
Lightweight Mitigation of Hardware Trojan Attacks in  
NoC-based Manycore Computing 

Venkata Yaswanth Raparti, Sudeep Pasricha 
Department of Electrical and Computer Engineering 
Colorado State University, Fort Collins, CO, U.S.A. 

yaswanth@rams.colostate.edu, sudeep@colostate.edu
 

ABSTRACT  
Data-snooping is a serious security threat in NoC fabrics that can lead to 
theft of sensitive information from applications executing on manycore 
processors. Hardware Trojans (HTs) covertly embedded in NoC 
components can carry out such snooping attacks. In this paper, we first 
describe a low-overhead snooping invalidation module (SIM) to prevent 
malicious data replication by HTs in NoCs. We then devise a snooping 
detection module (THANOS) to also detect malicious applications that 
utilize such HTs. Experimental analysis shows that unlike state-of-the-
art mechanisms, SIM and THANOS not only mitigate snooping attacks 
but also improve NoC performance by 48.4% in the presence of these 
attacks, with a minimal ~2.15% area and ~5.5% power overhead. 
 

1. INTRODUCTION 
With the rise in number of processing cores and growing parallelism 

in applications, the communication traffic in a manycore processor has 
been increasing. Chip designers and manufacturers are moving towards 
network-on-chip (NoC) as their de-facto intra-chip communication 
fabric [1]-[2]. Typically, emerging manycore processors have tens to 
hundreds of components that are designed either by in-house engineers 
or obtained from third-party vendors (3PIP), and then finally integrated 
together in a single global facility. With the growing complexity in NoC 
design, designers are opting for third-party NoC IPs, e.g., [3], to connect 
the components in their processors. This global trend of distributed 
design, validation, and fabrication has led to major challenges in 
ensuring secure execution of applications on manycore platforms, in the 
presence of potentially untrusted hardware and software components.  

Much work has been done to mitigate side-channel attacks on shared 
resources and to detect counterfeit ICs that compromise manycore chip 
performance [4], [6]. This work focuses on an orthogonal attack scenario 
where an adversary can insert a hardware Trojan (HT) into the RTL or 
the netlist of a manycore processor to disrupt or alter the integrity of its 
behavior without being detected at the post silicon verification stage. 
HTs can be inserted by an intellectual property (IP) vendor, untrusted 
CAD tool/designer, or at the foundry via reverse engineering [5]. We 
focus on one such attack called a data-snooping attack where a malicious 
software and an HT work together to steal information from applications 
executing on manycore processors.  

NoCs are ideal candidates for such attacks as they have a complex 
design that can be used to hide an HT which cannot be easily detected 
via functional verification. HTs can be placed in NoC links, routers, or 
network interfaces (NIs) to secretly snoop on the data or corrupt data 
passing through them. Typically, in data-snooping attacks HTs create 
duplicate packets with modified headers and send them into the NoC for 

an accomplice thread to receive them [11]. Several works propose packet 
encoding/error correction mechanisms such as parity bits and ECC in 
NoC packets to detect faulty data packets at the receiver [7]-[8]. Other 
works such as [9]-[12] have also proposed data protection mechanisms 
in the presence of an HT in NoC components. However, there are three 
major shortcomings with the state-of-the-art: (1) these works assume the 
presence of HTs in NoC routers or links which can be detected by 
physical inspection or functional verification, without employing costly 
security mechanisms; (2) the mechanisms proposed in prior works 
protect application data from snooping attacks but do not detect the 
attack and mitigate future attacks; and (3) most of the security 
enhancement mechanisms are costly to implement and increase NoC 
latency and power consumption which worsens the overall performance. 
It is important to design and deploy lightweight mechanisms that can 
detect the operation of malicious HTs embedded in NoCs and 
accomplice threads, and secure against their data-snooping attacks in 
emerging manycore processors. 

