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Abstract

Image-text matching has been a hot research topic bridg-
ing the vision and language areas. It remains challenging
because the current representation of image usually lacks
global semantic concepts as in its corresponding text cap-
tion. To address this issue, we propose a simple and in-
terpretable reasoning model to generate visual representa-
tion that captures key objects and semantic concepts of a
scene. Specifically, we first build up connections between
image regions and perform reasoning with Graph Convo-
lutional Networks to generate features with semantic re-
lationships. Then, we propose to use the gate and mem-
ory mechanism to perform global semantic reasoning on
these relationship-enhanced features, select the discrimina-
tive information and gradually generate the representation
for the whole scene. Experiments validate that our method
achieves a new state-of-the-art for the image-text matching
on MS-COCO [28] and Flickr30K [39] datasets. It out-
performs the current best method by 6.8% relatively for im-
age retrieval and 4.8% relatively for caption retrieval on
MS-COCO (Recall@1 using 1K test set). On Flickr30K,
our model improves image retrieval by 12.6% relatively and
caption retrieval by 5.8% relatively (Recall@1).

1. Introduction
Vision and language are two important aspects of human

intelligence to understand the real world. A large amount
of research [5, 9, 23] has been done to bridge these two
modalities. Image-text matching is one of the fundamental
topics in this field, which refers to measuring the visual-
semantic similarity between a sentence and an image. It
has been widely adopted to various applications such as the
retrieval of text descriptions from image queries or image
search for given sentences.

Although a lot of progress has been achieved in this area,
it is still a challenge problem due to the huge visual seman-
tic discrepancy. When people describe what they see in the
picture using natural language, it can be observed that the
descriptions will not only include the objects, salient stuff,
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Figure 1. The proposed Visual Semantic Reasoning Network
(VSRN) performs reasoning on the image regions to generate rep-
resentation for an image. The representation captures key objects
(boxes in the caption) and semantic concepts (highlight parts in
the caption) of a scene as in the corresponding text caption.

but also will organize their interactions, relative positions
and other high-level semantic concepts (such as “in mid-air”
and “watching in the background” in the Figure 1). Visual
reasoning about objects and semantics is crucial for humans
during this process. However, the current existing visual-
text matching systems lack such kind of reasoning mech-
anism. Most of them [5] represent concepts in an image
by Convolutional Neural Network (CNN) features extracted
by convolutions with a specific receptive field, which only
perform local pixel-level analysis. It is hard for them to
recognize the high-level semantic concepts. More recently,
[23] make use of region-level features from object detec-
tors and discover alignments between image regions and
words. Although grasping some local semantic concepts
within regions including multiple objects, these methods
still lack the global reasoning mechanism that allows infor-
mation communication between regions farther away.

To address this issue, we propose Visual Semantic Rea-
soning Network (VSRN) to generate visual representation
that captures both objects and their semantic relationships.
We start from identifying salient regions in images by fol-
lowing [1, 23]. In this way, salient region detection at
stuff/object level can be analogized to the bottom-up at-
tention that is consistent with human vision system [16].
Practically, the bottom-up attention module is implemented



using Faster R-CNN [34]. We then build up connections
between these salient regions and perform reasoning with
Graph Convolutional Networks (GCN) [18] to generate fea-
tures with semantic relationships.

Different image regions and semantic relationships
would have different contributions for inferring the image-
text similarity and some of them are even redundant. There-
fore, we further take a step to attend important ones when
generating the final representation for the whole image.
We propose to use the gate and memory mechanism [3]
to perform global semantic reasoning on these relationship-
enhanced features, select the discriminative information and
gradually grow representation for the whole scene. This
reasoning process is conducted on a graph topology and
considers both local, global semantic correlations. The fi-
nal image representation captures more key semantic con-
cepts than those from existing methods that lack a reasoning
mechanism, therefore, can help to achieve better image-text
matching performance.

In addition to quantitative evaluation of our model on
standard benchmarks, we also design an interpretation
method to analyze what has been learned inside the reason-
ing model. Correlations between the final image represen-
tation and each region feature are visualized in an attention
format. As shown in Figure 1, we find the learned image
representation has high response at these regions that in-
clude key semantic concepts.

