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Abstract— This paper presents a polynomial chaos (PC) based
numerical approach for the variation analysis of silicon photonics
microresonators (MRs) in the presence of inevitable fabrication
process variations. In particular, we develop low-dimensional
component-level PC metamodels of standard quantities of interest
which are then used to model the impact of fabrication process
variations on the higher dimensional device-level quantities of
interest. We demonstrate that the proposed indirect approach is
much more computationally efficient when compared with the
conventional approach of directly generating PC metamodels for
device-level quantities of interest.
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I. INTRODUCTION

Microresonators (MRs) are often considered as the primary
building block in silicon photonics integrated circuits. They are
compact (e.g., 5 um in radius) and have various functionalities
for signal modulation, switching, and filtering [1]. Nevertheless,
MRs are highly susceptible to fabrication process variations [2]-
[3]. For example, small variations in the critical dimensions of
MRs (e.g., waveguide width and thickness) as well as those in
the doped materials (i.e., silicon (Si) in the waveguide core and
silicon dioxide (SiO,) in the cladding and substrate) lead to large
uncertainty in the operating frequency (i.e., the resonant
wavelength) of MRs (see Fig. 1) [4].

Recently, polynomial chaos (PC) has emerged as a reliable and
powerful numerical tool to quantify the impact of fabrication
process variations on the response of silicon photonics devices
[5]-[6]. In particular, PC models the fabrication process
variations as random variables (or random dimensions) with
well-known probability density functions (PDFs). Next, it
represents the resultant variability in the device response using
a linear combination of orthonormal polynomial basis functions
of the input random variables [5]-[6]. The coefficients of the
basis functions form the new unknowns of the system. These
coefficients are determined using repeated deterministic
simulations of the original device model at prescribed nodes in
the multidimensional random space. Once known, the
combination of the coefficients and orthonormal bases form a
closed-form surrogate model or metamodel of the response that
can be easily probed to capture the statistical variability of the
response quantity of interest (e.g., the resonant wavelength in
MRs). The key advantage of PC lies in its fast convergence to
the correct results even in the presence of large number of
random dimensions. However, this advantage is balanced by the
fact that the number of deterministic model simulations required
to determine all the coefficients scale in a near-exponential
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manner with respect to the number of random dimensions. This
poor scalability makes it infeasible to consider the full set of
random dimensions.
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Fig. 1. Geometrical structure of an MR-based filter (right-hand side)
with K MRs, and a cross-section of a strip waveguide (left-hand side).
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In this paper, a new hierarchical PC approach is developed
to study the resonant wavelength shift in MRs under fabrication
process variations. We consider passive MRs based on strip
waveguides (see Fig. 1). The proposed approach first constructs
PC metamodels for the component-level quantities of interest
(i.e., the refractive effective index for the strip waveguides in the
MR). In doing so, only the random dimensions that arise at the
component-level need to be considered while the dimensions
that arise at the device-level can be ignored. This means that a
reduced set of dimension need to be considered for the
component-level PC metamodels. This significantly reduces the
number of deterministic model simulations required to
determine the coefficients. Finally, the impact of the
component-level PC metamodels and the impact of the device-
level random dimensions on the device-level quantity (i.e., the
resonant wavelength in an MR) is modeled analytically. Thus,
hierarchical but analytic statistical models are derived at the
device-level far more efficiently than the conventional approach
of generating device-level PC metamodels directly.

II. HIERARCHICAL PC METAMODELS

A general MR-based filter consisting of K MRs is shown in
Fig. 1. The impact of fabrication process variation on the device-
level quantity (i.e., the resonant wavelength (4,.,”) of the i" MR)
is usually described using a PC metamodel as

P
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where ¢(a) is the j® multivariate polynomial, 4 is the
corresponding PC coefficient, a = [a1, @y, ..., a,] is the set of n
random dimensions used to describe the fabrication process
variations and the number of terms in the expansion of (1) is
truncated to P+1 = (n+m)!/(n!m!), m being the maximum
degree of the expansion. Evaluating the coefficients of (1)
requires O(2(P+1)K) or O(n"K) number of deterministic
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solutions of the model in (1) — a computationally expensive task
for even modest values of n, m, and K. This challenge is
addressed using the proposed hierarchical PC approach.
TABLE I
UNCERTAIN PARAMETERS OF MR-BASED FILTER EXAMPLE (FIG. 1)