In this work we focus on security enhancement that do not notably 
increase performance and power overheads. We provide robust yet low-
power mechanisms to detect the source of the attacks by utilizing 
controlled aging in circuits at runtime, which is not easy to obfuscate or 
tamper with in the design and fabrication process. Our novel 
contributions in this work are as follows: 

 We first design and demonstrate a data-snooping attack using an 
HT in the NoC interface that duplicates packets and injects them 
into the NoC with a minimal area and power footprint, making it 
difficult to detect by traditional functional verification mechanisms; 

 We then protect against such data-snooping attacks by proposing a 
novel snooping invalidation module (SIM) that uses an encoding-
based duplicate packet detection mechanism;   

 We further propose a novel data-snooping detection circuit called 
THANOS that uses threshold voltage degradation as a means to 
detect an on-going attack at runtime and blacklist the malicious 
software task that initiated the attack; 

 Experimental analysis shows that SIM with THANOS provides 
security against HTs with minimal area and power overhead. 
 

2. RELATED WORK 
Significant research has been done to increase robustness against 

attacks by HTs in NoCs by assuming that an HT tampers or snoops data 
passing through it. In [9], bit shuffling and Hamming ECC are used to 
reduce the effectiveness of HTs that corrupt data. In [10], security zones 
managed by a centralized security manager are proposed to protect 
sensitive information from being accessed by malicious agents. In [11] 
data scrambling, packet authentication, and node obfuscation are 
proposed to prevent data stealing by a compromised NoC. Data 
scrambling, and packet-authentication mechanisms use a one-time pad 
XOR cipher that can be broken by the malicious tasks when enough 
encrypted packets are accumulated. In [12], CRC and algebraic 
manipulation detection (AMD) are used to encode packet headers to 
safeguard from faults and snooping attacks.  In [13], a novel wave-based 
scheduling mechanism for NoCs is proposed that eliminates the need for 
TDMA-based NoC resource sharing, hence providing non-interference 
between different domains of applications. In [14], a process variation-
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based packet encoding and decoding mechanism is proposed to prevent 
data-snooping in silicon photonic NoCs. Most of these schemes that 
protect application data from NoC security attacks lack an efficient and 
low-power attack detection mechanism which makes them incomplete in 
providing security.  

A few works address HT detection in NoC components at design-time 
and runtime. At design time, techniques such as physical inspection [15], 
functional testing [16], and side channel analysis [17] have been 
proposed. But testing for HTs at design time is still in infancy, and the 
growing complexity of NoC components make this even more difficult. 
Hence, designers are now exploring runtime detection methods. A key 
logic built-in self-test (LBIST) was proposed in [18] that uses test vectors 
generated by programmable keys to detect Trojans. However, LBIST 
requires that the chip operation should be paused while testing at regular 
and frequent intervals, which is not suitable for NoCs that should 
function seamlessly. A few other works such as [19], [20] propose in-
situ HT detection modules that rely on verification units placed in NoC 
components to detect HTs. There are two limitations with all of these 
works: (1) the verification units used to detect HTs can also be reverse-
engineered and tampered, (2) these mechanisms are used to detect only 
HT induced data-corruption attacks. Data-snooping attacks unlike data-
corruption attacks attempt to leak critical application data to malicious 
software tasks. None of the prior works have addressed the problem of 
detecting the software task that initiates data-snooping attacks to 
blacklist and prevent future attacks.  

In [21], a run-time technique called NoCAlert is proposed to detect 
failures in the control logic of NoC components. This technique is further 
enhanced by [22] that proposes modules which alert the host system if 
the control logic in NoC routers detects invariance violations caused by 
HTs placed in its control-path, e.g., logic for route computation (RC) or 
virtual channel allocation (VCA). However, these techniques focus on 
NoC components that have substantial control logic, such as routers. 
They ignore the network interface (NI) which prevents easy placement 
of model checkers to detect packet duplication. In this paper we propose 
a novel snooping invalidation module (SIM) in the NI that can mitigate 
snooping attacks. We then propose low-overhead techniques to detect 
the source of data-snooping attacks in NoCs. To the best of our 
knowledge, this is the first work that mitigates snooping attacks in NoCs 
with minimal performance and power overheads, while also detecting 
the source of snooping attack to protect against future attacks.  

