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Abstract—In this paper, we propose a distributed, unordered,
label-correcting distance-1 Grundy (vertex) coloring algorithm,
namely, Distributed Control (DC) coloring algorithm. Our algo-
rithm eliminates the need for vertex-centric barriers and global
synchronization for color refinement, relying only on atomic
operations and local termination detection to update vertex color.
DC proceeds optimistically, correcting the colors asynchronously
as the algorithm progresses and depends on local ordering
of tasks to minimize the execution of sub-optimal work. We
implement our DC coloring algorithm and the well-known Jones-
Plassmann algorithm and compare their performance with 4
different types of standard RMAT graphs and real-world graphs.
We show that the elimination of waiting time of global and
vertex-centric barriers and investing this time for local ordering
leads to improved scaling for graphs with prominent power-law
characteristics and densely interconnected local subgraphs.

I. INTRODUCTION

An interesting problem in graph theory is graph coloring
which partitions a set of entities into independent subsets. This
problem arises in a wide range of contemporary applications,
such as global climate modeling, power flows in electric
grids, generating parallel code for GPU computation. Other
applications of graph coloring include scheduling, sparse-matrix
computation, resource allocation, pattern matching, anomaly
detection etc. Designing scalable algorithms to color large-scale
graphs with skewed degree distribution (“power-law” graphs)
is challenging, since such uneven structure can introduce
workload imbalance. In many cases, partitioning graphs to
tackle workload imbalance is not useful as good separators
may not exist [1], [2].

A (distance-1) vertex-coloring of a graph G finds an
assignment of colors to every vertex v in a vertex set V
such that no two adjacent vertices have the same color. The
graph-coloring problem asks to find a vertex-coloring which
uses as few colors as possible. If each vertex chooses the
minimum available color, the resultant coloring is called Grundy
coloring. The problem of finding an optimal coloring of a
graph is NP-complete. However, over the course of time,
many heuristic parallel greedy algorithms, based on Luby’s [3]
iterative maximal independent set computation, have been
devised that perform well in practice. The most prominent
of these algorithms is due to Jones and Plassmann [4].

To make a trade-off between execution time and col-
oring quality, greedy coloring algorithms apply differ-
ent vertex ordering criteria when assigning priorities to

vertices so as to decide which vertex to color first.
In doing so, an implicit predecessor-successor relation-
ship between a vertex and its neighbors is formed.
This can be visualized
as a directed acyclic
graph (DAG), termed
as priority DAG [5],
with edges emanat-
ing from the predeces-
sor(s) to the succes-
sor(s). Once the im-
plicit DAG is created,
most algorithms pro-
ceed in steps and tra-
verse the DAG in a
DAG-synchronous fashion: each vertex in a sub-DAG waits until
all its predecessors are colored and then color itself with an
available color not taken by any of its predecessors. At the level
of a single vertex, this resembles Bulk-synchronous-parallel
(BSP) execution model, where an algorithm iterates through
computation, communication, and synchronization steps.

In greedy coloring algorithms, waiting on a predecessor
gives rise to vertex-centric barrier/synchronization (Fig. 1).
Vertex-centric barriers induce similar ramification as global
synchronization barriers in BSP approach, where the whole
system must wait for a straggler before moving to the next
step. A vertex with a large number of predecessors (straggler)
impedes other vertices in the same level from advancing
(straggler effect). Although this may not demonstrate itself
as a problem in a shared-memory implementation, straggler
effect can seriously limit performance of an algorithm in a
distributed setting. To avoid such problems, a framework for
designing synchronization-avoiding graph algorithms have been
proposed in [6].

Previously, a shared-memory algorithm has been pro-
posed [7] that relaxes the constraint of waiting on the predeces-
sors. This algorithm iterates through two steps till convergence.
In the first step, based on the local information available during
the current iteration, a vertex obtains a color even though all its
predecessors have not obtained colors (speculation step). After
a synchronization barrier, in the second step, the algorithm
iterates through all the vertices to fix colors when necessary
(refinement step). Although this approach relaxes the constraint
of waiting on all the predecessors to obtain a color, it fails

Vertex-Centric
Barrier

Colored :
Vertex '

Uncolored
Vertex

Fig. 1: Vertex-centric barriers.



to completely eliminate the need for synchronization. In this
paper, we show that, instead of splitting vertex-coloring into
two steps of speculation and refinement, we can further relax
the criteria and don’t need to impose any barriers in between
coloring and refinement steps.

Based on this observation, we propose a new label-correcting,
unordered, distributed algorithm for graph coloring, namely
Distributed Control (DC) coloring algorithm. An unordered
algorithm such as DC does not require a particular execution
order and allows independent computations to execute con-
currently. Because dependencies are not checked beforehand,
computation is performed optimistically, and the results com-
puted previously may need to be corrected (label correction).

These label-correcting mechanisms have the advantage of
avoiding the straggler effect. Most importantly, in our algorithm,
vertex color updates happen based on atomic operations and
local termination detection. There is no wasted time involved
in waiting on a vertex-centric or global barrier before updating
a vertex color. Hence, our algorithm benefits from optimistic
parallelism [8] by making progress completely asynchronously.

However, if sub-optimal results are calculated in intermediate
steps and require updates too often due to speculation, then
unordered graph algorithms can perform poorly. To circumvent
this problem, the algorithm employs local ordering of tasks
with thread-local priority queues. Additionally, we implement
application-level message caching and message reduction to
handle the propagation of redundant messages from non-
monotonic vertex color update function (any color within a
range can become available). The combination of these two
techniques assists the algorithm in tackling work explosion
and minimizes unnecessary updates. We implement our vertex-
coloring algorithm in the AM++ [9] asynchronous many-task
(AMT) runtime since it supports fine-grained communication
and computation, based on active messages. We demonstrate
that our algorithm is specially suitable for graphs with dominat-
ing power-law degree distribution characteristics and for graphs
which need to be executed in large distributed environment.
Most of the vertices in such graphs have low degrees but
few other vertices, termed as hubs, have very high degrees.
These high-degree vertices can hamper scalability. Additionally,
graphs that have strong power-law distributions also contain
densely interconnected subgraphs. Our proposed algorithm
demonstrates better scalability with such graphs by exposing
latent parallelism. We show that our DC coloring algorithm
performs better than the well-known Jones-Plassmann algorithm
in AM++ in such cases.