To sum up, our main contributions are: (a) We propose a
simple and interpretable reasoning model VSRN to gener-
ate enhanced visual representations by region relationship
reasoning and global semantic reasoning. (b) We design
an interpretation method to visualize and validate that the
generated image representation can capture key objects and
semantic concepts of a scene, so that it can be better aligned
with the corresponding text caption. (c) The proposed
VSRN achieves a new state-of-the-art for the image-text
matching on MS-COCO [28] and Flickr30K [39] datasets.
Our VSRN outperforms the current best method SCAN [23]
by 6.8% relatively for image retrieval and 4.8% relatively
for caption retrieval on MS-COCO (Recall@1 using 1K test
set). On Flickr30K, our model improves image retrieval
by 12.6% relatively and caption retrieval by 5.8% relatively
(Recall@1).

2. Related Work
Image-Text Matching. Our work is related to existing

methods proposed for image-text matching, where the key
issue is measuring the visual-semantic similarity between a
text and an image. Learning a common space where text
and image feature vectors are comparable is a typical solu-
tion for this task. Frome et al. [6] propose a feature embed-
ding framework that uses Skip-Gram [31] and CNN to ex-
tract feature representations for cross-modal. Then a rank-

ing loss is adopted to encourage the distance between the
mismatched image-text pair is larger than that between the
matched pair. Kiros et al. [19] use a similar framework and
adopt LSTM [12] instead of Skip-Gram for the learning of
text representations. Vendrov et al. [36] design a new ob-
jective function that encourages the order structure of visual
semantic can be preserved hierarchy. Faghri et al. [5] focus
more on hard negatives and obtain good improvement using
a triplet loss. Gu et al. [8] further improve the learning of
cross-view feature embedding by incorporating generative
objectives. Our work also belongs to this direction of learn-
ing joint space for image and sentence with an emphasis on
improving image representations.

Attention Mechanism. Our work is also inspired
by bottom-up attention mechanism and recent image-text
matching methods based on it. Bottom-up attention [16]
refers to salient region detection at stuff/object level can be
analogized to the spontaneous bottom-up attention that is
consistent with human vision system [16, 24–27]. Simi-
lar observation has motivated other existing work. In [15],
R-CNN [7] is adopted to detect and encode image regions
at object level. Image-text similarity is then obtained by
aggregating all word-region pairs similarity scores. Huang
et al. [14] train a multi-label CNN to classify each image
region into multi-labels of objects and semantic relations,
so that the improved image representation can capture se-
mantic concepts within the local region. Lee et al. [23]
further propose an attention model towards attending key
words and image regions for predicting the text-image simi-
larity. Following them, we also start from bottom-up region
features of an image. However, to the best of our knowl-
edge, no study has attempted to incorporate global spatial
or semantic reasoning when learning visual representations
for image-text matching.

Relational Reasoning Methods. Symbolic approaches
[32] are the earliest form of reasoning in artificial intelli-
gence. In these methods, relations between symbols are
represented by the form of logic and mathematics, reason-
ing happens by abduction and deduction [11] etc. How-
ever, in order to make these systems can be used practi-
cally, symbols need to be grounded in advance. More re-
cent methods, such as path ranking algorithm [22], perform
reasoning on structured knowledge bases by taking use of
statistical learning to extract effective patterns. As an ac-
tive research area, graph-based methods [40] have been very
popular in recent years and shown to be an efficient way
of relation reasoning. Graph Convolution Networks (GCN)
[18] are proposed for semi-supervised classification. Yao et
al. [38] train a visual relationship detection model on Vi-
sual Genome dataset [21] and use a GCN-based encoder to
encode the detected relationship information into an image
captioning framework. Yang et al. [37] utilize GCNs to
incorporate the prior knowledge into a deep reinforcement
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Figure 2. An overview of the proposed Visual Semantic Reasoning Network (VSRN). Based on salient image regions from bottom-
up attention (Sec. 3.1), VSRN first performs region relationship reasoning on these regions using GCN to generate features with semantic
relationships (Sec. 3.2). Then VSRN takes use of the gate and memory mechanism to perform global semantic reasoning on the relationship
enhanced features, select the discriminative information and gradually generate the representation for the whole scene (Sec. 3.3). The whole
model is trained with joint optimization of matching and sentence generation (Sec. 3.4). The attention of the representation (top right) is
obtained by calculating correlations between the final image representation and each region feature (Sec. 4.5).

learning framework improve semantic navigation in unseen
scenes and towards novel objects. We also adopt the rea-
soning power of graph convolutions to obtain image region
features enhanced with semantic relationship. But we do
not need extra database to build the relation graph (e.g. [38]
needs to train the relationship detection model on Visual
Genome). Beyond this, we further perform global semantic
reasoning on these relationship-enhanced features, so that
the final image representation can capture key objects and
semantic concepts of a scene.