 

 
Figure 1: Baseline NoC architecture with example routers, a PE and an NI 

 

3. BACKGROUND AND ATTACK MODEL 
3.1 Background 

In this section we discuss our assumed baseline NoC design. We 
consider a traditional 2D mesh based NoC with processing elements (PE) 
connected to the NoC via a network interface (NI). The packets entering 
the NoC are routed towards their destination by routers that use a hop-
by-hop, turn-based distributed deadlock free XY routing algorithm. 
Figure 1 shows the schematic of the baseline 2D mesh NoC with an NI 
and PE connected to routers. We use traditional 3-stage {buffer write, 
RC+VCA+SA, LT} pipelined routers in the NoC with wormhole 
switching and 4-VC buffers at each input port. PEs communicate using 
messages that are passed to the NI which packetizes them before sending 
them to the NoC. The packets received by the NI from the NoC are de-
packetized and sent to the connected PE. We consider ARM Cortex-A73 
cores in our PEs that use the AXI interface for communication. Each PE 

has a private L1 cache and a shared distributed L2 cache that uses a 
scalable directory-based cache coherence protocol to send messages in 
the form of NoC packets.  

3.2 Attack Model 
Prior works [9]-[12] assumed data-snooping attacks to be carried out 

by HTs embedded in NoC routers or by compromised links that enable 
HTs to modify the packet headers. These HTs, once activated by a flit 
with a special activation sequence, make copies of packets passing 
through the router and transmit them to the PE that has a malicious 
accomplice task running on it. Once an HT is activated in a router, it 
generates new packets, or diverts an existing packet to the PE running 
the accomplice task. This type of HT, that has a high 4% area overhead 
[11], may be noticed by testers while conducting physical inspection or 
side channel analysis. Moreover, this type of attack can lead to illegal 
utilization of router resources such as buffers, VCs, and switch 
allocators, which cause control logic violations that can be detected by 
secure model checkers [22]. We thus focus on a harder-to-detect attack 
with an HT embedded in the NI where packets are generated, and hence 
packets can be duplicated with relatively simpler logic without 
interfering with the basic NI functionality.  
 

 
Figure 2: (a) Overview of attack model on a NoC with a malicious software 
task coordinating the data-snooping attack, (b) microarchitecture of network 
interface (NI) with a hardware Trojan embedded in packetizer module, (c) 
FIFO queue modification by hardware Trojan. 

Figure 2(a) shows an overview of an on-going data-snooping attack 
taking place in a 2D NoC based manycore processor with multiple HTs 
activated in the NoC NI modules shown in red, and a malicious task 
running on a PE connected to the yellow router and NI. The HTs make 
duplicate copies of packets in NIs that are sent to the malicious task.  

 

3.3 Design Details: Network Interface with a Hardware Trojan 
Figure 2(b) shows the microarchitecture of an NI with an embedded 

HT in the packetizer module. The NI receives messages from the PE via 
the AXI interface that are then stored in its buffers. The messages usually 
are read/write commands with address and data fields. The packetizer 
module appends source ID, destination ID, and virtual channel ID 
information to the commands and creates packets. A packet is further 
divided into flits, with the header flit containing the NoC routing related 
information. The packet flits are then injected into the circular flit queue 
that is accessed via head and tail pointers. After the packetizer injects a 
flit, the tail pointer of the queue is incremented. After a flit is transmitted 
to a router, the head pointer is incremented to transmit the next flit.  

An HT can potentially tamper with the pointer values to re-send 
duplicate packets intelligently. Once a flit has been transmitted from NI 
to the router, it stays in the cyclic queue until a new flit is overwritten on 
that location. The HT can keep track of these locations to read a header 



flit that has already been transmitted to the router, append it with a 
duplicate destination ID of the malicious node, and update the head-
pointer. Figure 2(c) shows how the HT modifies the head pointer. By 
moving the head pointer at regular intervals, the HT can send duplicate 
packet flits without having to store them externally. The duplicate packet 
is re-sent to the router for transmission. If the flit queue is full (head 
pointer = tail pointer), both the HT and packetizer do not inject new flits 
into the queue, and do not accept any more incoming data from the PE 
until the outstanding flits are transmitted. The HT does not interfere with 
the control logic which is mostly present in the AXI interface, and an 
attacker can snoop on data using this HT in NIs between two PEs, or 
between a PE and a memory controller that is connected to main memory 
channels.  

