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Abstract—This paper presents extraction technique 
applied to the double higher order surface integral equation 
method of moments and discusses the numerical results 
compared with previously implemented extraction method 
and numerical Gauss-Legendre integration. 
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integral accuracy, integration extraction technique, surface 
integral equation.  

I.  INTRODUCTION  
 This paper presents our ongoing study of convergence 
behavior of near-singular (potential) and near-hypersingual 
(field) integrals for double higher order large-domain 
surface integral equation method of moments (SIE-MoM). 
The fast and accurate integral computation that will 
effectively give the MoM matrix entries is essential in the 
computational electromagnetics (CEM). The main 
challenge arises with small source-to-field distances which 
often occur in microstrip and printed circuit design but are 
part of almost any model analysis. The technique for 
integral evaluation presented here uses the singularity 
extraction method. The analytically evaluated integral of the 
principal singular part is computed over a parallelogram 
which surface is defined to be similar to the surface of the 
generalized quadrilateral in the near area of the singular 
point. Numerical integrals over parallelogram and 
quadrilateral are using Gauss-Legendre quadrature formula.  
 

II. THE METHOD 
A. 2D double higher order (DHO) integrals 

In the DHO SIE-MoM the 2D surface integrals are 
defined on the Lagrange-type generalized curved parametric 
quadrilateral MoM-SIE surface elements (in Fig. 1) defined 
in the parametric u-v domain as [1]: 

∑∑
= =

=
u vK

k

K

l

lk
kl vuvu

0 0
),( rr ,   for 1≤,≤-1 vu ,            (1) 

where rkl are vector coefficients and Ku and Kv are 
geometrical orders (Ku, Kv ≥ 1). The current is approximated 
by higher order polynomial basis functions [1] leading to 2D 
integrals over the quadrilateral having the following form: 
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where s and hs represent singular and hypersingular 
integrals respectively, i and j are arbitrary polynomial orders 

of the basis functions, β is propagation coefficient, f is the 
operating frequency, ε and μ are permittivity and 
permeability of the dielectric medium respectively and R is 
the distance of the source point from the field point.  
 

 
Fig. 1. Quadrilateral element. 
 
B. Parallelogram for the extraction technique  

The quadrilateral element and the parallelogram 
constructed at projection point (u0, v0) are shown in Fig. 2. 
The distance of the point on the parallelogram and singular 
point is defined as: 
        vuaavauadR vuvup ∆∆+∆+∆+= αcos2222222 ,        (3) 
where au, av and cosα are computed to take into account the 
curvature of the quadrilateral element, Δu = u-u0, Δv = v-v0 
and d is the distance between singular point and the close 
point projection on the quadrilateral element. 
 

 
Fig. 2. Quadrilateral patch and parallelogram constructed at 
projected point. 
 
C. Taylor’s expansion and analytic integration 

The relation between quadrilateral and parallelogram 
parametric surfaces is given by: 
 ),(),(),( 22 vutvuRvuR P += ,  ),(1),( vuxRvuR P += ,    (4) 
where x(u,v) = t(u,v)/Rp

2(u,v). The singular and 
hypersingular parts of integrands for the integration over the 



parallelogram are represented through Taylor’s expansion 
over x having in mind (4). Analytical integrals are computed 
by dividing parallelogram into triangles and using recursive 
formulas similarly to the procedure described in [2]. 
 
D. Projected points outside of the patch 

For the case of large and negative 2auavcosαΔuΔv  
contribution in (3), |x(u,v)| becomes large because Rp

2(u,v) is 
taking a small value. As a result, the Taylor’s expansion 
over x does not approximate the (hyper) singular function 
well. In this situation, when the projection point is outside of 
the element domain, the parallelogram is constructed using 
parameters at the closest point, i.e. the most singular point 
on the quadrilateral. For the large values of |x(u,v)|, the 
patch is divided into four parts and the extraction method is 
applied to each part separately (example in Fig. 5). 
 

III. RESULTS 
 The results shown in Figs. 3-5 are computed for second 
order curvilinear patch (one of the six patches modeling 1 m 
radius sphere) shown in Fig. 2. The integral convergence is 
obtained for d=5e-7 and β=0.77546 and results are 
compared to Gauss-Legendre numerical integration and 
previously implemented traditional (old) extraction 
technique. 
 

 
Fig. 3. Singular integral convergence for u0 = 0.1, v0=-0.1 
and i=0, j=0 orders of the basis function. 
 

 
Fig. 4. Singular integral convergence for u0 = 0.1, v0=-0.1 
and i=6, j=6 orders of the basis function. 

 The NGL label on the graphs represents the square root 
of the number of Gauss-Legendre points used for the 
numerical integration over quadrilateral or parallelogram. 
The relative convergence error is computed as 

III ~~-logδ 10= , where I~  is the integral obtained using 

described extraction method with high value of Gauss-
Legendre points and I represents the integrals as function of 
NGL. 
 Results in Fig. 5 are computed for the point described in 
part D of previous section and the improvement in 
convergence is shown for the divided patch method. 
 

 
Fig. 5. Hypersingular integral convergence comparison for 
u0 = 1.1, v0=1.1 and i=0, j=0 orders of the basis function. 
Patch is divided at (0.8, 0.8) point in u-v domain. 
 

IV. CONCLUSION 
New extraction method is introduced and the method is 

verified with results. The convergence improvement is 
shown compared to the traditional extraction technique as 
well as further improvements achieved by dividing the 
patch. The convergence improvement is due the integral of 
the difference of the two functions defined over the 
constructed parallelogram and quadrilateral being accurately 
evaluated with small number of integration points. 
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