3. Learning Alignments with Visual Semantic
Reasoning

We describe the detail structure of the Visual Seman-
tic Reasoning Network (VSRN) for image-text matching in
this section. Our goal is to infer the similarity between a
full sentence and a whole image by mapping image regions
and the text descriptions into a common embedding space.
For the image part, we begin with image regions and their
features generated by the bottom-up attention model [1]
(Sec. 3.1). VSRN first builds up connections between these
image regions and do reasoning using Graph Convolutional
Networks (GCN) to generate features with semantic rela-
tionship information (Sec. 3.2). Then, we do global seman-
tic reasoning on these relationship-enhanced features to se-
lect the discriminative information and filter out unimpor-
tant one to generate the final representation for the whole
image (Sec. 3.3). For the text caption part, we learn a rep-
resentation for the sentence using RNNs. Finally, the whole
model is trained with joint optimization of image-sentence
matching and sentence generation (Sec. 3.4).

3.1. Image Representation by Bottom-Up Attention

Taking the advantage of bottom-up attention [1], each
image can be represented by a set of features V =
{v1, ..., vk}, vi ∈ RD, such that each feature vi encodes an
object or a salient region in this image. Following [1, 23],
we implement the bottom-up attention with a Faster R-
CNN [34] model using ResNet-101 [10] as the backbone.
It is pre-trained on the Visual Genomes dataset [21] by [1].
The model is trained to predict instance classes and attribute
classes instead of the object classes, so that it can help
learn feature representations with rich semantic meaning.
Specifically, instance classes include objects and salient
stuff which is hard to recognize. For example, attributes
like furry and stuff like building, grass, sky. The model’s fi-
nal output is used and non-maximum suppression for each
class is operated with an IoU threshold of 0.7. We then
set a confidence threshold of 0.3 and select all image re-
gions where any class detection probability is larger then
this threshold. The top 36 ROIs with the highest class de-
tection confidence scores are selected. All these thresholds
are set as same as [1, 23]. For each selected region i, we
extract features after the average pooling layer, resulting in
fi with 2048 dimensions. A fully-connect layer is then ap-
plied to transform fi to a D-dimensional embedding using
the following equation:

vi =Wffi + bf . (1)

Then V = {v1, ..., vk}, vi ∈ RD is constructed to rep-
resent each image, where vi encodes an object or salient
region in this image.



3.2. Region Relationship Reasoning

Inspired by recent advances in deep learning based vi-
sual reasoning [2, 35, 41], we build up a region relationship
reasoning model to enhance the region-based representation
by considering the semantic correlation between image re-
gions. Specifically, we measure the pairwise affinity be-
tween image regions in an embedding space to construct
their relationship using Eq. 2.

R(vi, vj) = ϕ(vi)
Tφ(vj), (2)

where ϕ(vi) = Wϕvi and φ(vj) = Wφvj are two embed-
dings. The weight parameters Wϕ and Wφ can be learned
via back propagation.

Then a fully-connected relationship graph Gr = (V,E),
where V is the set of detected regions and edge set E is
described by the affinity matrix R. R is obtained by calcu-
lating the affinity edge of each pair of regions using Eq. 2.
That means there will be an edge with high affinity score
connecting two image regions if they have strong semantic
relationships and are highly correlated.

We apply the Graph Convolutional Networks (GCN)
[18] to perform reasoning on this fully-connected graph.
Response of each node is computed based on its neighbors
defined by the graph relations. We add residual connections
to the original GCN as follows:

V ∗ =Wr(RVWg) + V, (3)

where Wg is the weight matrix of the GCN layer with di-
mension of D × D. Wr is the weight matrix of residual
structure. R is the affinity matrix with shape of k × k. We
follow the routine to row-wise normalize the affinity matrix
R. The output V ∗ = {v∗1 , ..., v∗k}, v∗i ∈ RD is the relation-
ship enhanced representation for image region nodes.