This paper makes the following contributions:

o We introduce an unordered, label-correcting, distributed
Grundy coloring algorithm, namely Distributed Control,
which avoids the need for global and vertex-centric
barriers and utilizes the benefits of optimistic (speculative)
parallelism.

o We conduct experiments with DC and Jones-Plassmann
algorithms with synthetic and real-world graphs that have
different degree distributions and clustering coefficients.
We conclude that DC based coloring algorithm is suitable

for graphs with dominating power-law characteristics and
densely interconnected subgraphs. We also report coloring
qualities of our implemented algorithms.

o We compare the performance of our vertex-coloring algo-
rithms in AM++ with another implementation in the well-
known graph application framework, PowerGraph [10],
and report better performance of DC at larger scale.

II. BACKGROUND

In this section we discuss the baseline Jones-Plassmann
algorithm for coloring. Both Jones-Plassmann and our Dis-
tributed Control coloring algorithm find a Grundy coloring
of a graph G. A vertex v is called a Grundy vertex if v is
colored with the smallest color not taken by any neighbor.
A Grundy coloring of G is one in which every vertex is a
Grundy vertex. A vertex v is called properly colored if for all
i € neighbor(v), color(i) # color(v). Grundy coloring is a
proper coloring of a graph. The minimum number of colors
(color classes or independent subsets) needed to properly color
a graph G is called the chromatic number of G, x(G) and
is an NP-hard problem. Grundy coloring always results in k
colors where x(G) < k < (A+1) for graph G with maximum
degree of A. Our algorithms find a Grundy coloring and use at
most (A + 1) colors. Empirical results (Sec. V) show that the
maximum no. of colors needed is significantly smaller than A.

Different vertex ordering heuristics [11] can be employed to
decide which vertex to color first in Jones-Plassmann algorithm
and our Distributed Control coloring (Sec. III). For example,
the first-fit heuristic [12] colors vertices in the order they
appear in the input graph representation. The random ordering
heuristic [4] colors vertices in a uniformly random order. The
incidence-degree ordering heuristic [13] iteratively colors an
uncolored vertex with the largest number of colored neighbors.
The saturation-degree ordering heuristic [14] iteratively colors
an uncolored vertex whose colored neighbors use the largest
number of distinct colors. For both Jones-Plassmann and
our Distributed Control coloring( Sec. III) algorithms, we
use random ordering heuristic to assign order to vertices for
coloring. The resultant ordering is used to decide which vertex
to color first. Imposing an ordering, in essence, creates a
predecessor-successor relationship between vertices. In the
following discussion, we refer to vertices with no predecessor
as roots.

A. Jones-Plassmann Coloring Algorithm

Jones-Plassmann (JP) algorithm works as follows: each
vertex maintains a list of colors taken by the predecessors
to keep track of how many predecessors have been colored
so far. The algorithm starts by assigning color 0 to the roots
and sending out the information to all their successors. When
a vertex v finishes obtaining all predecessors’ colors, it starts
searching for an available color. When it finds an available
minimal color value, it assigns the color to itself. If all the colors
in the range 0,1, 2, - - - , predecessorCount|v]—1 are taken, the
vertex assign predecessorCount[v] as its color. Once colored,
the vertex sends its color information to all its successors.
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Fig. 2: Overview of the algorithm. The graph is distributed
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updates through active messages, store them in thread-local
priority queues, process them, and then send new updates out
through a thread-local cache. Every vertex is associated with a
count of pending updates for that vertex, its current color, last
color update sent, and an array to keep track of predecessor
colors. All of the vertex information is shared between threads
and updated concurrently.

Distributed Jones-Plassman implements synchronization
on vertices with a counter per vertex. As the predecessor
information is received, the per-vertex counter is incremented.
Whenever the counter value is equal to the predecessor count
for a vertex, the termination of the vertex is triggered, and
the color for the vertex is calculated. The termination of the
algorithm is triggered by global termination detection.

We have chosen Jones-Plassmann Coloring algorithm as
our baseline algorithm because it has been proven to be
efficient in distributed setting [15], both in terms of execution
time and optimality of the result. This algorithm is based on
asynchronous push mechanism, where vertices push their states
to the successors.

III. DISTRIBUTED CONTROL COLORING ALGORITHM

In this section, we present our Distributed Control (DC)
vertex-coloring algorithm. First we give a brief overview of
the algorithm. Next, we divide our discussion by the kind of
issues we address, and we divide the algorithm into fragments
relevant to addressing such issues.

Overview of the main idea: optimistic execution
with work-optimization. Our objective is to design a
synchronization-avoiding distributed graph coloring algorithm
by eliminating vertex-centric barriers and global synchro-
nization. To do so, the algorithm proceeds with coloring
vertices speculatively, and it fixes sub-optimal colors as it

Algorithm 1: Distributed Control coloring algorithm
:Graph G = (V| E),
Vv € V: owner[v] = rank that owns v
procedure Main()
initialize()
active message epoch
parallel foreach v € V' do
L if owner[v] = this rank then

| Visit-root(v)
| handleQueue()

In

procedure Visit-root(Vertex r)

if predecessorCount|r] = 0 then

colorr] + 0

oldColor < INVALID COLOR

distance[r] < 0

parallel foreach neighbor v of r do
send Visit(v, oldColor, color|r], distance[r])
to owner(v)
activeCount++

message handler Visit(Vertex v, Color oldColor, Color newcolor,
Distance d)

tempDistance < d + 1

taskRemainingInLocalColorQs[v]++

colorQ|tiq].push(v, oldColor, newColor, tempDistance)

Procedure 1: initialize

1 foreach thread t;q do

2 Allocate memory for color@|tiq);
3 Allocate memory for cacheQltiq);
4 foreach v € V do

s | taskRemainingInLocalColorQs[v] < 0;

6 foreach v € V do
7 if predecessorCount[v] > 0 then
8 L Allocate memory for predecessorColors[v] based on

predecessorCount[v];
9 foreach v € V do

10 | color[v] < INVALID _COLOR;

1 foreach v € V do
12 | Allocate memory for lastColorSent[v] ;

progresses and better color information from the predecessors
becomes available. The basic process, illustrated in Fig. 2,
is to optimistically pick the color for a vertex based on the
partial information available about its predecessors, which
is maintained in an array of predecessor color counters for
every vertex. Once a new color is picked, the color change
is propagated to all successors, and the process repeats until
quiescence. Since colors are fixed when suboptimal updates
occur, our algorithm is a label-correcting coloring algorithm.

