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Abstract

Unsupervised domain mapping aims to learn a function
Gxy to translate domain X to Y in the absence of paired
examples. Finding the optimal Gxy without paired data
is an ill-posed problem, so appropriate constraints are re-
quired to obtain reasonable solutions. While some promi-
nent constraints such as cycle consistency and distance
preservation successfully constrain the solution space, they
overlook the special properties of images that simple geo-
metric transformations do not change the image’s seman-
tic structure. Based on this special property, we develop
a geometry-consistent generative adversarial network (Ge-
GAN), which enables one-sided unsupervised domain map-
ping. G¢cGAN takes the original image and its counterpart
image transformed by a predefined geometric transforma-
tion as inputs and generates two images in the new domain
coupled with the corresponding geometry-consistency con-
straint. The geometry-consistency constraint reduces the
space of possible solutions while keep the correct solutions
in the search space. Quantitative and qualitative compar-
isons with the baseline (GAN alone) and the state-of-the-art
methods including CycleGAN [66] and DistanceGAN [5]
demonstrate the effectiveness of our method.

1. Introduction

Domain mapping or image-to-image translation, which
targets at translating an image from one domain to another,
has been intensively investigated over the past few years.
Let X € X denote a random variable representing source
domain images and Y € ) represent target domain images.
According to whether we have access to a paired sample
{(z4,v:)}X,, domain mapping can be studied in a super-
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vised or unsupervised manner. While several works have
successfully produced high-quality translations by focusing
on supervised domain mapping with constraints provided
by cross-domain image pairs [46, 26, 59, 58], the progress
of unsupervised domain mapping is relatively slow.

In unsupervised domain mapping, the goal is to model
the joint distribution Pxy given samples drawn from the
marginal distributions Px and Py in individual domains.
Since the two marginal distributions can be inferred from
an infinite set of possible joint distributions, it is difficult
to guarantee that an individual input z € X and the output
G xy (x) are paired up in a meaningful way without addi-
tional assumptions or constraints.

To address this problem, recent approaches have ex-
ploited the cycle-consistency assumption, i.e., a mapping
Gxy and its inverse mapping Gy x should be bijections
[66, 28, 61]. Specifically, when feeding an example x € X
into the networks Gxy o Gyx : X — Y — X, the output
should be a reconstruction of x and vise versa for y, i.e.,
Gyx(Gxy(z)) = = and Gxy(Gyx(y)) ~ y. Further,
DistanceGAN [5] showed that maintaining the distances
between images within domains allows one-sided unsuper-
vised domain mapping.

Existing constraints overlook the special properties of
images that simple geometric transformations (global geo-
metric transformations without shape deformation) do not
change the image’s semantic structure. Here, semantic
structure refers to the information that distinguishes differ-
ent object/staff classes, which can be easily perceived by
humans regardless of trivial geometric transformations such
as rotation. Based on this property, we develop a geometry-
consistency constraint, which helps in reducing the search
space of possible solutions while still keeping the correct set
of solutions under consideration, and results in a geometry-
consistent generative adversarial network (GcGAN).

Our geometry-consistency constraint is motivated by the
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Figure 1: Geometry consistency. The original input image is denoted by x, and the predefined function f(-) is a 90° clockwise rotation
(rof). GAN alone: Gy (z). GAN alone (ro): f~'(G%; (f(x))). GeGAN: G%y (). GeGAN (rot): f~'(G% (f(x)). It can be seen
that GAN alone produces geometrically-inconsistent output images, indicating that the learned Gxy and G ;¢ are far away from the
correct mapping functions. By enforcing geometry consistency, our method results in more sensible domain mapping.

