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—— Abstract

Programming by example (PBE) is a powerful programming paradigm based on example driven
synthesis. Users can provide examples, and a tool automatically constructs a program that
satisfies the examples. To investigate the impact of PBE on real-world users, we built a study
around StriSynth, a tool for shell scripting by example, and recruited 27 working I'T professionals
to participate. In our study we asked the users to complete three tasks with StriSynth, and the
same three tasks with PowerShell, a traditional scripting language. We found that, although our
participants completed the tasks more quickly with StriSynth, they reported that they believed
PowerShell to be a more helpful tool.
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1 Introduction

Scripting languages, such as PowerShell and bash, help I'T professionals to more efficiently
complete tedious and repetitive tasks. Those tasks can include file manipulations and
organizing data, where a simple error can destroy users’ data. As an example, consider the
disastrous attempt to remove all backup emacs files with the command rm * ~. Additionally,
small errors in the scripts can lead to malicious behavior, such as data loss [24]. Scripts can
be difficult for users to write by hand, requiring users to have extensive experience with
regular expressions, programming and domain expertise in the scripting language of their
choice. Depending on the application, a user may need to be able to write a very complicated
regular expression for a relatively simple task. Furthermore, users may not have access to
their scripting language of choice, depending on the operating system and software policies
used by their employer.
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For these reasons, many end-users search for help on online forums when they need to
write a script [3, 2, 4]. When users seek help in writing a script on forums, they will often
provide a few illustrative examples that convey the goal of the script. This observation was the
basis of StriSynth [13], a research tool that was proposed to make scripting easier and more
efficient by allowing users to program scripts by example. While scripting is a challenging
task, especially for novice programmers, providing examples of the intended behavior is a
more natural interface for scripting. StriSynth supports various types of functions, such as
transformations, filters, partitions, and merging strings.

In this work, we explore how scripting by example, specifically with StriSynth, is received
by the real-world target end-users. We designed a user study around StriSynth and recruited
27 IT professionals to participate in the study. In our study we asked users to complete
three tasks with StriSynth, and the same three tasks with PowerShell, a traditional scripting
language. When using StriSynth, users were statistically significantly faster at completing
tasks as compared with PowerShell. However, in a post-study survey when users were asked
which tool they perceived to be more “helpful”, users statistically significantly reported that
PowerShell, with the traditional scripting paradigm, was more helpful. This was counter-
intuitive result, as we expected that a faster should be considered to be more helpful by
users. While the formal methods community has largely taken efficiency of task completion
to be an indicator of a good language design, we explore our results here that show this is in
fact a more complex issue.

2 Background

Programming by example (PBE) [6, 23, 26, 7] is a form of program synthesis. It works by
automatically generating programs that coincide with the given examples. In this way, the
examples can be seen as an incomplete, but easily readable and understandable specification.
However, even if the synthesized program satisfies all the provided examples, it might not
correspond to user’s intentions, due to this incompleteness in the specification. In this case,
a user must provide further examples to the synthesis tool.

To address this issue, StriSynth was implemented as a live programming environment [5]
for PBE. In this way, a synthesized script can be refined with every new provided example,
and thus yields more interactive experience for the user. Interactive PBE allows end-users
to provide a single example at a time, rather than guessing at the full example set that is
necessary for synthesis.

In order to compare the PBE paradigm to more traditional scripting languages, we
have chosen to use the tool StriSynth [13]. StriSynth is an existing tool for automating file
manipulation tasks, in a similar style to Flash Fill’s [1] synthesis of spreadsheet manipulations.
While the use of scripting language such as sed, awk, Bash or PowerShell requires a certain
level of expertise, many tasks can be easily described using natural language or through
examples.