Speculative coloring removes synchronization, but it can lead
to suboptimal work where most color updates end up being
erased by subsequent fixes. To avoid such work explosion,
we introduce mechanisms that favor profitable work: sender-
side caching of color updates, receiver-side prioritization
of incoming color updates, and local per-vertex termination
detection.



Per-Vertex termination detection. Our algorithm maintains
a per-vertex termination counter (pending updates counter in
Fig. 2 and taskRemainingInLocalColor@s). For each vertex,
this counter keeps track of how many predecessor color updates
have been received so far and are waiting to be processed
locally. Since local work is cheaper than remote updates, a
vertex will not send any color updates to its successors until
the termination counter reaches the value of 0, indicating that
no more local work is available.

Execution-time message ordering via priority queues. As
discussed in Sec. I, a greedy coloring algorithm imposes
ordering on vertices based on different heuristics such as
vertex id, degree etc. to decide which vertex to color first (thus
creating predecessor-successor relationships among vertices).
This ordering creates a priority DAG with edges emanating
from the predecessors to the successors. Because Distributed
Control traverses the DAG optimistically (in contrast to Jones-
Plassmann) and vertices can be processed in arbitrary order,
sub-optimal color updates can trigger work explosion. To
minimize such redundant updates, we assign priorities to
received predecessor messages. We observe that vertices that
are relatively close to the roots in the DAG (distance metric)
and that have relatively small color values (color metric) should
be processed first. The distance metric prioritizes work that
is closest to DAG roots and thus most likely to be final, and
the color metric favors colors that are more likely to be final
colors in Grundy coloring (smaller color wins).

DC vertex-coloring (Proc. 1) maintains two types of priority
queues per thread ¢;; on each rank: color@ and cache@
(Lns. 2-3 in Proc. 1). The per-thread color@s orders received
messages by the distance and the color metrics. The other
priority queue, cache(, is used to order outgoing messages.
We will discuss message caching and reduction later in this
section.

Algorithm

The main structure of the algorithm is shown in Alg. 1.
The main procedure consists of an initialization step followed
by an active message epoch in which initial messages are
sent and then handled in the handleQueue() procedure that
processes thread-local update queues (described later). The
initial messages are sent from roots of the DAG by the
Visit-root() procedure, which first checks if a vertex is a
root, and if it is it initializes the color to O and sends an update
to the root’s neighbors. The messages are received by the Visit
message handler, and it forwards the incoming color updates to
thread-local queues that are then processed in handleQueue().
This processing results in color updates and in new messages
sent to the Visit handler. These updates continue until there
is no more work to be done and the active message epoch
terminates. Next, we describe the details of each of these steps.

Initialization. At the beginning, the algorithm
initializes the per-vertex termination counters,
taskRemainingInLocalColorQs[v] (Ln. 5 in Proc. 1).

As discussed earlier, this counter plays the vital role in
the algorithm to achieve optimistic parallelism. For a

particular vertex v, the taskRemainingInLocalColorQs[v]
counter keeps track of how many messages are waiting
to be processed in the color@ priority queues. Whenever
taskRemainingInLocalColorQs|v] reaches a value of zero, it
triggers an asynchronous color update for v. Each vertex v
with non-zero predecessor count maintains a list of colors,
predecessorColors|v], that have been taken by its predecessors
(Ln. 8 in Proc. 1). When a vertex optimistically acquires a
color, it does so by searching through this list to find the
minimum color not taken by any predecessor.

Visiting Roots. Alg. 1 starts (Ln. 6) by assigning a
color value of zero to all the roots and propagating the
color information to the roots’ successors asynchronously
(Lns. 10-14 in Alg. 1). Each neighbor vertex v, on receiving
the message containing its predecessor’s color information,
executes a message handler Visit (Line 16 in Alg. 1). The
handler inserts the received predecessor information in the
color@ priority queue (Ln. 19). Before insertion, we also
increment the corresponding local termination detector for v,
taskRemainingInLocalColorQs[v], by one (Ln. 18 in Alg. 1).

Procedure 2: handleQueue

1 locallter < threshold;
2 while true do
3 if cacheQltia] not empty and
(cacheQltiq).size < threshold) then
4 v, predOldCol, predNewCol + cacheQlt:a].pop() ;
5 tryReductionAndSend (v, predOldCol,
predNewCol);
6 else
L locallter--;

8 if locallter = O then

v, predOldCol, predNewCol < cacheQ|tia].pop() ;
10 tryReductionAndSend (v, predOldCol,
predNewCol);
11 locallter < threshold;
12 if colorQ[t;q] not empty then
13 v, predOldCol, predNewCol <+ colorQ[tiq].pop() ;
14 taskRemainingInLocalColorQs[v]--;
15 colorVertex (v, predOldCol, predNewCol) ;
16 finishCount++;

Procedure 3: colorVertex

In : Vertex v, Color predOldColor, Color predNewColor
1 if predOldColor < predecessorCount|v] then
2 | predecessorColors[v][predOldColor]-- ;

3 if predNewColor < predecessorCount[v] then
4 | predecessorColors[v][predNewColor|++ ;

5 if taskRemainingInLocalColor@Qs[v] = 0 then

6 newColor < findMinAvailableColor(v);

7 while true do

8 oldColor + color|v];

9 if atomicCompareAndSwap(color|v], oldColor,
newColor) then

10 cacheQ[tiq].push(v, oldColor, newColor);

1 L break

Processing elements from the priority queues. To process
the received predecessor color updates pushed in the color@,



each thread on each rank executes handleQueue (Proc. 2)
until termination is reached (Ln. 7 in Alg. 1). Since our
algorithm is an unordered algorithm, it proceeds optimistically
as much as possible. But in doing so, the algorithm runs
into the risk of executing excessive sub-optimal work. To
circumvent this problem, the runtime, at this point, needs
to decide which task to execute first. Hence, we choose
the best possible locally-available candidate for processing
(Ln. 13 in Proc. 2), based on the distance and color metrics
we discussed earlier, from the color@ priority queue. In this
way, our algorithm also eliminates some sub-optimal work.
Once a vertex v is popped from the priority queue, the
taskRemainingInLocalColorQs|v] is decremented (Ln. 14 in
Proc. 2) and the algorithm executes colorVertex (Proc. 3).