fact that a given geometric transformation f(-) between
the input images should be preserved by related transla-
tors Gxy and G g, if X and 5) are the domains obtained
by applying f(-) on the examples of X and Y, respec-
tively. Mathematically, given a random example x from the
source domain X and a predefined geometric transforma-
tion function f(-), geometry consistency can be expressed
as f(Gxy(2)) ~ Ggy(f(x)) and [ (Gxy(f(2))) ~
Gxy (), where f~1(-) is the inverse function of f(-). Be-
cause it is unlikely that G xy and G 5 always fail in the
same location, Gxy and G 5 co-regularize each other by
the geometry-consistency constraint and thus correct each
others’ failures in local regions of their respective trans-
lations (see Figure | for an illustration). Our geometry-
consistency constraint allows one-sided unsupervised do-
main mapping, i.e., Gxy can be trained independently from
Gy x. In this paper, we employ two simple but represen-
tative geometric transformations as examples, i.e., vertical
flipping (vf) and 90 degrees clockwise rotation (rot), to il-
lustrate geometry consistency. Quantitative and qualitative
comparisons with the baseline (GAN alone) and the state-
of-the-art methods including CycleGAN [66] and Distance-
GAN [5] demonstrate the effectiveness of our method.

2. Related Work

Generative Adversarial Networks. Generative adver-
sarial networks (GANSs) [21, 45, 14, 47, 51, 3] learn two
networks, i.e., a generator and a discriminator, in a staged
zero-sum game fashion to generate images from inputs.
Many tasks have recently been developed based on deep
convolutional GANSs, such as image inpainting, style trans-
fer, and domain adaptation [7, 62, 46, 48, 31, 60, 9, 52, 23,

,64,27,50, 19, 18, 35, 63]. The key component enabling
GANSs is the adversarial constraint, which enforces the
generated images to be indistinguishable from real images.

Domain Mapping. Recent adversarial domain mapping
has been studied in a supervised or unsupervised manner
with respect to paired or unpaired inputs. There are a va-

riety of literatures [46, 31, 26, 59, 56, 58, 25, 37, 4, 10]
on supervised domain mapping. One representative exam-
ple is conditional GAN [26], which learned the discrimina-
tor to distinguish (z,y) and (x, Gxy (x)) instead of y and
Gxvy (z), where (z,y) is a meaningful pair across domains.
Further, Wang et al. [59] showed that conditional GANSs can
be used to generate high-resolution images with a novel fea-
ture matching loss, as well as multi-scale generator and dis-
criminator architectures. While there has been significant
progress in supervised domain mapping, many real-word
applications can not provide aligned images across domains
because data preparation is expensive. Thus, different con-
straints and frameworks have been proposed for image-to-
image translation in the absence of training pairs.

In unsupervised domain mapping, only unaligned exam-
ples in individual domains are provided, making the task
more practical but more difficult. Unpaired domain map-
ping has a long history, and some successes in adversarial
networks have recently been presented [40, 66, 5, 39, 42,

, 6, 11]. For example, Liu and Tuzel [40] introduced
coupled GAN (CoGAN) to learn cross-domain represen-
tations by enforcing a weight-sharing constraint. Subse-
quently, CycleGAN [66], DiscoGAN [28], and Dual GAN
[61] enforced that translators GGxy and Gy x should be
bijections. Thus, jointly learning Gxy and Gy x by en-
forcing cycle consistency can help to produce convinc-
ing mappings. Since then, many constraints and assump-
tions have been proposed to improve cycle consistency
[8,17,24,32,34,11,2,67,20,44,39, 36, 1]. Recently, Be-
naim and Wolf [5] reported that maintaining the distances
between samples within domains allows one-sided unsuper-
vised domain mapping. GcGAN is also a one-sided frame-
work coupled with our geometry-consistency constraint,
and produces competitive and even better translations than
the two-sided CycleGAN in various applications.

