+THANOS, does
not trade-off NoC performance and NoC energy consumption to provide
security. Lastly, we compare area footprint of SIM+THANOS with other
schemes. As shown in Table 3, SIM+THANOS has the lowest area
footprint amongst the three security mechanisms. SIM+THANOS
mechanism consumes only 2.15% additional area in the NI to implement
the packet validation mechanism.

Table 3. Area footprint of different NoC security enhancement mechanisms

SIM+THANOS FortNoCs P-Sec
2.2 um? 4.9 ym? 500um?

6. CONCLUSIONS

In this paper we proposed a low-overhead mechanism called SIM to
prevent data-snooping attacks that are initiated by HTs embedded in
NoC network interfaces. We also proposed a lightweight standalone
snooping-attack detection mechanism called THANOS that uses
controlled circuit aging to detect the source of attacks that can help
processors take preventive steps to mitigate future attacks. In FortNoCs
and P-Sec it is impossible to detect the source of the attack, which can
be addressed by using SIM+THANOS. Experimental results show that
SIM+THANOS reduces application execution time by 62.9% and 48.3%
and energy consumption by 63.5% and 83.7% compared to FortNoCs
and P-Sec. SIM+THANOS incurs a minimal additional 5.5% power and
2.15% area overhead, compared to the baseline, much lower than the

overhead for FortNoCs and P-Sec. Thus SIM+THANOS represents a
promising solution to enhance NoC security in manycore processors.
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