We now perform an overhead analysis of this HT. The proposed HT 
requires an internal memory to save the head flit to modify its destination 
ID, save the header pointer of the queue, and save the current state of the 
HT (~72 bits). We designed the NI shown in figure 2(b) by modifying 
the CONNECT open-source NoC model [24] and used Xilinx�s Vivado 
HLS [25] tool to analyze the overheads. Table 1 shows the clock cycle 
period, number of flipflops and LUTs used for an FPGA implementation 
of the packetizer. The optimized design indicates that the NI with an HT 
requires an additional ~5% FFs and ~1% LUTs (1.3% area overhead) 
without incurring additional timing latency. This low overhead HT can 
be inserted at the RTL level, or by reverse engineering and changing the 
netlist at the place and routing stage [5], [15]. The small size of the HT 
makes it hard to detect by physical inspection or by side-channel 
analysis. Also, the run-time secure model checkers from [21], [22] are 
not able to check the validity of flits in the NI as it does not interfere with 
the control logic. Hence, there is a need to design a low-overhead flit 
validation module in NIs to check flit validity before injecting them into 
the NoC. 

Table 1. FPGA Implementation of NI packetizer with and without 
Hardware Trojan (HT) 

 Timing (ns) Number of FFs Number of LUTs 
NI without HT 3.45 258 535 
NI with HT 3.45 273 549 

 

4. MITIGATION OF NOC SNOOPING ATTACKS 
We propose a novel framework that integrates two mechanisms to 

mitigate data snooping attacks from taking place, as well as to detect the 
source of an on-going attack, and protect against future snooping attacks. 
We rule-out data corruption attacks as they can be detected and corrected 
using ECC codes such as in [12]. Our proposed framework consists of 
two security mechanisms, (1) a snooping invalidator module at the NI 
output queue to discard duplicate packets, (2) detection of data-snooping 
attacks at the PE where an accomplice thread is executing. This 
comprehensive protection framework ensures that we proactively 
mitigate future attacks and safeguard the application data for the entire 
lifetime of the processor. We have designed our security mechanism to 
be hard to be tampered by adversaries that use reverse engineering 
techniques to insert HTs in the netlist. Our approach also works 
irrespective of the HT triggering process to start snooping attacks such 
as special flit data, circuit aging, or temperature [23]. The following 
sections discuss our two security mechanisms. 

 

4.1 Security enhanced NI: preventing data-snooping attack  
The first security enhancement mechanism is to prevent a snooping 

attack with the help of a snooping invalidator module (SIM) at the NI. 
Using SIM, we aim to discard packets with invalid header flits from 
being injected into the NoC. Unlike traditional ECC-based security 
enhancement mechanisms, SIM incurs low-power and low latency 
overheads because of its lightweight computations that are designed 
solely to mitigate snooping attacks. Figure 3 (a) shows an overview of 
the security enhancement in NI using SIM. 

We divide the implementation of SIM across the PE and NI to prohibit 
3PIP NoC designers/testers to reverse engineer or tamper with the secret 

encoding/decoding information at runtime. The PE and NI communicate 
using the standard AXI hand-shake protocol (ready, valid, and valid 
ready signals). A typical NI receives messages from the PE to be 
packetized and sent to the NoC and vice-versa. In the security enhanced 
NI, additional encoding information (key) is attached with the data 
received from the PE to validate the uniqueness of data packets. The 
numbered sequence of steps shown in Figure 3 describe how a packet is 
validated using SIM. These steps are discussed next. 

  
(a) 

 
(b) 

Figure 3: (a) Security enhanced NI using SIM (b) Flowchart of 
snooping invalidation mechanism in NI 

 

In step 1, the PE data dispatcher sends a count (C: increments with 
each outgoing data) value to the NI controller along with the AXI ready 
signal. In step 2, the NI controller sends a buffer id (B_id) that is reserved 
to store the incoming data along with the AXI valid signal to the PE data 
dispatcher. The NI controller simultaneously sends C to SIM that stores 
it in a �validation table�. The PE uses an XOR function f to generate an 
encoded key k as a function of C, B_id, and destination ID (dest_id) of 
the packet, as shown in eq. (1) below. In step 3, the PE sends a message 
{data, k} combination to the data buffers and toggles the valid ready 
signal to high. At the same time, the validation table sends a c_id 
(location where count is stored in the table) to the NI controller. This is 
stored with the message sent by the PE. The {data, k, c_id} combination 
is stored as a unit in read/write buffers till the packet is sent out of the 
NI. While the size of payload data varies from 8B to 128B depending on 
message type, the values of k, C and c_id require only few bits of storage 
(see legend of figure 3(a)).   