Coloring Procedure. (Proc. 3) Each message from a
predecessor of a vertex v, inserted into the color(@), contains two
pieces of information: predecessor’s old color and the new color.
After popping a message from the queue, the relevant color
counters for v containing v’s predecessor’s color information,
predecessorColors|[v] are decremented (Ln. 2) and incremented
(Ln. 4 in Proc. 3) for the predecessor’s old color and new
color respectively. Next, a check is performed to see whether
the taskRemainingInLocalColor@s[v] has reached a value of
zero (Ln. 5), which can trigger a search-and-update for a new
color value for v (Ln. 9).

Finding minimum available color. (Proc. 4) Finding the
minimum color starts by saving the the current color of vertex v
and setting the availableColor to predecessorCount (Ln. 3).
Next a search is performed in predcolor[v] to find a minimum
color not taken by any predecessor. If such color is found, the
vertex color is set to new minimum available color.

Procedure 4: findMinAvailableColor

In :Vertex v
1 oldColor < color[v];

2 if atomicCompare AndSwap(color|[v], oldColor,
predecessorCount[v]) then

availableColor + predecessorCount|v];

for (i = 0;¢ < predecessorCount[v];i + +) do

if predecessorColors[v][i] == 0 then
L availableColor + i;

DG TN NV T

break

return availableColor

o«

9 return oldColor;

Message Caching. In order to reduce the propagation of sub-
optimal work, we cache messages destined for the successors
before sending them (Ln. 10 in Proc. 3). For this purpose,
we have implemented a customized reduction cache with
thread local priority queues, cache@ (cache in Fig. 2). At the
beginning of the handleQueue function (Lns. 3-5 in Proc. 2),
before processing any element from the color@s, the algorithm
attempts to send messages to the successors that have been
cached in the cache@s. When the color information of a vertex
is popped from the cache@ (Ln. 4 in Proc. 2), a check is
performed to see whether the vertex is already updated with a
better color or whether the color has not been changed since
last update (Ln. 2 in Proc. 5). If both of the conditions fail, the

Procedure 5: tryReductionAndSend

In : Vertex v, Color oldColor, Color newColor
1 lastColorSentV « lastColorSent[v] ;
2 if lastColorSentV == color[v] then
3 | return;

4 while true do

5 if atomicCompareAndSwap(lastColorSent[v],
lastColorSentV, newColor) then

6 | break

7 else

| lastColorSentV < lastColorSent[v] ;

9 parallel foreach neighbor w of v do

10 if id[w] > id[v] then

11 send

Visit(w, lastColor SentV, color[v], distance[v])
to owner(w);

12 activeCount++;

current vertex color is recorded as the last color sent (Ln. 5 in
Proc. 5) and the updated color information is propagated to its
successors (Ln. 11 in Proc. 5).

Note that there is no global synchronization barrier or vertex-
centric barrier in our algorithm.

Termination. Termination detection is a part of the un-
derlying runtime. Since updates are propagated along the
edges of the DAG, at some point no changes are received
from the upstream in the DAG, that guarantees termination
in conjunction with the termination detection algorithm in
the runtime. The runtime termination detection algorithm is
based on Sinha-kale-Ramkumar algorithm [16]. Two counters
are maintained locally on each compute node: activeCount
and finishCount. Each time a vertex sends updates to its
successors, the local activeCount is incremented (Ln. 15 in
Alg. 1 or Ln. 12 in Proc. 5). When a received message from
the predecessor is processed from a thread-local priority queue,
the local finishCount is incremented by one (Ln. 16 in
Proc. 2). Non-blocking global reduction (all-reduce) on these
counters accumulates the counts and ensures that the algorithm
terminates when their difference is observed to be equal to
zero for two consecutive times. The non-blocking reductions
are joined only by nodes that have no local tasks (thus they
occur rarely).

Note that these counters serve different purpose from
taskRemainingInLocalColorQs[v]. The latter is the local
counter associated with a vertex that triggers a color search
as it reaches a value of zero, indicating that no message from
predecessor is left to process at a particular instant of time
in the thread-local priority queues on the current rank for the
current vertex.

Leveraging Approximate Vertex Ordering heuristics as
priorities. We have also conducted experiments with incidence-
degree (ID) ordering (choosing a vertex with largest number
of colored neighbors) and saturation-degree (SD) ordering
(choosing a vertex whose colored neighbors need the largest
number of distinct colors). In distributed setting, applying these



ordering heuristics in their original forms are overly restrictive.
Instead, we apply local approximations of these heuristics
to prioritize incoming messages in DC. When applying ID
heuristic, we leverage per-vertex termination counter to track
how many predecessors have been colored for each vertex
and use this information to prioritize messages in such a way
that the target vertex with larger per-vertex termination counter
value will be given priority while processing. With SD heuristic,
whenever a message with the old and the new color information
of a predecessor is processed, the corresponding color counters
are checked: a check is performed to see whether the ‘old’
color is becoming available (by transitioning to value 0) or
whether the ‘new’ color is taken for the first time by any
neighbor (by transitioning from 0 to 1) respectively. Keeping
track of these changes for each vertex with a counter provides
us with an approximation of how many distinct colors have
been taken by the neighbors of each vertex. This counter can
be used to prioritize incoming messages to be processed. When
applying ID and SD heuristic separately, we do not employ
distance-based priority discussed earlier.

IV. CORRECTNESS

In this section, we prove the correctness and the termination
guarantee of Distributed Control coloring algorithm.

A. Correctness

Lemma 1. Distributed Control coloring algorithm eventually
converges.

Proof. Convergence of DC can be proved by structural induc-
tion on the levels of the DAG traversed during the algorithm
execution. In the base step, roots are on level 0 and since
roots have no predecessors, all the root vertices will settle
immediately with color 0. Now as an inductive hypothesis, let
us assume that all the vertices in the DAG up to level I — 1
have settled with final colors. Consider the inductive step. All
the vertices on level [ of the DAG will receive final colors of
their predecessors at level [ — 1. Since messages only propagate
from predecessors to successors, each vertex will eventually
receive all final colors of its predecessor(s) and will settle. As
messages propagate in one direction along the edges of the
DAG, no cycle forms and vertices at level [ will also settle
with a final color. Thus DC will eventually converge. O

Lemma 2. At the convergence step, each vertex (except roots)
processes one final message from a predecessor containing its
old color and new color.