3. Preliminaries

Let X and Y be two domains with unpaired training ex-

amples {x;}}*, and {y;}}L,, where z; and y; are drawn
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Figure 2: An illustration of the differences between CycleGAN [66], DistanceGAN [5], and our G¢GAN. z and y are random examples
from domain X and )/, respectively. d(x;,x;) is the distance between images x; and ;. f(-) is a predefined geometric transformation
function for images, which satisfies f~'(f(z)) = f(f '(z)) = z. Gxy and G gy are the generators (or translators) which target
the domain translation tasks from X to ) and X to ), where X and ) are two domains obtained by applying f(-) on all the images
in X and ), respectively. Dy is an adversarial discriminator in domain ). The red dotted lines denote the unsupervised constraints
with respect to cycle consistency (z &~ Gy x(Gxy(2))), distance consistency (z ~ Gy x(Gxvy(x))), and our geometry consistency

(f(Gxy(x)) = G5y (f(x))), respectively.

from the marginal distributions Px and Py, where X and
Y are two random variables associated with X and ), re-
spectively. In the paper, we exploit style transfer without
undesirable semantic distortions, and have two goals. First,
we need to learn a mapping G xy such that G xy (X) has
the same distribution as Y, i.e., Pny(X) ~ Py. Second,
the learned mapping function only changes the image style
without distorting the semantic structures.

While many works have modeled the invertibility be-
tween Gxy and Gy x for convincing mappings since the
success of CycleGAN, here we propose to enforce geom-
etry consistency as a constraint that allows one-sided do-
main mapping. Let f(-) be a predefined geometric trans-
formation. We can obtain two extra domains X and 37
with examples {Z;}X, and {g;}}L, by applying f(-) on
X and Y, respectively. We learn an additional transla-
tor Ggy - X — Y while learning Gxy : X — Y,
and introduce our geometry-consistency constraint based
on the predefined transformation such that the two net-
works can co-regularize each other. Our framework en-
forces that G xy (x) and G g (Z) should keep the same ge-
ometric transformation with the one between x and Z, i.e.,
[(Gxy(z)) = G 4y(&), where & = f(x). We denote the
two adversarial discriminators as Dy and Dy with respect
to domains ) and 37, respectively.

4. Proposed Method

We present our geometry-consistency constraint and Ge-
GAN beginning with a review of the cycle-consistency con-
straint and the distance constraint. An illustration of the dif-
ferences between these constraints is shown in Figure 2.

4.1. Unsupervised Constraints

Cycle-consistency constraint.  Following the cycle-
consistency assumption [28, 66, 61], through the translators
GXYOGYX X =Y %XandGYXOGXy Y —
X — Y, the examples x and y in domain X and ) should
recover the original images, i.e., x ~ Gy x(Gxy(z)) and
y =~ Gxy(Gyx(y)). Cycle consistency is implemented
by a bidirectional reconstruction process that requires G xy
and Gy x to be jointly learned, as shown in Figure 2 (Cycle-
GAN). The cycle consistency loss Loye(Gxy, Gy x, X,Y)
takes the form as:

Leye = Eonpy [|Gyx (Gxy (7)) — 2[1]

1
FEyor IGxy @yx() — gl

Distance constraint. The assumption behind the distance
constraint is that the distance between two examples x; and
x; in domain X should be preserved after mapping to do-
main Y, ie., d(z;,z;) = a - d(Gxv(z:), Gxv(z;)) + b,
where d(-) is a predefined function to measure the distance
between two examples and a and b are the linear coefficient
and bias. In DistanceGAN [5], the distance consistency loss
Lais(Gxvy,X,Y) is the exception to the absolute differ-
ences between distances:

Liis = By, z;~px [|0(Ti, 25) — P(23,75)]],
1
P(wi, ) = a(”@_mjul—ux)a 2)

Y(@i, x5) = %(IIny(xi) = Gxy(z))llL — py),

where pux, py (0x, oy) are the means (standard devia-
tions) of distances of all the possible pairs of (x;, ;) within
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domain X and (y;, yj) within domain ), respectively.