2.1 StriSynth example

To give some context for how StriSynth compares to traditional scripting language paradigms,
we give an example task that can be easily completed with StriSynth. This task comes from
a StackOverflow post, where the users discuss challenging regular expressions [3]. The user
asked for a script that will create a link from every item in a directory. To better illustrate
the goal of the script, the user provided two examples transformations:
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Documentl.docx E> <A HREF=’Documentl.docx’>Documenti</A>

Document2.docx <A HREF=’Document2.docx’>Document2</A>

To accomplish this transformation, other users on the forum suggested a solution based
on regular expressions in sed:

sed/\ (" [a-zA-Z0-9]+\)\.\ ([a-z]+\) /\<a href\=\"\1\.\2\" \>\1\<\/a\>/g

While it was very easy for the user to express the goal of the script by providing examples,
the resulting script is arguably less readable, even for such a simple problem. In contrast, to
solve this problem in StriSynth, a user provides an example showing what a script should do:

> NEW
> "f.docx" ==> "<a href=’f.docx’>a</a>"
> val F = TRANSFORM

The keyword NEW denotes the start for learning of a new script, after which the user
provides an example of the scripts desired behavior. Based on the provided example, StriSynth
learns a string transformer, and the user saves it with the next command. Every learned
function can be saved using the command val name = ... which creates a reference, name,
to the learned script. The user may then check how F works on different examples to confirm
the learned function is correct.

> F("Documentl.docx")
<A HREF=’Documentl.docx’>Document1</A>
> F("Document2.docx")
<A HREF=’Document2.docx’>Document2</A>

We observe that the learned transformer F' is a function that exactly does what the user
asked initially. However, it only takes a single string as input, while the user wanted a script
that operates on a list of strings. To extend the learned transformer to work over a list, the
user can use the as map function.

> val finalScript = F as map

If a function G has a type signature G : T7 — T5, then applying the postfix operator as
map will result in G as map : List(Ty) — List(7). With as map, the user creates the final
script which takes as input a list of file names and creates a list of HTML links.

Beyond the string transformation used above, StriSynth can also learn other types of
functions from examples. StriSynth supports a filter function that takes a list of strings as
input and removes some elements based on the filtering criterion. Similarly, StriSynth also
supports learning a partition function takes as input a list of strings, and divides them into
groups based on the partitioning criterion. Those groups are then returned as a list of lists
of strings. This functions can be used in any way by the user, but are particularly useful
for scripting tasks that require operations on certain types of files, or files matching some
naming pattern.

In addition, StriSynth can learn a reduce function that merges the elements in a list into
a single string. StriSynth’s split function does the opposite: it returns a list of strings from
the input string. These types of functions are especially useful for scripting tasks that apply
operations to collections of files.
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3 Methodology

A recent survey of the key challenges facing formal methods cites the need for more user
studies, especially on real-world users [16]. To test the impact PBE on real users, we
recruited 27 IT professionals, all of whom were 18 years of age or older. All materials
for the study, as well as the raw data results from the study are available open source at
https://github.com/santolucito/StriSynthStudy.
Our study design consisted of four stages:
1. A tutorial on both PowerShell and StriSynth that introduced the paradigm and syntax
2. Complete three scripting tasks (Extract filenames from a directory listing, Move files
with *.png to imgs/, Printing pdfs from a list of various file types) in PowerShell
3. Complete the same three scripting tasks in StriSynth
4. A post-study survey

In the study, participants were told that they would be using the tools StriSynthA
and StriSynthB instead of StriSynth and PowerShell to avoid bias from participants’ prior
experience. The participants were randomly split into two groups, group A and group B,
where the two groups switched the order of steps 2 and 3 of the study to account for any
potential bias in earlier exposure to the tasks. Group A completed the tasks with PowerShell
first (N=12) and group B completed the tasks with StriSynth first (N=15). The entire study
generally took each participant 50 minutes, and the study was conducted in-person with a
researcher present. The scripting tasks were completed on the researcher’s laptop, which was
preloaded before each study with directories and files needed for the scripting tasks.

While each user was participating in the study, the researcher present recorded the overall
time that was used to complete each task. Following the completion of the six tasks, each
user was given a questionnaire. The questionnaire measured various responses: prior coding
experience, perceived helpfulness of each program as a whole, and perceived helpfulness of
each program for each specific task they completed.

4 Results

In this section we present the results of the user study described in Sec. 3. Overall, users
completed the tasks more quickly when using StriSynth as opposed to PowerShell. This is
good evidence that StriSynth is an efficient tool, especially as none of our users had used
StriSynth before this study, while some already had experience with PowerShell. However,
despite this concrete measure of efficiency for StriSynth, users said that they believe that
PowerShell is a more helpful tool.