Proof. Since roots obtain a color of 0 at the beginning of
DC, they only propagate that new color information to their
successors. Successors of roots, on receipt of such messages
only increment the color counter corresponding to new color
(0) (there won’t be a matching decrement counter operation
for leaving the old color for roots). The predecessors of all
other vertices generate a sequence of updates, each message
containing the old color as well as the new color. Even if these
messages arrive at the successors out-of-order, every decrement
to a counter that corresponds to leaving an old color by the

predecessor will be matched with an increment of the new
color counter at the receiver (successor) end (Lns. 2—4 in Proc.
3). At the receiver vertex v, if the predecessor old color value
or the new color value is greater than predecessorCount|v],
the value is dropped (since there is no need for keeping track of
colors greater than predecessorCount[v]). However, if the re-
ceived value is within the range of 0 and predecessorCount|v],
the appropriate counter is adjusted. Convergence of a vertex
happens when the last update from the last predecessor is
received. At convergence, a vertex has received updates from
all its predecessors and all the counter increments have been
accounted for by the corresponding decrements except for
one. O

Corollary 1. Processing the last message on convergence will
set the local termination detection counter of a vertex to zero,
resulting in a final color search.

Proof. Processing the last update for a vertex from a thread-
local priority queue will set the local per-vertex termination
counter to zero, thus triggering a color search (Lns. 5-6 in
Proc. 3). [

Theorem 1. Distributed control coloring algorithm converges
with correct (Grundy) coloring.

Proof. To prove the correctness, we show that the final search
(as in Proc. 4) for each vertex will ensure the vertex color is
correct. Before each search starts (including the final search),
the current vertex v’s color is saved and then temporarily
set to predecessorCountlv]. The final search proceeds by
scanning through the predecessor color counters to find the
minimum one not taken by any the predecessors. After the
search is finished, a color update operation is attempted with
the new-found minimum color. Since the color was set to
predecessorCount[v] before starting the search, the final
search ensures that minimum available color will be stored as
the final color of a vertex. O

V. EXPERIMENTAL RESULTS
A. Experimental Setup

1) Dataset: We evaluate the performance of Distributed
Control and Jones-Plassmann vertex coloring algorithms with
synthetic RMAT graphs and real-world graph inputs.

Characteristics of RMAT Graphs. To generate synthetic
graphs, we employ the RMAT graph generator [17]. In this
paper, we experiment with 4 types of RMAT graphs (Table I):
Graph500 [18], Erd6s-Rényi (RMAT-ER), RMAT-G (Good),
and RMAT-B (Bad). These graphs differ in degree distribution
of vertices and in the density of local subgraphs. A detailed
description of the RMAT graph generator and different RMAT
graph characteristics can be found in [19]. Both RMAT-G and
RMAT-B contain relatively dense ‘“‘subcommunities” (dense
local subgraphs). The degree distribution of RMAT-ER follows
a normal distribution and contains only one local maximum.
However, the degree distributions of Graph500, RMAT-B and
RMAT-G are similar and contain several local maxima. The
degree distribution characteristics and the local subcommunity



Graph type a b c d

Graph500 057 0.19 0.19 0.05
RMAT-ER 025 0.25 025 0.25
RMAT-G 045 025 0.15 0.15
RMAT-B 055 0.15 0.15 0.15

TABLE I: Parameters for RMAT generator

VI |B| davg dmaz D

Social network Twitter 44M 29B 37 750k 36

Friendster 65M 3.6B 55 5k 32

Webgraph sk2005 50M 3.8B 38 8M 17
Road network europe_osm 50M 1B 2 13~ 7000

Graph type graph

TABLE II: Real-world input graph characteristics. Total number of
vertices (|V]) and edges (|E|) along with the average degree (davg).
maximum degree (dmaz) and diameter (D) for each type of graph
input is tabulated here.

structures differentiate these 3 types of RMAT graphs from
RMAT-ER. A measure of centrality, local clustering coefficient,
which measures how close the neighbors are in forming a clique,
also varies significantly for these 3 types of graphs. RMAT-B
contains dense local subgraphs. Same property also holds for
RMAT-G. Taking all these properties into consideration will
help us understand the performance results later in this section.
In the constructed synthetic graphs, each vertex of the RMAT
graphs has an average degree of 16 (directed). We remove
duplicate edges and self-loops from the generated graph. In
the plots for our scaling experiments, X axes have a one-to-
one correspondence and indicate the scale of the input graph
and the corresponding number of compute nodes employed in
each experiment. A graph of scale x denotes a graph with 27
vertices. Each vertex in RMAT graph has an average degree
of 16 (directed), for a total of 2 % 16 x 2* edges, considering
undirected edges.

Real-world Datasets. For large scale experiments in AM++,
Table II summarizes the characteristics of the real-world graph
datasets we have experimented with. Twitter and Friendster
datasets are generated by crawling two online social networks
and are obtained from Laboratory of Web Algorithmics [20]
and Stanford Large Network Dataset Collection (SNAP) [21] re-
spectively. Sk2005 is generated by crawling the (.sk) domain for
Slovakian researchers in 2005 using UbiCrawler. europe_osm
dataset represents European road network extracted from Open
Street Map. These two datasets were downloaded from the
University of Florida Sparse Matrix Collection [22]. We also
compare the performance of our algorithm with PowerGraph
on real-world dataset (Table III) collected from [21].

2) Configuration:

a) Hardware: We have conducted our experiments on a
512-node Cray XC30 system. Each compute node on the XC30
system consists of two Intel Xeon E5 12-core x86 64 2.3 GHz
CPUs with hyperthreading enabled (up to 48 hardware threads
per node) and of 64 GB of DDR3 RAM. All XC30 compute
nodes are connected through the Cray Aries interconnect.

b) Compiler Options: We have compiled our code with
gecc 7.2.0 and with optimization level *-O3’. Additionally, single
node experiments were performed with networking turned on.

c) Graph Distribution: The graph is distributed across
compute nodes in a disributed compressed sparse row (CSR)
data structure where each node stores a local CSR represen-
tation of the local portion of vertices assigned to it (1-D
distribution). The vertices are distributed block-cyclically.