 

                                     (1) 
                                     (2) 

 

In step 4, the {data, k, c_id} combination is sent to the packetizer to 
generate packets. In step 5, flits are generated with k and c_id copied into 
the header flit. We save k and c_id in the 24-bits reserved in the header 
flit to store destinations of source-routing path [26] which are unused as 
we adopt distributed routing for our NoC. The flits are then saved in the 
output flit queue. Steps 6-9 are part of snooping invalidation flow 
explained in more detail in figure 3(b). SIM tries to retrieve the encoded 
key k from the C entry in the validation table as a part of packet 
validation. In step 6, SIM reads dest_id, k, and c_id bits of the header flit, 
and performs a decoding operation shown in eq. (2) to obtain B_id of the 



buffers that stored the corresponding packet data, and k sent by the PE 
(step 7). In steps 8 and 9, SIM retrieves the value of k� stored in the buffer 
located at B_id and compares with k that is read from the header flit. If 
k=k�, SIM sends a valid signal that the header flit is valid, and it is 
injected into the NoC. If SIM sends an invalid signal, the flit queue 
discards all the flits corresponding to the duplicate packet. SIM 
efficiently detects duplicate packets because, if the value of dest_id is 
modified by the HT, eq. (2) leads to an incorrect value of B_id that does 
not retrieve the k value corresponding to the data of packet sent in step 
3. Note that for broadcast/multicast packets, multiple keys are generated 
for each dest_id value and key verification steps 8 and 9 are performed 
on each of them separately. After a packet is sent out, the corresponding 
read/write data buffer and validation table entries are reused for new 
data. This low-overhead SIM module with minor modifications can also 
be used to curb potential data duplication at router-link interfaces or 
within a router. 
 

4.1.1 Overhead analysis  
Several steps in the SIM module can be performed in parallel. The 

existing communication data channel between the PE and the NI that is 
established by AXI interface is used to communicate both packet data 
and SIM metadata (C, k, B_id in steps 1 and 2). Hence, no additional 
wires are needed to transmit SIM metadata.  Steps 1 and 2 are performed 
in parallel with AXI interface�s ready and valid signal exchange to 
minimize the latency overhead. Also, there is no additional overhead 
involved in steps 3 to 5. Steps 6 to 9 take one cycle in a NoC that is 
clocked at 1GHz frequency which was verified via FPGA synthesis of 
the modified NI [25]. This increases the number of pipeline stages of the 
NI microarchitecture. SIM takes additional memory to maintain a 
validation table, and additional logic to perform XOR and comparison 
operations. SIM incurs ~5.5% more power and ~2.15% more area 
overhead compared to the baseline NI with a buffer capacity of 16 
packets, at the 22nm technology node. 

 

4.2 Detecting the source of a data-snooping attack  
Using our security enhanced NI with the integrated SIM, we can curb 

packet duplication at the NI. However, the malicious task that is the 
source of the attack is still not detected that could initiate attacks from 
compromised routers or links [12]. In this section, we propose a module 
called THANOS, a novel threshold activated snooping attack detector 
that is implemented at the interface between an NI and a PE, as shown 
in figure 4(a) to detect the source of the snooping attack.  

 

 
Figure 4: (a) Overview of THANOS (b) block diagram of THANOS showing 
inputs and outputs (c) snooping detecting circuit used in THANOS 

 

A PE sends and receives various types of messages into the NoC that 
can be broadly classified into two types: (1) direct messages between 
cores for inter-core communication, and (2) cache-coherence messages 
between a PE and directory table. Figure 5 (blue bars) shows the average 
incoming-outgoing message ratio sent over 64 cores in a NoC by 
different PARSECv2.1 [27] benchmark applications with 64 tasks each. 
The error-bars in figure 5 represent variance across NoC nodes. Figure 5 
shows that the ratio is less than 1 over all the benchmarks with each node 
receiving a smaller number of messages than the messages it sends out 
(number of �packets� in a �message� can vary based on message type). 