4.2. Geometry-consistent Generative Adversarial
Networks

Adversarial constraint. Taking G'xy as an example, an
adversarial loss L4, (Gxy, Dy, X,Y') [21] enforces G xy
and Dy to simultaneously optimize each other in an mini-
max game, i.e., Ming ., maxpy Lgan(Gxy, Dy, X,Y). In
other words, Dy aims to distinguish real examples {y}
from translated samples {Gxy (z)}. By contrast, Gxy
aims to fool Dy so that Dy can label a fake example
Yy = Gxy(x) as a sample satisfying y' ~ Py. The ob-
jective can be expressed as:

Egan = IEyNPY [log Dy (y)]

FEgopy log(1 - Dy Gy @), O

In the transformed domains X a~nd~3~), we employ the
adversarial loss L4, (G gy, Dy, X,Y) that has the same
form to ﬁgan(GXYa Dy, X, Y)

Geometry-consistency constraint. As shown in Figure 2
(GcGAN), given a predefined geometric transformation
function f(-), we feed the images € X and Z = f(x) into
the translators G xy and G g, respectively. Following our
geometry-consistency constraint, the outputs ¢’ = G xy ()
and §' = G (%) should also satisfy §’ ~ f(y’) like = and
Z. Considering both f(-) and the inverse geometric transfor-
mation function f~1(-), our complete geometry consistency
loss Lyeo(Gxy, G 3y, X,Y) has the following form:

Lgeo = Bonpy [|Gxy () — f7H Gy (f(2)))]4]
+ Eonpy (|G 35 (f(2) — f(Gxy () l1]-

This geometry-consistency loss can be seen as a recon-
struction loss that relies on the predefined geometric
transformation function f(-). In this paper, we only take
two common geometric transformations as examples,
namely vertical flipping (vf) and 90° clockwise rotation
(rot), to demonstrate the effectiveness of our geometry-
consistency constraint. Note that, G xy and G ¢ have the
same architecture and share all the parameters.

“4)

Full objective. By combining our geometry-consistency
constraint with the standard adversarial constraint, a re-
markable one-sided unsupervised domain mapping can
be targeted. The full objective for our GcGAN
£GCGAN(GXY7 G}Z‘?? Dy, Dy, X7 Y) will be:

»CGCGAN = Egan(GXYv DY» Xa Y)
+£gan(GXf/7D}7aXaY) (5)
+ )\‘cgeo(GXY7 Gf(f/aX7Y)7

where A (A = 20.0 in all the experiments) is a trade-off
hyperparameter to weight the contribution of Ly, and

Lgeo during the model training. Carefully tuning A may
give preferable results to specific translation tasks.

Network architecture. The full framework of our GcGAN
is illustrated in Figure 2. Our experimental settings,
network architectures, and learning strategies follow Cy-
cleGAN. We employ the same discriminator and generator
as CycleGAN depending on the specific tasks. Specifically,
the generator is a standard encoder-decoder, where the
encoder contains two convolutional layers with stride 2 and
several residual blocks [22] (6 / 9 blocks with respect to
128 x 128 /256 x 256 of input resolution), and the decoder
contains two deconvolutional layers also with stride 2.
The discriminator distinguishes images at the patch level
following PatchGANSs [26, 33]. Like CycleGAN, we also
use an identity mapping loss [55] in all of our experiments
(except SVHN — MNIST), including our baseline (GAN
alone). For other details, we use LeakyReLU as nonlinear-
ity for the discriminators and instance normalization [57]
to normalize convolutional feature maps.

Learning and inference. We use the Adam solver [29] with
a learning rate of 0.0002 and coefficients of (0.5, 0.999),
where the latter is used to compute running averages of gra-
dients and their squares. The learning rate is fixed in the
initial 100 epochs, and linearly decays to zero over the next
100 epochs. Following CycleGAN, the negative log likeli-
hood objective is replaced with a more stable and effective
least-squares loss [43] for L£44y,. The discriminator is up-
dated with random samples from a history of generated im-
ages stored in an image buffer [54] of size 50. The generator
and discriminator are optimized alternately. In the inference
phase, we feed an image only into the learned generator
G xy to obtain a translated image.

5. Experiments

We apply our GcGAN to a wide range of applications
and make both quantitative and qualitative comparisons
with the baseline (GAN alone) and previous state-of-the-
art methods including DistanceGAN and CycleGAN. We
also study different ablations (based on rof) to analyze
our geometry-consistency constraint. Since adversarial net-
works are not always stable, every independent experiment
could result in slightly different scores. The scores in the
quantitative analysis are computed by the average on three
independent experiments.