B. Scalability Results with RMAT Graphs
1) Weak Scaling Results:

%200 22 23 24 S5 %8° 27 28 20 For weak scaling experi-
£180 [RMAT-ER 1 ments, we double the num-
2180 drapna0o 1 b £ d
;]gg AMAT-B 1 er of compute nodes as
5" 1 we double the number of
89 1 vertices. Figure 3 shows the
2 20 i

“‘?0

weak scaling results with
©  different RMAT graphs. As
can be seen from the fig-
ure, with RMAT-G (Fig. 3b),
Graph500 (Fig. 3c), and
RMAT-B (Fig. 3d) graph inputs, Distributed Control coloring
algorithm is 2x-3.5x times faster at scale in comparison to
Jones-Plassmann algorithm. Although, with RMAT-ER graph
input, Distributed Control does not perform well with smaller
node count, with larger node count, DC performs comparably
with Jones-Plassmann algorithm. The color qualities have
also been tabulated in each case. With increasing power-
law characteristics (Table I), the number of colors required
also increases. However, both JP and DC coloring algorithms
achieve the same coloring quality. The requirement for more
colors with the increase of power-law characteristics can
be attributed to the dense local subgraphs (subcommunities).
Larger parameter values for a and d, in comparison to b and ¢
values, generate subcommunities within the graph structures.
The vertices within these local subgraphs are highly connected
and forms almost cliques. The larger and wider range of
values for clustering coefficient of RMAT-G and RMAT-B [19]
graphs also validate the existence of dense subcommunities.
With a pre-execution ordering heuristic for vertex-coloring,
each vertex in such a dense local subgraph has to wait for
its predecessors before obtaining a color. As a result, with
a larger number of dense local subgraphs, parallelization in
Jones-Plassmann becomes limited. On the other hand, DC
can proceed optimistically, without waiting on a vertex-centric
or global barrier. Such execution behavior helps DC achieve
better performance for Graph500, RMAT-G and RMAT-B graph
inputs at scale. With RMAT-ER graph, however, DC can suffer
from performance bottleneck if too many sub-optimal updates
are performed. This is evident from the workload characteristics
of DC with RMAT-ER, shown in Fig. 7. DC, in this case, is
unable to successfully filter out sub-optimal work and suffers
from extra work execution. In particular, with smaller compute
node count, DC suffers from performance bottleneck due to the
overhead encountered by execution time ordering and frequent
conflicts that arise from optimistic color update. Frequent

o 09 % & o % 5 %
g R % B, g Yy
# Compute cores

Fig. 4: Average barrier overhead
of Jones-Plassmann algorithm.
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Fig. 3: Weak Scaling results with different RMAT graphs on Cray
XC30 system. Power-law characteristics of the input graphs increases
from top to bottom. Color qualities in each case are tabulated under

each plot. Algorithms in AM++ achieve the same color qualities.

Missing datapoints are due to out-of-memory.

color update makes DC a compute-intensive algorithm, rather
than a communication-bound algorithm. However, the situation
reverses at scale and DC catches up with Jones-Plassmann at
scale 30. We will discuss more about workload characteristics
of the two algorithms in Sec. V-E.

2) Overhead of Vertex-centric Barriers: We measure the
overhead of vertex-centric barriers in Jones-Plassmann algo-
rithm as follows: for each vertex, we record the time when
the first message from a predecessor is received. Next, we
record the time of the receipt of last predecessor update. The
difference between these two quantities gives a measure of
how much time each vertex wait on a barrier. We compute
the average of such time with different RMAT inputs and
scales and report the result in Fig. 4. RMAT-ER encounters the
smallest barrier overhead that remains constant as the scale of
the graph increases. In contrast, other graph inputs have larger
barrier overheads at larger scale and present DC with better
opportunity to perform by speculation.

3) Effect of Caching: We also show scaling results of
DC with caching and priority heuristic disabled (DCc nq)
in Fig. 3. As can be seen from the figure, even at small
scale, DC,c nq does not perform well due to work explosion
resulting from aggressive speculation. At or beyond 384
compute cores, the amount of network traffic generated by
DCc nq causes node failures due to memory exhaustion.

4) Strong Scaling Results: For strong scaling experiments,
we double the number of compute nodes and keep the graph
size constant. Figure 5 reports strong scaling performance
of Distributed Control and Jones-Plassmann algorithms with
various RMAT graphs. We also report the color count in
each case. As can be seen from Figs. 5b to 5d, at or beyond
384 compute cores, DC executes faster than Jones-Plassmann.
DC also achieves comparable performance with RMAT-ER
graph when run on larger number of compute nodes. As we
increase the number of node counts, Jones-Plassmann algorithm
struggles to scale, since vertex-centric barrier becomes an issue
and communication overhead across large number of compute
nodes starts affecting its performance. DC, on the other hand,
enjoys the opportunity of optimistic parallelism with larger
resource count. With enough processing units at its disposal,
DC can support continuous color updates and saturates the
computing resources with work. In this way, even though DC
has to execute more work compared to JP (Sec. V-E), investing
the time obtained by eliminating vertex-centric barrier, results
in better performance.

C. Experiments With Real-World Datasets

We evaluate coloring algorithms on AM++ with four
larger real-world datasets: Friendster, Twitter, sk2005 and
europe osm. These datasets represent social network, follower
network, webcrawl graphs and road networks respectively. With
Friendster (Fig. 6a) and sk-2005 input (Fig. 6¢), DC has better
scalability compared to JP. In both cases, increasing the number
of compute nodes penalizes JP with communication cost as
well as vertex-centric barriers. Note that sk2005 requires a
large number of colors compared to other input graphs. sk2005
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Graphtype graph VI |E| D ¢f Seoloring pg colorcount
Communication wiki-Talk 24M SM 9 0.0526 1.93 79
networks email-EuAll 265k 420k 14 0.0671 4.15 30
Social networks  soc-Live]. 4.8M 69M 16 0.2742 1.87 324

com-orkut  3M 117M 9 0.1666 0.83 115

com-lj 4M 34M 17 0.28 1.3 333

com-youtube 1.1IM 29M 20 0.0808 2.04 38

com-dblp 317k 1M 21 0.6324 3.43 113

com-amazon 334k 925k 44 0.3967 1.68 9

Purchase network amazon0601 403k 3.3M 21 04177 14 12
Road networks roadNet-CA 1.9M 5.5M 849 0.0464 22 4
roadNet-TX 1.3M 3.8M 1054 0.0470 24 4

roadNet-PA 1M 3M 786 0.0465 19 4

Citation graphs  cit-Patents 3.7M 16.5M 22 0.0757 1.2 14
‘Web graphs Web-Google 875k 5.1M 21 0.5143 1.5 43
Web-BerkStan 685k 7.6M 514 0.5967 6.3 201