Another important observation from figure 5 is that the incoming-
outgoing message ratio is much greater than 1 (red points) when a data-
snooping attack takes place, because a PE receives significantly higher 
number of messages (and packets) than it sends out. This phenomenon 
can be easily detected in the short term by placing a counter in the NI 
and observing the number of incoming and outgoing messages over an 
epoch of time. However, observing messages in the short term can lead 
to false positives, e.g., due to periodic bursts of messages from a task that 
requires higher volumes of input data. Also, a message counter is not the 
most secure way to detect a snooping attack, given the reverse 
engineering techniques available to tamper digital logic [15].  

In THANOS we devise a mechanism that observes the ratio of 
incoming and outgoing messages over a period of few hours and 
identifies the source of a snooping attack. THANOS is designed using a 
combination of analog and digital logic to detect if a PE is snooping on 
messages over a duration of time. As THANOS is not entirely a digital 
logic implementation, it is hard to reverse engineer or tamper with, and 
can be used as a final frontier to mitigate data-snooping attacks. 
THANOS receives inputs from the PE and sends a security alert signal to 
the PE as shown in figure 4(b). The PE then identifies the source of data-
snooping attacks and takes preventive steps to mitigate future attacks. 
THANOS is designed as a standalone module that can also be used with 
prior data protection schemes [9]-[12] to detect the source of attack. 

 
Figure 5: Average incoming-outgoing message ratio at normal PE (left), and 
at snooping PE (right) across different applications 
 
 

4.2.1 Overview of snooping detection circuit 
We take inspiration from a controlled aging module [6] that uses 

threshold degradation of NMOS transistors due to aging phenomenon 
such as bias temperature instability (BTI) and hot carrier injection (HCI) 
to detect chip usage, which helps identifying counterfeit ICs. In 
THANOS we use NMOS threshold voltage degradation to detect a PE 
that is receiving duplicate packets injected by multiple HT activated NIs 
in the NoC. NMOS transistors undergo stress-recovery periods in their 
ON and OFF operations that leads to threshold voltage (Vth) degradation 
[28]. Figure 6 shows the Vth degradation observed across different ratios 
of stress and recovery in an NMOS transistor at 22nm using the long-
term aging model proposed in [28]. At 100% stress (no recovery) the Vth 
of a transistor increases by ~ 100mV in about two hours duration. We 
use this phenomenon to detect snooping attacks. 

                                                                                                           

4.2.2 Operation of snooping detection circuit  
In our snooping detecting circuit shown in figure 4(c), there are 2 

transistors; N1 that acts as a diode connected load and N2 that acts as gate-
source voltage (Vgs) sensor. P1, P2, P3 are diode-connected PMOS 
transistors that pull the drain voltages of S1, S2, S3 to high. Transistors S1, 
S2, S3 are driven using low over-drive voltages In1, In2, In3 that barely 
switch them ON. We artificially induce stress in a selected transistor 
among S1/S2/S3 when a message is received and induce recovery when a 
message is sent out. Hence, we call them stress-transistors. At any point 
only one of S1,S2,S3 are connected to the circuit (using In and sel signals). 
When S1/S2/S3 is turned ON, the source (Vx) of N2 is pulled low, which 
turns ON N2, leading to a �low� out state. But, when a stressed transistor 
(S1/S2/S3) undergoes Vth degradation, its over-drive voltage (In =Vgs-Vth) 
is not high enough to turn ON the stress-transistor and hence drives it 
into the triode region. When S1/S2/S3 is in the triode-region, the source 
voltage (Vx) of N1 is not pulled low and the out signal is set to �high�.  



 
Figure 6: Threshold voltage degradation observed across different stress-
recovery ratios in a NMOS transistor at 22nm technology node 
 

Table 2: State transition of snooping detection circuit 
Stress-transistors (S1/S2/S3) Vx N2 out 