5.1. Quantitative Analysis

The results demonstrate that our geometry-consistency
constraint can not only partially filter out the candidate so-
lutions having mode collapse or semantic distortions and
thus produce more sensible translations, but also compati-
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Figure 3: Qualitative comparison on Cityscapes (Parsing = Image) and Google Maps (Map = Aerial photo). GAN alone suffers from
mode collapse. Translated images by GcGAN contain more details. GcGAN = GAN alone + geometry consistency.

ble with other unsupervised constraints such as cycle con-
sistency [66] and distance preservation [5].

Cityscapes. Cityscapes [12] contains 3975 image-label
pairs, with 2975 used for training and 500 for validation
(test in this paper). For a fair comparison with CycleGAN,
the translators are trained at a resolution of 128 x 128 in
an unaligned fashion. We evaluate our domain mappers us-
ing FCN scores and scene parsing metrics following pre-
vious works [41, 12, 66]. Specifically, for parsing — im-
age, we assume that a high-quality translated image should
produce qualitative semantic segmentation like real images
when feeding it into a scene parser. Thus, we employ the
pretrained FCN-8s [41] provided by pix2pix [26] to pre-
dict semantic labels for the 500 translated images. The
label maps are then resized to the original resolution of
1024 x 2048 and compared against the ground truth labels
using some standard scene parsing metrics including pixel
accuracy, class accuracy, and mean IoU [4]]. For image
— parsing, since the fake labels are in the RGB format, we
simply convert them into class-level labels using the nearest
neighbor search strategy. In particular, we have 19 (cate-
gory labels) + 1 (ignored label) categories for Cityscapes,
each with a corresponding color value (RGB). For a pixel ¢
in a translated parsing, we compute the distances between
the 20 groundtruth color values and the color value of pixel
1. The label of pixel ¢ should be the one with the small-

est distance. Then, the aforementioned metrics are used to
evaluate our mapping on the 19 category labels.

The parsing scores are presented in Table 1. Our Gc-
GAN outperforms the baseline (GAN alone) by a large mar-
gin. We take the average of pixel accuracy, class accu-
racy, and mean IoU as the final score for analysis [65], i.e.,
score = (pixel acc + class acc + mean IoU)/3. For im-
age — parsing, GcGAN (32.6%) yields a slightly higher
score than CycleGAN (32.0%). For parsing — image, Gc-
GAN (29.0% ~ 29.5%) obtains a convincing improvement
of 1.3% ~ 1.8% over distanceGAN (27.7%).

We next perform ablation studies to further discuss Gc-
GAN. The scores are reported in Table 1. Specifically,
GcGAN-rot-Seperate shows that the generator G xy em-
ployed in GeGAN is sufficient to handle both the style trans-
fers (without shape deformation) X — Y and X Y.
GcGAN-Mix-{comb, rand} demonstrate that persevering a
geometric transformation can filter out most of the candi-
date solutions having mode collapse or undesired shape de-
formation, but preserving more ones can not leach more.
Besides, GcGAN-Mix-rand performs slightly worse than
GcGAN-Mix-comb. One of the possible reasons is that nei-
ther X,,—Y,, nor X,,—Y,r are sufficiently trained in the
random case, which would decrease the effect of the afore-
mentioned co-regularization mechanism. For GeGAN-rot
+ Cycle, we set the trade-oft parameter for L.y to 10.0 as
published in CycleGAN. The consistent improvement is a
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method image — parsing parsing — image
pixel acc classacc mean IoU | pixel acc class acc mean IoU
Benchmark Performance
CoGAN [40] 0.45 0.11 0.08 0.40 0.10 0.06
BiGAN/ALI[15, 16] 0.41 0.13 0.07 0.19 0.06 0.02
SimGAN [54] 0.47 0.11 0.07 0.20 0.10 0.04
CycleGAN (Cycle) [66] 0.58 0.22 0.16 0.52 0.17 0.11
DistanceGAN [5] - - - 0.53 0.19 0.11
GAN alone (baseline) 0.514 0.160 0.104 0.437 0.161 0.098
GcGAN-rot 0.574 0.234 0.170 0.551 0.197 0.129
GcGAN-vf 0.576 0.232 0.171 0.548 0.196 0.127
Ablation Studies (Robustness & Compatibility)
LGegan Wlo Lyeo (A =0) 0.486 0.163 0.102 0.396 0.148 0.088
Laecan Wo Lyan(X,Y) 0.549 0.199 0.139 0.526 0.184 0.111
GcGAN-rot-Seperate 0.575 0.233 0.170 0.545 0.196 0.124
GcGAN-Mix-comb 0.573 0.229 0.168 0.545 0.197 0.128
GcGAN-Mix-rand 0.564 0.217 0.156 0.547 0.192 0.123
GcGAN-rot + Cycle 0.587 0.246 0.182 0.557 0.201 0.132