Web-Stanford 281k 2.3M 674 0.5976 2.1 63

TABLE III: Speedup results of DC over PowerGraph (Scotoring pg)
with real-world input graphs. Total number of vertices (|V']) and edges
(|E) along with the diameter (D), average clustering coefficient (cf)
for each type of graph input is tabulated here.

represents a collaboration network of Slovakian researchers
with densely connected (hence larger color count). Web-
crawl graphs (such as sk2005) have two important topological
characteristics: they have low diameters (“small world”) and
their degree distribution follow power-law (“scale-free”). Road
network graphs such as europe osm, on the other hand, has
bounded degree distribution, a smaller average and maximum
degree count (cf. Table II) but very high diameter. Since
there is not much scope for optimistic parallelism due to low

degree-count, DC has slower execution time than JP in this
case(Fig. 6d). With Twitter input, DC achieves comparable
performance with 1536 cores (Fig. 6b). The particular Twitter
dataset we have experimented with is generated from the
follower network. In this social network graph, followers are
not connected to each other and hence do not create dense
local subgraphs. This is in contrast to the topological structure
we observe in RMAT-B, RMAT-G and Graph500 inputs, which
have multiple dense locally connected subgraphs.

D. Comparison to The PowerGraph Framework

We compare the performance of our implementations in
AM+ with a similar greedy distributed vertex-coloring al-
gorithm (called simple coloring) in PowerGraph [10], a well-
known distributed graph processing framework. This helps us to
evaluate the efficiency and coloring quality of our algorithms.
We performed our experiments with the publicly-available
version 2.2 of PowerGraph [23]. PowerGraph processes vertex-
centric programs in three phases: Gather (gather results from
neighbors), Apply (compute new updates), and Scatter (GAS)
(propagate updates to the neighbors). In the synchronous
execution mode of PowerGraph, each of these micro-steps is
separated by a barrier, where all vertices gather and scatter at the
same time. The asynchronous mode of PowerGraph executes
GAS phases without the barrier synchronization. However,
before each GAS iteration can proceed, active vertices need
to acquire locks on their neighbors to prevent two neighbors
from choosing the same value simultaneously. Acquiring a



lock on a high-degree active vertex can limit the scalability
of the asynchronous algorithm in PowerGraph for power-law
graphs. If the PowerGraph coloring algorithm used a vertex
ordering such as the one in DC and JP, it would be a pull-
based version of these algorithms. However, always locking the
whole neighborhood of a vertex for a pull step irrespectively of
the source of the triggering change generates a large overhead
when compared to a push-based algorithm such as DC.

We ran simple coloring algorithm with the asynchronous
graph processing mode of the PowerGraph framework. With the
synchronous execution mode, PowerGraph coloring algorithm
fails to converge [24].

1) RMAT weak scaling: Figure 3 shows the weak scaling
results of our implementations and of the simple coloring
algorithm in PowerGraph. From Fig. 3, we can see that
our implementation of Jones-Plassmann performs better at
higher scale with RMAT-ER compared to the PowerGraph
implementation. As we increase the problem size, vertex-
centric barrier becomes a bottleneck in JP for graphs with
skewed degree distribution. Asynchronous execution engine of
PowerGraph outperform JP in such cases. Except for RMAT-
ER input, DC outperforms other two implementations in all
cases at higher scale. Also, PowerGraph can not run beyond
3072 cores due to the limitation of the framework. We also
tabulated the coloring quality of these implementations in Fig. 3.
Both JP and DC achieve the same color quality. Compared to
PowerGraph, the coloring quality of the AM++ algorithms are
better. The slower performance of the coloring algorithm in
PowerGraph with power-law graphs can be attributed to the
restricted parallelism imposed by the vertex locking mechanism
needed for data consistency and updates. We also tried to
run two other vertex-coloring algorithms in PowerGraph with
different ordering heuristics: saturation-ordered and degree-
ordered coloring. Unfortunately these two algorithms fail to
complete execution in a reasonable time.

2) RMAT strong scaling: Figure 5 shows strong scaling
of PowerGraph coloring algorithm with scale-26 graph. With
Graph500 and RMAT-ER, PowerGraph performs worse than JP
and DC with increased no. of cores. In many cases, PowerGraph
fails with larger cores.

3) Real-world datasets: Table I1I tabulates speedup of DC
over PowerGraph with real-world datasets collected from [21].
Except com-orkut dataset, DC outperforms PowerGraph in all
cases. Road network graphs require fewest number of colors,
yet PowerGraph requires every active vertex update to acquire
a lock on all its neighbors. For this reason, in such cases, DC
performs almost 20 times better compared to PowerGraph due
to no requirement of vertex-centric locking.

E. Workload Characteristics

Figure 7 shows the breakdown of different types of work
executed by each vertex-coloring algorithm. We classify
workload performed by each algorithm in 3 categories: useful,
useless, and rejected work. Useful works are the aggregate
count of tasks that contain the final predecessor color values
and result in successful color updates. Both Jones-Plassmann

| Useful 0= Useless work overhead =3 Rejected =3

RMAT-G Graph500 RMAT-B

Fig. 7: Workload statistics (512 compute nodes, scale 31 graph).
Ordering No. colors Ordering time (s) Coloring time (s) Color ratio
Random 500 0.21 11.68 1.06

Largest first 388 0.2 10.91 1.36
Incidence degree 365 30.49 11.47 1.452
Smallest last 366 3221 11.36 1.448

TABLE IV: Color quality, sequential ordering time, and coloring
time of a Scale 24 Graph500 graph in ColPack [25]. The color ratio
column reports ratio of no. of colors obtained by our algorithm to the
sequential version with a particular ordering. The ordering is tabulated
from the least restrictive ordering to the most restrictive one.