3.3. Global Semantic Reasoning

Based on region features with relationship information,
we further do global semantic reasoning to select the dis-
criminative information and filter out unimportant one to
obtain the final representation for the whole image. Specif-
ically, we perform this reasoning by putting the sequence
of region features V ∗ = {v∗1 , ..., v∗k}, v∗i ∈ RD, one by
one into GRUs [3]. The description of the whole scene will
gradually grow and update in the memory cell (hidden state)
mi during this reasoning process.

At each reasoning step i, an update gate zi analyzes the
current input region feature v∗i and the description of the
whole scene at last step mi−1 to decide how much the unit
updates its memory cell. The update gate is calculated by:

zi = σz(Wzv
∗
i + Uzmi−1 + bz), (4)

where σz is a sigmoid activation function. Wz , Uz and bz
are weights and bias.

The new added content helping grow the description of
the whole scene is computed as follows:

m̃i = σm(Wmv
∗
i + Uz(ri ◦mi−1) + bm), (5)

where σm is a tanh activation function. Wm, Um and bm
are weights and bias. ◦ is an element-wise multiplication.
ri is the reset gate that decides what content to forget based
on the reasoning between v∗i andmi−1. ri is computed sim-
ilarly to the update gate as:

ri = σr(Wrv
∗
i + Urmi−1 + br), (6)

where σr is a sigmoid activation function. Wz , Uz and bz
are weights and bias.

Then the description of the whole scenemi at the current
step is a linear interpolation using update gate zi between
the previous description mi−1 and the new content m̃i:

mi = (1− zi) ◦mi−1 + zi ◦ m̃i, (7)

where ◦ is an element-wise multiplication. Since each v∗i
includes global relationship information, update ofmi is ac-
tually based on reasoning on a graph topology, which con-
siders both current local region and global semantic corre-
lations. We take the memory cell mk at the end of the se-
quence V ∗ as the final representation I for the whole image,
where k is the length of V ∗.

3.4. Learning Alignments by Joint Matching and
Generation

To connect vision and language domains, we use a GRU-
based text encoder [3, 5] to map the text caption to the same
D-dimensional semantic vector space C ∈ RD as the im-
age representation I , which considers semantic context in
the sentence. Then we jointly optimize matching and gen-
eration to learn the alignments between C and I .

For the matching part, we adopt a hinge-based triplet
ranking loss [5, 15, 23] with emphasis on hard negatives
[5], i.e., the negatives closest to each training query. We
define the loss as:

LM =[α− S(I, C) + S(I, Ĉ)]++

[α− S(I, C) + S(Î , C)]+,
(8)

where α serves as a margin parameter. [x]+ ≡ max(x, 0).
This hinge loss comprises two terms, one with I and one
with C as queries. S(·) is the similarity function in the
joint embedding space. We use the usual inner product
as S(·)in our experiments. Î = argmaxj 6=IS(j, C) and
Ĉ = argmaxd6=CS(I, d) are the hardest negatives for a
positive pair (I, T). For computational efficiency, instead of
finding the hardest negatives in the entire training set, we
find them within each mini-batch.



For the generation part, the learned visual representation
I should also has the ability to generate sentences that are
close to the ground-truth captions. Specifically, we decode
the image representation I into a sentence with GRU [3].
We maximize the log-likelihood of the predicted output sen-
tence given I and the previous words it has seen. The loss
function is defined as:

LG = −
l∑
t=1

log p(yt|yt−1, I; θ), (9)

where l is the length of output word sequence Y =
(y1, ..., yl). θ is the parameter of the GRU decoder.

Our final loss function is defined as follows to perform
joint optimization of the two objectives.

L = LM + LG. (10)

4. Experiments
To evaluate the effectiveness of the proposed Visual Se-

mantic Reasoning Network (VSRN), we perform exper-
iments in terms of sentence retrieval (image query) and
image retrieval (sentence query) on two publicly available
datasets. Ablation studies are conducted to investigate each
component of our model. We also compare with recent
state-of-the-art methods on this task.

4.1. Datasets and Protocols

We evaluate our method on the Microsoft COCO
dataset [28] and the Flickr30K dataset [39]. MS-COCO in-
cludes 123,287 images, and each image is annotated with
five text descriptions. We follow the splits of [5, 8, 15, 23]
for MSCOCO, which contains 113,287 images for training,
5,000 images for validation and 5000 images for testing.
Each image comes with 5 captions. The final results are
obtained by averaging the results from 5 folds of 1K test
images or testing on the full 5K test images. Flickr30K
consists of 31783 images collected from the Flickr website.
Each image is accompanied with 5 human annotated sen-
tences. We use the standard training, validation and testing
splits [15], which contain 28,000 images, 1000 images and
1000 images respectively. For evaluation matrix, as is com-
mon in information retrieval, we measure the performance
by recall at K (R@K) defined as the fraction of queries for
which the correct item is retrieved in the closest K points to
the query.