Table 1: Parsing scores on Cityscapes. Lg.can: The objective in Eqn. 5 with rot. GeGAN-rot-Separate: Gxy and G gy do not share
parameters. GcGAN-Mix-comb: Training GcGAN with both vf and rof in each iteration. GcGAN-Mix-rand: Training GcGAN with
randomly chosen vf and rot in each iteration. GcGAN-rot + Cycle: GeGAN-rot with the cycle-consistency constraint.

method \ class acc (%)

Benchmark Performance

DistanceGAN (Dist.) [5] 26.8
CycleGAN (Cycle) [66] 26.1
Self-Distance [5] 25.2
GcGAN-rot 32.5
GcGAN-vf 333

Ablation Studies (Compatibility)

Cycle + Dist. [5] 18.0
GcGAN-rot + Dist. 34.0
GcGAN-rot + Cycle 33.8

GcGAN-rot + Dist. + Cycle 332

Table 2: Quantitative scores for SVHN — MNIST.

credible support that our geometry-consistency constraint
is compatible with the widely-used cycle-consistency con-
straint. Moreover, when setting A = 0 in Lg.can, both
Gxy and Gy x perform badly. One of the possible rea-
sons is that, without the geometry consistency constraint,
jointly modeling X—Y and X —Y with the shared gen-
erator Gxy would decrease the performance due to do-
main diversities caused by the geometric transformations.
When removing Lgan (G 5y, Dy ), the obtained scores are
much higher than baseline (GAN alone) because Y’ can
partially correct Y” so that G xy is able to handle the map-
ping X—Y, and then Y” can constrain the mapping X —Y.
As the analysis, when learning both L4, (G xy, Dy) and
Lgan(G v, Dy ) with L gc,, the co-regularization help gen-

erate preferable translations.

SVHN — MNIST. We apply our approach to the SVHN —
MNIST translation task. The translation models are trained
on 73257 and 60000 training images of resolution 32 x 32
contained in the SVHN and MNIST training sets, respec-
tively. The experimental settings follow DistanceGAN [5],
including the default trade-off parameters for L., and L;s.
We compare our GcGAN with both DistanceGAN and Cy-
cleGAN in this translation task. To obtain quantitative re-
sults, we feed the translated images into a pretrained classi-
fier trained on the MNIST training split, as done in [5].

Classification accuracies are reported in Table 2. Both
GcGAN-rot and GcGAN-vf outperform DistanceGAN and
CycleGAN by a large margin (about 6% ~ 7%). From
the ablations, adding our geometry-consistency constraint
to current unsupervised domain mapping frameworks will
achieve different levels of improvements against the origi-
nal ones. Note that, it seems that the distance-preservation
constraint is not compatible with the cycle-consistency con-
straint on this task, but our geometry-consistency constraint
can improve both ones.