Random Parameter Mean Relative Standard
(Normal PDFs) Deviation
Waveguide thickness (7) 220 nm 0.758%
Waveguide width (w) 500 nm 0.667%
Refractive index of core 347
Refractive index of substrate 1.44 1.5%
Refractive index of cladding 1.44
Radius of MR1 10.022 pm
Radius of MR2 10.044 um 0.05%
Radius of MR3 10.066 pm
Radius of MR4 10.088 pm

A. Proposed Hierarchical PC Approach

In this paper, instead of directly constructing the PC
metamodel of (1), the variability in the resonant wavelengths
(Ares?) caused by fabrication process variations is analytically
modeled as a function of the variation in the effective index
(Aney®) and the variation in the radius of the MR (AR)) as
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where 10" and nego? are, respectively, the nominal values of
the group index and effective index calculated at the nominal
value of the resonant wavelength .50, and R;o is the nominal
radius of the i MR. Thus, equation (2) propagates the variability
of the component-level effective index (An. ") to the device-
level resonant wavelength quantity (4,.,”). The key advantage of
using (2) is that the variability of the component-level effective
index (Ang;?) can now be represented using a PC metamodel as

Y
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where y(B) is the j multivariate polynomial and An? is the
corresponding PC coefficient. Note that the variability in the
MR radii (AR;) does not affect the variability of the effective
index (Anq4"). Hence, the vector B includes all component-level
random dimensions directly impacting An./” but does not
include the device-level random dimensions associated with the
MR radius. Due to this reduction in dimensions, the number of
PC coefficients of (3) is much smaller than that of (1) and needs
smaller number of deterministic simulations to determine (i.e.,
(O << P+1). Once the coefficients of (3) are determined, they can
be used in the analytic model of (2). The model in (2) can be
probed repeatedly using Monte Carlo samples to determine any
statistical moment of the resonant wavelengths. The standard
deviation of the resonant wavelengths is expressed as

3D (#10)= 222 | S} | +logs i 125K, @

g0 Jj=1

where s; 1s the relative standard deviation of the MR with a
radius R;.

TABLEII
RESULTS FOR RESONANT WAVELENGTHS OF NUMERICAL EXAMPLE

Resonant Hierarchical PC Monte Carlo
wavelength | Mean (nm) | SD (nm) | Mean (nm) | SD (nm)
MR1 (4.,") 1550 1550
MR2 (4,,?) 1551.70 1552
MR3 (4,..?) 1554.30 21.60 1554 21.60
MR4 (4,.,Y) 1555.90 1556
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Fig. 2. Comparison of the PDF obtained from the hierarchical PC
approach and the Monte Carlo approach for A" (20,000 samples).

1650

III. NUMERICAL EXAMPLE FOR VALIDATION

In order to validate the proposed approach, a MR-based filter
consisting of K =4 MRs is considered (see Fig. 1). The nominal
values and the relative standard deviation of the different
parameters of this device is listed in Table I. We used the
analytic models in [4] to calculate the effective and group
indices values required in (2), (3), and (4). The device-level
quantities of interest for this example are the resonant
wavelength for each MR: 4.V~ 4,.,. For accuracy analysis, the
mean and standard deviation of each resonant wavelength is
calculated using the proposed hierarchical PC approach and the
results are compared against a brute-force Monte Carlo
approach where 20,000 deterministic simulations of the model
of Fig. 1 is used. The results are provided in Table II. As can be
seen, the proposed approach exhibits excellent agreement with
Monte Carlo results. Fig. 2 further illustrates this excellent
accuracy for the PDF of the resonant wavelength of the first MR.
To create the PC metamodels of (3) only 2KQ = 1000
deterministic model simulations are required which is in contrast
to the conventional 2K(P+1) = 1680 deterministic simulations
required for (1) (a reduction of 680 deterministic simulations).
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