4.2. Implementation Details

We set the word embedding size to 300 and the dimen-
sion of the joint embedding space D to 1024. We follow
the same setting as [1, 23] to set details of visual bottom-
up attention model. The order of regions for GRU-based
global semantic reasoning (Sec. 3.3) is determined by the

Methods Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

(R-CNN, AlexNet)
DVSACVPR′15 [15] 38.4 69.9 80.5 27.4 60.2 74.8
HMlstmICCV′17 [33] 43.9 - 87.8 36.1 - 86.7
(VGG)
FVCVPR′15 [20] 39.4 67.9 80.9 25.1 59.8 76.6
OEMICLR′16 [36] 46.7 - 88.9 37.9 - 85.9
VQAECCV′16 [29] 50.5 80.1 89.7 37.0 70.9 82.9
SMlstmCVPR′17 [13] 53.2 83.1 91.5 40.7 75.8 87.4
2WayNCVPR′17 [4] 55.8 75.2 - 39.7 63.3 -
(ResNet)
RRFICCV′17 [30] 56.4 85.3 91.5 43.9 78.1 88.6
VSE++BMVC′18 [5] 64.6 89.1 95.7 52.0 83.1 92.0
GXNCVPR′18 [8] 68.5 - 97.9 56.6 - 94.5
SCOCVPR′18 [14] 69.9 92.9 97.5 56.7 87.5 94.8
(Faster R-CNN, ResNet)
SCANECCV′18 [23] 72.7 94.8 98.4 58.8 88.4 94.8
VSRN (ours) 76.2 94.8 98.2 62.8 89.7 95.1

Table 1. Quantitative evaluation results of the image-to-text (cap-
tion) retrieval and text-to-image (image) retrieval on MS-COCO
1K test set in terms of Recall@K (R@K).

Methods Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

(R-CNN, AlexNet)
DVSACVPR′15 [15] 11.8 32.5 45.4 8.9 24.9 36.3
(VGG)
FVCVPR′15 [20] 17.3 39.0 50.2 10.8 28.3 40.1
VQAECCV′16 [29] 23.5 50.7 63.6 16.7 40.5 53.8
OEMICLR′16 [36] 23.3 - 84.7 31.7 - 74.6
(ResNet)
VSE++BMVC′18 [5] 41.3 69.2 81.2 30.3 59.1 72.4
GXNCVPR′18 [8] 42.0 - 84.7 31.7 - 74.6
SCOCVPR′18 [14] 42.8 72.3 83.0 33.1 62.9 75.5
(Faster R-CNN, ResNet)
SCANECCV′18 [23] 50.4 82.2 90.0 38.6 69.3 80.4
VSRN (ours) 53.0 81.1 89.4 40.5 70.6 81.1

Table 2. Quantitative evaluation results of the image-to-text (cap-
tion) retrieval and text-to-image (image) retrieval on MS-COCO
5K test set in terms of Recall@K (R@K).

descending order of their class detection confidence scores
that are generated by the bottom-up attention detector. For
the training of VSRN, we use the Adam optimizer [17] to
train the model with 30 epochs. We start training with learn-
ing rate 0.0002 for 15 epochs, and then lower the learning
rate to 0.00002 for the rest 15 epochs. We set the margin α
in Eq. 8 to 0.2 for all experiments. We use a mini-batch size
of 128. For evaluation on the test set, we tackle over-fitting
by choosing the snapshot of the model that performs best
on the validation set. The best snapshot is selected based on
the sum of the recalls on the validation set.