Google Maps. We obtain 2194 (map, aerial photo) pairs of
images in and around New York City from Google Maps
[26], and split them into training and test sets with 1096
and 1098 pairs, respectively. We train Map = Aerial photo
translators with an image size of 256 < 256 using the training
set in an unsupervised manner (unpaired) by ignoring the
pair information. For Aerial photo — Map, we make com-
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DistanceGAN [5]

Figure 4: Qualitative comparison for SVHN — MNIST.

parisons with CycleGAN using average RMSE and pixel
accuracy (%). Given a pixel ¢ with the ground-truth RGB
value (7, g, b;) and the predicted RGB value (74, g;, b}), if
max(|r; — ril,|g; — g5, |bi — b}]) < d, we consider this is
an accurate prediction. Since maps only contain a limited
number of different RGB values, it is reasonable to compute
pixel accuracy using this strategy (61 = 5 and J2 = 10 in
this paper). For Map — Aerial photo, we only show some
qualitative results in Figure 3.

method | RMSE | acc (61) acc (d2)

Benchmark Performance
CycleGAN [66] 28.15 41.8 63.7
GAN alone (baseline) || 33.27 19.3 42.0
GcGAN-rot 28.31 41.2 63.1
GcGAN-vf 28.50 37.3 58.9

Ablation Studies (Robustness & Compatibility)
GcGAN-rot-Separate || 30.25 40.7 60.8
GcGAN-Mix-comb 27.98 42.8 64.6
GcGAN-rot + Cycle || 28.21 40.6 63.5

Table 3: Quantitative scores for Aerial photo — Map.

From the scores presented in Table 3, GcGAN produces
superior translations to the baseline (GAN alone). In partic-
ular, GcGAN yields an 18.0% ~ 21.9% improvement over
the baseline with respect to pixel accuracy when 6 = 5.0,
demonstrating that the fake maps obtained by our GcGAN
contain more details. In addition, GcCGANs achieve com-
petitive scores compared with CycleGAN.

5.2. Qualitative Evalutation

The qualitative results are shown in Figure 3, Figure 4,
and Figure 5. Our geometry-consistency constraint improve
the training of GAN alone, and helps to generate empiri-
cally more impressive translations on various applications.
The following applications are trained in the image size of
256 x 256 with the rot geometric transformation.

Horse — Zebra. We apply GcGAN to the widely studied
object transfiguration application task, i.e., Horse — Zebra.
The images are randomly sampled from ImageNet [13] us-
ing the keywords (i.e., wild horse and zebra). The numbers
of training images are 939 and 1177 for horse and zebra, re-

spectively. We find that training GcGAN without parameter
sharing would produce preferable translations for the task.
Synthetic = Real. We employ the 2975 training images
from Cityscapes as the real-world scenes, and randomly se-
lect 3060 images from SYNTHIA-CVPR16 [49], which is
a virtual urban scene benchmark, as the synthetic images.
Summer = Winter. The images used for the season trans-
lation tasks are provided by CycleGAN. The training set
sizes for Summer and Winter are 1273 and 854.

Photo = Artistic Painting. We translate natural images to
artistic paintings with different art styles, including Monet,
Cezanne, Van Gogh, and Ukiyo-e. We also perform Gc-
GAN on the translation task of Monet’s paintings — pho-
tographs. We use the photos and paintings (Monet: 1074,
Cezanne: 584, Van Gogh: 401, Ukiyo-e: 1433, and Pho-
tographs: 6853) collected by CycleGAN for training.

Day = Night. We randomly extract 4500 training images
for both Day and Night from the 91 webcam sequences cap-
tured by [30].

6. Conclusion

In this paper, we propose to enforce geometry consis-
tency as a constraint for unsupervised domain mapping,
which can be viewed as a predefined geometric transforma-
tion f(-) preserving the geometry of a scene. The geometry-
consistency constraint makes the translation networks on
the original images and transformed images co-regularize
each other, which not only provides an effective remedy to
the mode collapse problem suffered by standard GANS, but
also reduces the semantic distortions in the translation. We
evaluate our model, i.e., the geometry-consistent generative
adversarial network (GcGAN), both qualitatively and quan-
titatively in various applications. The experimental results
demonstrate that GcGAN achieves competitive and some-
times even better translations than the state-of-the-art meth-
ods including DistanceGAN and CycleGAN. Finally, our
geometry-consistency constraint is compatible with other
well-studied unsupervised constraints.
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