4.1 Time to complete the user study tasks

To estimate the usefulness of the programming by example tool StriSynth, we recorded the
time it took for users to complete each task with both StriSynth and PowerShell. The results
are shown in Fig. 1. In addition, Fig. 1 also contains standard error, depicted with line bars.

In the case of the first task (extracting filenames), from in Fig. 1 the standard error bars
give us the intuition that true mean of the time it takes for overall population to complete
this task using PowerShell is between 170 and 210 seconds. The smaller the standard error,
the more likely is that we have achieved the exact, true value of the mean time, which it
takes for the entire population of IT professionals to complete the tasks.

We can see in Fig. 1 that overall the users took less time to complete the tasks with
StriSynth. However, our sample size was relatively small (N=27). Therefore, we wanted
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Figure 1 The amount of the time each task took, as well as the average time over all tasks for
all users (N=27). The smaller bars indicate standard error.

to measure the confidence that our observations are reflective of the larger IT population
beyond our small sample size. To do this we ran a paired sample t-test [30].

When running the paired sample ¢-test, we are checking the null hypothesis that the
difference between the paired observations in the two samples is zero. Without going into
the details of statistical methods, we need to compute the p-value. Any p-value of less than
.05 is called statistically significant, indicating we have met a generally accepted threshold of
confidence in our results [30].

By running these tests on our samples, we learn that a statistically significant difference
was found in the Move Files (p = .03) and Printing pdfs (p = .02) tasks. The p-value of .03
means that, assuming StriSynth does not actually have any impact on time to complete the
Move Files task, there is only a 3% chance that we could have observed the timing difference
between StriSynth and PowerShell (or even some larger difference) presented Fig. 1. In other
words, using StriSynth does actually have the impact on time to complete the task.

All together, our results support the claim that, for small scripting tasks of the type we
presented to our users, PBE can be a more efficient programming paradigm.

4.2 Reported helpfulness

At the end of the study we asked users to report how “helpful” they found both StriSynth and
PowerShell. At this point, users did not know how long they took to complete the tasks with
each of the tools. Users were asked the rate the helpfulness only based on their experience of
using the tools during the study. The exact questions asked were “The following program was
helpful for scripting/completing Fxtract Filenames/etc...””, and users were asked to respond
on a scale from 1 (strongly disagree) - 7 (strongly agree). We show the results from this
survey question in Fig. 2, again with standard error bars. Users rated PowerShell as more
helpful in all three tasks, with the Move Files task showing the most significant difference
(p < .01).
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Figure 2 Users’ (N=27) self reported measure of the helpfulness of each tool with standard error
bars.

The results in Fig. 2 show the surprising insight that, despite the efficiency of StriSynth as
demonstrated in Fig. 1, users perceived PowerShell to be the more helpful tool. Unfortunately,
as we did not anticipate such unexpected results, our study design did not include a more
detailed definition of helpfulness, or ask users to give a more detailed description of their
interpretation of what it means for a tool to be helpful. We can however, at least surmise
that efficiency is not a complete proxy measure for helpfulness.

4.3 Impact of prior user experience

Our study asked users to self-report their prior experience with scripting languages in a
post-study survey. The survey used a seven-point Likert scale for users assess the experience.
Fig. 3 shows the distribution of experience in three categories for all users.

To understand the impact of prior experience on how the users interacted with StriSynth,
we split our user population into two categories. We have the inexperienced user group,
which is the users who rated their prior experience with PowerShell as a 1 (unfamiliar), and
the complement set of users as the experienced user group, who rated their prior experience
with PowerShell as (> 2). In Fig. 4, we show how these two groups performed in the study.

Fig. 4 shows that both groups of users completed the tasks faster with StriSynth. A more
subtle and interesting insight is that inexperienced users had a greater relative speedup in
task completion when using StriSynth. That is, inexperienced users benefited more from
using StriSynth as compared to the benefit to experienced users. This provides evidence
for the widely stated perception that programming by example is a domain well-suited for
novice programmers.