4.3. Comparisons With the State-of-the-art

Results on MS-COCO. Quantitative results on MS-
COCO 1K test set are shown in Table 1, where the pro-
posed VSRN outperforms recent methods in all measures.
Following the common protocol [5, 14, 23], the results are
obtained by averaging over 5 folds of 1K test images. When



comparing with the current best method SCAN [23], we
follow the same strategy [23] to combine results from two
trained VSRN models by averaging their predicted similar-
ity scores. Our VSRN improves 4.8% on caption retrieval
(R@1) and 6.8% on image retrieval (R@1) relatively. In
Table 2, we also report results on MS-COCO 5K test set
by testing on the full 5K test images and their captions.
From the table, we can observe that the overall results by
all the methods are lower than the first protocol. It probably
results from the existence of more distracters for a given
query in such a larger target set. Among all methods, the
proposed VSRN still achieves the best performance, which
again demonstrates its effectiveness. It improves upon the
current state-of-the-art, SCAN with 5.2% on the sentence
retrieval (R@1) and 4.9% on the image retrieval (R@1) rel-
atively.

Results on Flickr30K. We show experimental results
of VSRN on Flickr30K dataset and comparisons with the
current state-of-the-art methods in Table 3. We also list
the network backbones used for visual feature extraction,
such as R-CNN, VGG, ResNet, Faster R-CNN. From the
results, we find the proposed VSRN outperforms all state-
of-the-art methods, especially for Recall@1. When com-
pared with SCAN [23] that uses the same feature extraction
backbones with us, our VSRN improves 5.8% on caption
retrieval (R@1) and 12.6% on image retrieval(R@1) rela-
tively (following the same strategy [23] of averaging pre-
dicted similarity scores of two trained models). SCAN tries
to discover the full latent alignments between possible pairs
of regions and words, and builds up an attention model to
focus on important alignments when inferring the image-
text similarity. It mainly focuses on local pair-wise match-
ing between regions and words. In contrast, the proposed
VSRN performs reasoning on region features and generate
a global scene representation that captures key objects and
semantic concepts for each image. This representation can
be better aligned with the corresponding text caption. The
comparison shows the strength of region relationship rea-
soning and global semantic reasoning for image-text match-
ing. Especially for the challenging caption retrieval task,
VSRN shows strong robustness to distractors with a huge
improvement (relative 12.6%).

4.4. Ablation Studies

Analysis each reasoning component in VSRN. We
would like to incrementally validate each reasoning com-
ponent in our VSRN by starting from a very basic baseline
model which does not perform any reasoning. This baseline
model adopts a mean-pooling operation on the region fea-
tures after the fully-connected layer V = {v1, ..., vk}, vi ∈
RD to obtain the final representation for the whole image
I ∈ RD. The other parts are kept as the same as VSRN.
Results on MS-COCO 1K test set are shown in Table 4.

Methods Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

(R-CNN, AlexNet)
DVSACVPR′15 [15] 22.2 48.2 61.4 15.2 37.7 50.5
HMlstmICCV′17 [33] 38.1 - 76.5 27.7 - 68.8
(VGG)
FVCVPR′15 [20] 35.0 62.0 73.8 25.0 52.7 66.0
VQAECCV′16 [29] 33.9 62.5 74.5 24.9 52.6 64.8
SMlstmCVPR′17 [13] 42.5 71.9 81.5 30.2 60.4 72.3
2WayNCVPR′17 [4] 49.8 67.5 - 36.0 55.6 -
(ResNet)
RRFICCV′17 [30] 47.6 77.4 87.1 35.4 68.3 79.9
VSE++BMVC′18 [5] 52.9 79.1 87.2 39.6 69.6 79.5
SCOCVPR′18 [14] 55.5 82.0 89.3 41.1 70.5 80.1
(Faster R-CNN, ResNet)
SCANECCV′18 [23] 67.4 90.3 95.8 48.6 77.7 85.2
VSRN (ours) 71.3 90.6 96.0 54.7 81.8 88.2

Table 3. Quantitative evaluation results of the image-to-text (cap-
tion) retrieval and text-to-image (image) retrieval on Fliker30K
test set in terms of Recall@K (R@K).

This baseline model (noted as ‘Mean-pool’) achieves 64.3
of R@1 for caption retrieval and 49.2 of R@1 for image
retrieval. Then we add one region relationship reason-
ing (RRR) layer (described in Sec. 3.3) before the mean-
pooling operation into this baseline model and mark it as
RRR. We also replace the mean-pooling operation with
the global semantic reasoning (GSR) module (described in
Sec. 3.3) to get a GSR model. From Table 4 we can find that
these two reasoning modules can both help to obtain better
image representation I and improve the matching perfor-
mance effectively.