Saturated Low ON Low 
Triode High OFF High 

 
Table 2 gives the states of different transistors and the corresponding 

changes in out signal state. When a PE is not receiving snooped packets, 
its incoming-outgoing message ratio is less than 1 as shown in figure 5. 
Hence, for normal NoC traffic the stress-recovery ratio of stress-
transistors (S1/S2/S3) is less than 40%. Generally, BTI and HCI are slow 
wear-out phenomenon in logic circuits. But, we input low over-drive 
(Vgs-Vth) voltage of ~100mV to the stress-transistors through input 
signals In1/In2/In3. Hence, the circuit would set the out signal to high 
state in a duration of 2-3 days. However, when a malicious task on a PE 
is snooping with up to four HT activated in NIs, its incoming-outgoing 
message ratio is 3× the average ratio (shown in figure 5). As a result, the 
stress-transistors in THANOS undergo 80-90% more stress than recovery 
when there is a snooping attack. From figure 6, when a stress-transistor 
receives ~90% stress, its threshold voltage increases over a shorter 
duration (~3-4 hours). Hence the snooping detection circuit toggles the 
out signal to �high� state quicker when PE receives snooped packets.  

In THANOS, we use a counter to track the time taken for the out 
signal to change its state and compare it with a threshold time that is 
configured by a trusted PE firmware, as shown in figure 4(c). THANOS 
sends an ALERT signal when the time taken by the out signal to switch 
the state is less than the threshold. Overall, THANOS sends a notification 
about a potential malicious task anywhere from ~2 hours to ~2 days 
based on the number of HTs that are active. The trusted PE firmware 
then alerts the OS about the malicious application task executing on the 
PE, so that preventive measures can be taken.  

The snooping detection circuit should last for the lifetime of the 
processor to detect snooping attacks. However, due to artificially 
induced stress and recovery cycles, the stress-transistors (S1, S2, S3) wear-
out much more rapidly than the rest of the chip. To increase the lifetime 
of THANOS we take two measures: (1) We input low over-drive voltage 
(In-Vth  100mV) and high Vdd using separate power lines for stress-
transistors; after every state change of the out signal, we increment the 
In signal by ~100mV until we satisfy the MOS saturation condition (In-
Vth < Vdd); (2) The stress-transistors are over-provisioned; we use only 
one stress-transistor at any time to detect an attack and when an In 
voltage of a stress-transistor can no longer be incremented without 
violating the saturation condition, THANOS switches to the next stress-
transistor using the sel signal. Using three stress-transistors and Vdd = 
3V, THANOS can seamlessly detect snooping attacks for up to 1.5 years. 
The number of stress-transistors in THANOS is hence left to the decision 
of the designer. The overhead of THANOS is negligible in power (~50 

W) and area (~0.9 m2) compared to the PE (~1W, ~318mm2) at 22nm 
technology node as it requires just 8 MOSFETs, a counter, a comparator, 
and a simple control logic block to send input signals.  
5. EXPERIMENTS 

We target a 64-core manycore chip with low power ARM cortex-A73 
cores and a 2D mesh NoC with 8×8 dimension to test the performance, 

latency, energy, and area overheads of the proposed lightweight 
snooping invalidation module (SIM) and snooping detection circuit 
(THANOS) compared to the state-of-the-art. For simulations, we 
modeled the behavior of SIM and THANOS as part of the cycle-accurate 
NoC simulator Noxim [29]. We obtained the power and area overheads 
of SIM and THANOS modules from post-synthesis vectorless estimation 
in Vivado [25], and Cadence Virtuoso [31], at 22nm. We integrate the 
latency and energy overheads of SIM and THANOS with Noxim for our 
simulations. We tested our framework using PARSECv2.1 benchmark 
NoC traces generated by netrace [30] to capture the request-response 
dependencies to accurately simulate parallel application performance.  

We compare our work with a baseline NoC (with a configuration that 
is described in section 3.1) with no security mechanism employed, and 
with two prior works, FortNoCs [11], and P-Sec [12]. In [11], only data 
obfuscation and data scrambling techniques are implemented for a fair 
comparison. In [12] end-to-end algebraic manipulation detection (AMD) 
and cyclic redundancy codes (CRC) are appended to the header flit for 
reliability against faults and HT attacks. We set the threshold time in the 
snooping detection circuit of THANOS as ~2.5 days to get a security 
violation alert. We first present results of application performance, NoC 
latency and NoC energy consumption for 4 actively snooping HTs that 
are randomly placed in NoC. Subsequently we present results for 
scenarios with 1 and 2 HTs operating in the NoC. 