4.4 Threats to Validity

In a usability study, it is important to avoid any possible selection bias in the call for
participants. Selection bias can be an issue if the set of users selected systematically differs
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Figure 3 Users’ (N=27) self reported prior experience with various scripting languages from 1
(Unfamiliar) to 7 (Expert User).

from the target population. The results we have presented are from a set of users that work
as professional IT support specialists. We do not believe that we have any selection bias here
because in this work, we specifically wanted to explore the impact synthesis can have in the
real-world on such professionals.

A further potential threat to the validity of our results is in the social desirability bias,
or need-to-please phenomena, whereby users will subconsciously try to produce the results
they expect the researcher would like to see. This potential bias can occur when users are
asked to compare a tool that is a known standard with an alternative that the user knows
to be developed by the researcher. To do combat this issue, we presented StriSynth and
PowerShell as tools named StriSynthA and StriSynthB. In this way, we framed the study as
a comparison between two different tools that we had developed, eliminating the potential
need-to-please bias. This was a critical component to our study design that allowed us to
observe the disconnect between efficiency and users’ perceived helpfulness of each tool.

5 Application to Related Work

The results from our user study are specifically targeted at the impact of programming by
example systems for scripting in I'T professional populations. We discuss here how our results
can be interpreted and extended to other PBE domains.

Gulwani et al. [12] show that PBE is an effective paradigm for industrial application in
spreadsheet manipulation, such as string transformations [1, 10, 9], table transformations [11]
and database look-ups [28]. Another approach is based on the abstraction of 'topes’ [27],
which lets users create abstractions for different data present in a spreadsheet. With topes, a
programmer uses a GUI to define constraints on the data, and to generate a context-free
grammar that is used to validate and reformat the data. These application domains of PBE
are focused on a similar population of non-expert programmers, and so it may be possible to
observe a similar efficiency vs helpfulness phenomena.

Unlike programming by example, in which the user provides input-output examples,
programming by demonstration is characterized by the user providing a complete trace
demonstration leading from the initial to the final state. There are several programming
by demonstration systems [6], such as Simultaneous Editing [25] for string manipulation,
SMARTedit [22] for text manipulation and Wrangler [17] for table transformations. As
programming by demonstration requires intermediate configurations instead of just input and
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Figure 4 We grouped users as Experienced (PowerShell experience>2, N=17) and Inexperienced
(PowerShell experience=1, N=10). We report average time to complete the tasks, and self reported
helpfulness of the tools, as separated by these two groups.

output examples, this paradigm is usually less flexible [21] than programming by example,
but the synthesis problem is easier. Based on our results here, it is possible that this reduced
flexibility may indicate users would rate programming by demonstration even less helpful
(but possible more efficient) than PBE in certain domains.

The Myth [26] and A? [7] systems support PBE for inductively defined data-types in
functional languages. In contrast to StriSynth which focuses on scripting tasks, these tools
are focused on synthesis for more general purpose programming languages. The results from
our study may be cautiously extrapolated other domains - while the theme of PBE is the
same, interaction preference for users may differ when looking at general purpose languages.

Instead of providing specification in terms of examples or demonstrations, specification can
also be given in more formal and complete ways. InSynth [15, 14], CodeHint [8] and the C#
code snippets on demand [31] are systems that aim to provide code snippets based on context
such as the inferred type or the swrrounding comments. Leon [20] and Comfusy [19, 18]
synthesize code snippets based on complete specifications, which are written in the same
language that is used for programming. Sketch [29] takes as input an incomplete program
with holes, and synthesizes code to complete the so that it meets the specification. These
techniques provide a more nuanced interface that may seem, from a perspective of helpfulness,
to be more similar to a traditional language paradigm.

6 Conclusions

Our study shows that users do not always correlate an efficient programming language with
a helpful language. A more thorough exploration of this finding requires a follow up study, in
particular to discover the definition of helpfulness that participants are using. A key question
to answer would be whether users had erroneously perceived PowerShell to be more efficient
and therefore helpful, or if users consciously have other metrics in mind that constitute the
helpfulness of language. One intuitive interpretation may be tied to the interface style of the
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paradigm - StriSynth and other PBE tools are generally limited in their ability to directly
work with a traditional programming language and use familiar concepts such as variables
and loops. This may seem to make for a less helpful language for new users.
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