We then combine RRR and GSR to get our VSRN model
and further try different numbers of RRR layers. Results
show that adding region relationship reasoning layers be-
fore the global semantic reasoning module can gradually
help to achieve better performance. This is because the
RRR module can generate relationship enhanced features,
which allows GSR perform reasoning on a graph topology
and consider both current local region and global seman-
tic correlations. However, we also find improvements be-
come less when adding more RRR layers. We finally take
4RRR+GSR as the final setting of VSRN. We further re-
port results of VSRN trained without text generation loss
LG (marked as 4RRR+GSR*). Comparison shows that the
joint optimization of matching and generation can help to
improve around 2% relatively for R@1.

Region ordering for global semantic reasoning. Since
our global semantic reasoning module (Sec. 3.3) sequen-
tially processes region features and generates the represen-
tation of the whole image gradually, we consider several
ablations about region ordering for this reasoning process
in Table 5. One possible setting (VSRN-Confidence) is the
descending order of their class detection confidence scores
that are generated by the bottom-up attention detector. We
expect this to encourage the model to focus on the easy



1:On a kitchen counter top, a knife rests on an empty cutting board. 
2:Dirty kitchen utensils and a stove together with fruit.
3:There are various food items on a kitchen counter.

Query Image Attention(d)

1:Two giraffes standing near trees in a grassy area.
2:Two giraffes standing next to each other on a grassy field.
3:Two giraffes rub their necks together as they stand by the 
trees in the sunlight .

Query Image Attention(b)
1:A woman and child playing frisbee in a grassy area.
2:A woman and a little girl playing with a Frisbee in the sun 
on a green lawn.
3:A woman throwing a frisbee as a child looks on.

Query Image Attention(a)

1:A person riding a donkey travels between two mountains.
2:A person in a black top riding a horse and some hills and rocks.
3:A person riding a horse down a trail with rocks around it.

1:A man in a helmet jumps a snowboard.
2. A snowboarder in mid-air with another person watching in 
the background.
3:A person on a snowboard jumping in the air.

1.Traffic light hanging near power lines with trees in back.
2.Two traffic signals on a pole arm at an intersection .
3.A street sign and two traffic lights hang over US Route 1.

Query Image Attention(c)

Query Image Attention(e) Query Image Attention(f)

Figure 3. Qualitative results of the image-to-text (caption) retrieval for VSRN on MS-COCO dataset. For each image query, we show
the top-3 ranked text caption. Ground-truth matched sentences are with check marks, while some sentences sharing similar meanings as
ground-truth ones are marked with gray underline. We also show the attention visualization of the final image representation besides its
corresponding image. Our model generates interpretable image representation that captures key objects and semantic concepts in the scene.
(Best viewed in color when zoomed in.)

Methods Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Mean-pool 64.3 90.5 95.1 49.2 83.4 91.5
RRR 68.5 93.2 96.3 56.8 87.2 94.2
GSR 72.3 94.4 98.0 59.6 88.6 94.5
1RRR + GSR 75.3 94.6 98.0 62.1 89.2 94.7
4RRR + GSR 76.2 94.8 98.2 62.8 89.7 95.1
4RRR + GSR* 74.6 94.8 98.2 61.2 89.0 94.6

Table 4. Ablation studies on the MS-COCO 1K test set. Results are
reported in terms of Recall@K (R@K). “RRR” means model with
region relationship reasoning module. “GSR” represents a model
with global semantic reasoning module. The number before RRR
represents the number of RRR layers. “*” means model training
without using text generation loss LG.

Methods Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

VSRN-Random 75.2 94.9 98.3 62.3 89.1 94.6
VSRN-BboxSize 75.8 95.0 98.4 62.5 89.5 94.8
VSRN-Confidence 76.2 94.8 98.2 62.8 89.7 95.1

Table 5. Ablation studies on the MS-COCO 1K test set to ana-
lyze region ordering for global semantic reasoning. Results are
reported in terms of Recall@K (R@K).

regions with high confidence first and then inferring more
difficult regions based on the semantic context. Another
option (VSRN-BboxSize) is to sort the detection bounding
boxes of these regions in descending order, as this lets the
model to obtain global scene information first. We also test
the model with randomly ordering of the regions (VSRN-
Random). Results in Table 5 show that reasoning in a spe-
cific oder can help improve the performance than the ran-
dom one. VSRN-Confidence and VSRN-BboxSize achieve

comparable results with a reasonable ordering scheme. We
take VSRN-Confidence as the setting of VSRN in our pre-
vious experiments. Besides, we also find the variance of
R@1 is less than 1 point for these different settings, which
suggests VSRN is robust to the ordering scheme used. This
is because global information is already included in each re-
gion feature in the region relationship reasoning step. Based
on these relationship enhanced feature, semantic reasoning
can be then performed a global graph topologies.