and Distributed Control execute the same amount of such
work over the course of execution. Useful work yields final
vertex colors. The other two types of tasks are specific to the
DC coloring algorithm. In DC, whenever a better color value
becomes available, it forces an invalidation of the current color
and ultimately triggers a correction of the current vertex color
value. These updates happen when DC processes workitems
from the priority queues and tries to update a vertex color with a
newly available color. Once updated, the new color information
is sent to all the successors. However, instead of sending these
updates immediately, we cache these messages for some time.
Useless work arises when a color update becomes stale in the
application-level message cache while waiting to be sent to the
successors. Rejected work goes over the network but on arrival
gets rejected due to containing outdated update. As can be seen
in Fig. 7, DC performs more work compared to JP. However,
only rejected work results in network messages. Compared to
other inputs, RMAT-ER results in the largest amount of this
type of work, hence DC has worst performance with RMAT-ER
input. Nonetheless, the elimination of vertex-centric barriers in
DC results in significant performance benefit on graphs with
densely connected subcommunities and strong power-law.

F. Coloring Quality

In Table IV, we compare the color quality of our algorithm
(with random ordering heuristic for pre-execution order) to
those in a well-known coloring software package ColPack [25].
ColPack provides sequential and parallel versions of algorithms
for a range of graph coloring problems. As can be seen from
Table IV, in the worst case, our algorithm uses 1.45 times
more colors than the sequential version with incidence-degree
ordering. However, in sequential setting, even with small scale
24 graph, it takes 30.49s to obtain the incidence degree order.
Smallest last, the most restrictive ordering among the ordering
schemes, takes about 32.21s to order the vertices. On the other
hand, random ordering does not require any ordering time, and
it uses few extra colors. Imposing other orderings in distributed



JP DC DC_SD DC_ID
15524 75.66 6539  63.30

TABLE V: Execution time (in seconds) of DC algorithms
(DC_ID: incidence degree heuristic, DC_SD: saturation degree
heuristic) and the JP algorithm with Graph500 scale-28 graph
on 64 compute nodes.

Fig. 8: From left-to-right: Distribution of color bins for RMAT-ER,
RMAT-G, RMAT-B, and Graph500 (color numbers on the x-axis and
color counts on the y-axis). The plot combines scales 25-30, indicated
by shades of gray.

setting is more involved. Finally, random ordering is necessary
for the performance guarantees in DAG-based algorithms [5].

G. Impact Of Approximate Ordering Heuristics on DC As
Priority Metrics

As discussed in Sec. III, we experiment with approximate
ID and SD heuristics for prioritizing incoming messages for
target vertices. We present our results in Table V. DC with the
ID heuristic outperforms other algorithms on the test input. It is
important to note that these heuristics only affect performance
and not the total no of colors since the total number of colors
is decided by the pre-ordering of vertices in the DAG (the
heuristics are used during execution to avoid wasted work).

H. Skewness of Sizes of Color Classes

In Fig. 8, we show the sizes of different color classes
(independent subsets) for 4 types of RMAT graphs. Sizes
of color classes can assist to choose between JP and DC. If the
sizes of the color classes are such that most of the vertices are
concentrated in the lower-numbered color bins (for example in
RMAT-B, RMAT-G and Graph500 in Fig. 8), it can be a good
predictor of better performance of DC over JP with such inputs.
This is because, due to the speculative nature of DC, it tends
to choose first the minimum available color in a search and
propagates such speculated color choice as soon as possible.
The larger the lower color bins are, right predictions will be
made earlier in the computation of DC. Moreover, amount of
rejected work is highest (Fig. 7) with graph that has the most
equal color distribution (RMAT-ER).

VI. RELATED WORK

Greedy Ordering Heuristics. The first greedy coloring
algorithm was proposed by [26]. Different vertex ordering
heuristics for Jones-Plassmann algorithm have been proposed
and evaluated in [11].

Empirically Evaluated Shared-Memory Algorithms. A
two-step distance-1 coloring algorithm was proposed in [7].
They evaluated the algorithm on shared memory system
with small-size inputs. Authors in [19] studied the interplay
between architectures and algorithms in the context of vertex-
coloring algorithms. They evaluated the algorithms on synthetic

RMAT graphs. The approach proposed by Deveci et al. [27]
introduced a set of refinements and optimizations over the
two-stage (assignment and correction) coloring procedure by
Gebremedhin and Manne for many-core architectures and
iterative graph coloring algorithms. In contrast, our distributed
algorithm eliminates the need to separate the conflict detection
phase from the assignment phase with optimistic execution,
thus eliminating the bottlenecks associated with synchronization
that separates these stages.

Theoretical Distributed Algorithms. Based on the message
passing model, many theoretical algorithms have been proposed
for distributed graph coloring problem [28], [29], [30], [31],
[32]. In this model, message communication happens within
a set of synchronized steps. For example, [29] present a
deterministic (A + 1)-coloring distributed algorithm with
running time of O(A) + % log* n. We refer to [33], [34]
for further discussion.

Empirically Evaluated Distributed-Memory
Algorithms. [35] proposed a framework for parallelizing
greedy coloring algorithm for static graphs. The framework
partitions a graph among several processors and speculatively
colors the vertices greedily and resolves conflicts in a set of
synchronized supersteps. However, they experimented with
small-size graphs. [36] reported performance of graph coloring
algorithm based on Luby’s parallel maximal independent
set algorithm [3] on a Pregel-like system. However, their
implementation is not scalable (for example sk2005 took
about 26 minutes on 90 nodes). Both of the previous
approaches are based on synchronous supersteps. [15]
evaluated Jones-Plassmann algorithm in distributed settings
for static and dynamic graphs. Our optimistic parallelism
and label-correction approach is related to progressive reads
semantics in [37], however no consideration was given about
prioritizing work.

VII. CONCLUSION

In this paper, we have presented a label-correcting, com-
pletely asynchronous vertex-coloring algorithm that is based
on optimistic parallelization. The algorithm eliminates vertex-
centric barriers and global synchronization altogether and relies
only on atomic operations to update vertex colors. The time
obtained by elimination of such barriers is invested in ordering
tasks to minimize the effect of executing sub-optimal work. We
have demonstrated the potential of our algorithm with power-
law graphs containing densely connected subcommunities —
both in terms of scalability and performance.
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