 
(a) 

 
(b) 

 
(c) 

Figure 7: (a) Normalized application execution time, (b) normalized 
network latency, (c) normalized NoC energy consumption, across NoCs with 
different security mechanisms in the presence of 4 active HTs attempting to 
inject duplicate packets to an accomplice thread. 
 

Figure 7(a) shows the comparison of application execution time across 
different NoC security mechanisms. P-Sec and FortNoCs cannot prevent 
the injection of duplicate packets at the NI, and only discard faulty 
packets at the receiver, which leads to higher NoC traffic. Moreover, P-
Sec takes two extra cycles for CRC+AMD encoding/decoding, and 
FortNoCs takes at least four extra cycles at the NI for node obfuscation 
and data scrambling techniques on the entire packet. This leads to poor 



application performance with P-Sec and FortNoCs compared to the 
baseline. SIM mitigates duplicate data packets near the source, resulting 
in less NoC, thereby actually achieving 48.4% average improvement in 
application execution time, compared to the baseline.  

A similar trend is observed for network latency, shown in figure 7(b). 
The network latency of FortNoCs is higher due to the packet scrambling 
mechanism that encrypts/decrypts the entire packet using XOR 
operation, which is time consuming for packets with high payload size. 
FortNoCs incurs additional overhead due to packet authentication as an 
additional security mechanism. SIM, in comparison, takes one cycle only 
at the sending NI to detect duplicate packets, and THANOS has no 
latency overhead. In the absence of duplicate packets in the NoC, SIM 
has the lowest NoC latency, and achieves an average of 67.8%, 77.3% 
and 68.1% latency reduction compared to the baseline, FortNoCs, and P-
Sec in the presence of active data-snooping HTs.  

Next, we analyze NoC energy consumption. Although SIM+THANOS 
consumes ~5.5% additional NI power, its energy consumption is 47.8% 
lower compared to baseline on average due to the lower application 
execution time as shown in figure 7(c). FortNoCs consumes around 
41.8% additional energy compared to the baseline due to increased 
execution time and the overheads incurred to employ XOR encryption/ 
decryption logic in the NI. P-Sec consumes up to 200% more energy 
compared to the baseline due to its costly AMD, and CRC codec engines 
present in NIs and NoC routers. P-Sec is thus much more expensive, 
although it provides combined safety against faults and snooping attacks.  

 

 
Figure 8: Normalized average values of application execution time, network 
latency, and NoC energy consumption across different security mechanisms 
with 1 HT (top), 2 HTs (bottom). 

 

We observe similar trends in application execution time, NoC energy, 
and latency even when fewer number of HTs are active as shown in 
figure 8, with SIM+THANOS performing better than the baseline unlike 
FortNoCs and P-Sec. This shows that our proposed snooping 
invalidation and snooping detection mechanisms, SIM+THANOS, does 
not trade-off NoC performance and NoC energy consumption to provide 
security. Lastly, we compare area footprint of SIM+THANOS with other 
schemes. As shown in Table 3, SIM+THANOS has the lowest area 
footprint amongst the three security mechanisms. SIM+THANOS 
mechanism consumes only 2.15% additional area in the NI to implement 
the packet validation mechanism. 

 

Table 3. Area footprint of different NoC security enhancement mechanisms 
SIM+THANOS FortNoCs P-Sec 

2.2 m2 4.9 m2 500 m2 
 

6.  CONCLUSIONS 
In this paper we proposed a low-overhead mechanism called SIM to 

prevent data-snooping attacks that are initiated by HTs embedded in 
NoC network interfaces. We also proposed a lightweight standalone 
snooping-attack detection mechanism called THANOS that uses 
controlled circuit aging to detect the source of attacks that can help 
processors take preventive steps to mitigate future attacks. In FortNoCs 
and P-Sec it is impossible to detect the source of the attack, which can 
be addressed by using SIM+THANOS. Experimental results show that 
SIM+THANOS reduces application execution time by 62.9% and 48.3% 
and energy consumption by 63.5% and 83.7% compared to FortNoCs 
and P-Sec. SIM+THANOS incurs a minimal additional 5.5% power and 
2.15% area overhead, compared to the baseline, much lower than the 

overhead for FortNoCs and P-Sec. Thus SIM+THANOS represents a 
promising solution to enhance NoC security in manycore processors.   
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