4.5. Visualization and Analysis

Attention visualization of the final image representa-
tion. Since the final goal of our visual semantic reasoning
is to generate the image representation that includes key ob-
ject and semantic concepts in the scene. In order to validate
this, we visualize the correlation between the final represen-
tation of the whole image and these image regions included
in this image in an attention form. Specifically, we calculate
the inner product similarity (same as in Eq. 8) between each
region feature V ∗ = {v∗1 , ..., v∗k}, v∗i ∈ RD and the final
whole image representation I ∈ RD. Then we rank the im-
age regions V ∗ in the descending order of their correlation
with I and assign a score si to each v∗i according to its rank
ri. The score is calculate by si = λ(k − rattn)2, where k is
the total number of regions, λ is a parameter used to empha-
size the high ranked regions. We set λ = 50 in our experi-
ments. Then for the final attention map (similarity map), the
attention score at each pixel location is obtained by adding
up scores of all regions it belongs to. We show attention
maps of each image along with the qualitative results of the
image-to-text (caption) retrieval and text-to-image (image)
retrieval.



Query (a): A family skiing a city street while others clean 
snow off their cars.

Query (b): Sandwich and a lollipop in a bright orange 
serving tray sitting on a table.

Query (d):  A Frisbee team dressed in black holding their Freebees.Query (c): A bunch of cows grazing in a dry field together.
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Figure 4. Qualitative results of the text-to-image (image) retrieval for VSRN on MS-COCO dataset. We show the top-3 retrieved images
for each text query, ranking from left to right. The true matches are outlined in green boxes and false matches in red boxes. We also show
the attention visualization of image representation generated by VSRN under the corresponding image.

Qualitative results of the image-to-text retrieval. In
Figure 3, we show the qualitative results of the text re-
trieval given image queries on MS-COCO. We show the
top-3 retrieved sentences for each image query. The rank
is obtained based the similarity scores predicted by VSRN.
From these results, we find that our VSRN can retrieve the
correct results in the top ranked sentences even for cases of
cluttered and complex scenes. The model outputs some rea-
sonable mismatches, e.g. (d)-3. There are incorrect results
such as (f.4), which is possibly due to the too specific con-
cept in the image (‘US Route 1‘”) that the model could not
identify. From the attention visualization, we can find the
image representation generated by VSRN well captures key
objects and semantic concepts in the scene.

Qualitative results of the text-to-image retrieval. In
Figure 4, we show qualitative results of image retrieval for
given text queries on MS-COCO. Each text description is
matched with a ground-truth image. We show the top-3 re-
trieved images for each text query. The true matches are
outlined in green and false matches in red. We find that our
model can retrieve the ground truth image in the top-3 list.
Note that other results are also reasonable, which include
the objects of the same category or same semantic concepts
with the text descriptions. For those images with a very
similar scene, our model can still distinguish them well and
accurately retrieve the ground truth one at top-1 rank. This
can be well explained from the attention map, e.g. for the
given text query (a), the model attends on the cars on the
street and the person cleaning a car in the ground-truth im-

age to distinguish it with the other two images that are also
about people skiing. However, for the top-2 retrieval im-
ages of query (c), the model is confused about the concept
of “try field”. It treats the field with less grass as a better
match than the field with withered grass. This is possibly
due to not enough training data for a complex concept.

5. Conclusion
In this paper, we present a simple and interpretable rea-

soning model VSRN to generate visual representation by re-
gion relationship reasoning and global semantic reasoning.
The enhanced image representation captures key objects
and semantic concepts of a scene, so that it can better align
with the corresponding text caption. Extensive experiments
on MS-COCO and Fliker30K datasets demonstrate the re-
sulting model consistently outperforms the-state-of-the-art
methods with a large margin for the image-text matching.
Compared with the complicated attention-based aggrega-
tion from pairwise similarities among regions and words,
we show that the classical “image-text” similarity measure
still promising given enhanced whole image representation.
We will further explore the effectiveness of reasoning mod-
ules in VSRN on other vision and language tasks.
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