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Abstract—Many existing blockchains do not adequately ad-
dress all the characteristics of distributed system applications
and suffer from serious architectural limitations resulting in per-
formance and confidentiality issues. While recent permissioned
blockchain systems, have tried to overcome these limitations, their
focus has mainly been on workloads with no-contention, i.e., no
conflicting transactions. In this paper, we introduce OXII, a new
paradigm for permissioned blockchains to support distributed
applications that execute concurrently. OXII is designed for
workloads with (different degrees of) contention. We then present
ParBlockchain, a permissioned blockchain designed specifically
in the OXII paradigm. The evaluation of ParBlockchain using a
series of benchmarks reveals that its performance in workloads
with any degree of contention is better than the state of the art
permissioned blockchain systems.

Index Terms—Blockchain, Permissioned, Consensus, Depen-
dency graph, contention

I. INTRODUCTION

A blockchain is a distributed data structure for record-

ing transactions maintained by many nodes without a cen-

tral authority [12]. In a blockchain, nodes agree on their

shared states across a large network of untrusted participants.

Blockchain was originally devised for Bitcoin cryptocurrency

[28], however, recent systems focus on its unique features such

as transparency, provenance, fault-tolerant, and authenticity

to support a wide range of distributed applications. Bitcoin

and other cryptocurrencies are permissionless blockchains.

In a permissionless blockchain, the network is public, and

anyone can participate without a specific identity. Many other

distributed applications such as supply chain management

[23] and healthcare [6], on the other hand, are deployed

on permissioned blockchains consisting of a set of known,

identified nodes that still do not fully trust each other.

Distributed applications have different characteristics that

need to be addressed by permissioned blockchain systems.

Such applications require high performance in terms of

throughput and latency, e.g., a financial application needs

to process tens of thousands of requests every second with

very low latency. Distributed applications might also have

workloads with high-contention, i.e., conflicting transactions.

Under these workloads, several transactions simultaneously

perform conflicting operations on a few popular records. These

conflicting transactions might belong to a single application

or even a set of applications using a shared datastore. While

the sequential execution of transactions prevents any possible

inconsistency, it adversely impacts performance and scalabil-

ity. In addition, confidentiality of data is required in many

applications. In blockchain, the logic of each application can

be written as a smart contract, as exemplified by Ethereum

[3]. A smart contract is a computer program that self-executes

once it is established and deployed. Since smart contracts

include the logic of applications, it might be desired to restrict

access to such contracts. Cryptographic techniques are used to

achieve confidentiality, however the considerable overhead of

such techniques makes them impractical [5].

Existing permissioned blockchains, e.g., Tendermint [25]

and Multichain [21], mostly employ an order-execute
paradigm where nodes agree on a total order of the blocks of

transactions using a consensus protocol and then the transac-

tions are executed in the same order on all nodes sequentially.

Such a paradigm suffers from performance issues because

of the sequential execution of transactions on all nodes, and

also confidentiality issues since every node access every smart

contract. Hyperledger Fabric [5], on the other hand, presents a

new paradigm for permissioned blockchains by switching the

order of the execution and ordering phases. In Hyperledger

Fabric, transactions of different applications are first executed

in parallel and then an ordering service consisting of a set

of nodes uses a consensus protocol to establish agreement

on a total order of all transactions. Fabric addresses the

confidentiality issues by restricting accesses to smart contracts,

allows the non-deterministic execution of transactions by

switching the order of the ordering and execution phases, and

improves performance by executing transactions in parallel.

However, in the presence of any contention in the workload,

it has to disregard the effects of conflicting transactions which

negatively impacts the performance of the blockchain.

In this paper, we present OXII: an order-execute paradigm

for permissioned blockchains. OXII is mainly introduced to

support distributed applications processing workloads with

some degree of contention. OXII consists of orderer and

agent nodes. Orderers establish agreement on the order of

the transactions of different applications, construct the blocks

of transactions, and generate a dependency graph for the

transactions within a block. A dependency graph, on the one

hand, gives a partial order based on the conflicts between trans-

actions, and, on the other hand, enables higher concurrency by

allowing the parallel execution of non-conflicting transactions.

A group of agents of each application called executors are then

responsible for executing the transactions of that application.

1337

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00134



We then present ParBlockchain, a permissioned blockchain

system designed specifically in the OXII paradigm. Par-

Blockchain processes transactions in the ordering and execu-

tion phases. In the ordering phase, transactions are ordered in

a dependency graph and put in blocks. In the execution phase,

the executors of each application execute the transactions of

the corresponding application following the dependency graph.

As long as the partial order of transactions in the dependency

graph is preserved, the transactions of different applications

can be executed in parallel.

A key contribution of this paper is to show how workloads

with conflicting transactions can be handled efficiently by a

blockchain system without rolling back (aborting) the pro-

cessed transactions or executing all transactions sequentially.

This paper makes the following contributions:

• OXII, a new paradigm for permissioned blockchains to

support distributed applications that execute concurrently.

OXII uses a dependency graph based concurrency control

technique to detect possible conflicts between transac-

tions and to ensure the valid execution of transactions

while still allowing non-conflicting transactions to be

executed in parallel.

• ParBlockchain, a permissioned blockchain system de-

signed specifically in the OXII paradigm. The experi-

ments show that workloads with any degree of contention

will benefit from ParBlockchain.

The rest of this paper is organized as follows. Section II

briefly describes current blockchain paradigms and their lim-

itations. The OXII paradigm is introduced in Section III.

Section IV presents ParBlockchain, a permissioned blockchain

system designed specifically in the OXII paradigm. Section V

shows the performance evaluation. Section VI presents related

work, and Section VII concludes the paper.

II. BACKGROUND

A blockchain is a distributed data structure for recording

transactions maintained by many nodes without a central

authority [12]. A blockchain replicates data over nodes using

State Machine Replication (SMR). State machine replication

is a technique for implementing a fault-tolerant service by

replicating servers [26]. In the state machine replication model

replicas agree on an ordering of incoming requests and then

execute the requests in the same order. State machine repli-

cation approaches have been used in different synchronous

and asynchronous networks to tolerate crash, malicious, or

both failures. In a crash failure model, replicas may fail by

stopping, and may restart, however, they may not collude, lie,

or otherwise, attempt to subvert the protocol. In contrast, in

a Byzantine failure model, faulty nodes may exhibit arbitrary,

potentially malicious, behavior.

Blockchains use asynchronous fault-tolerant protocols to

establish consensus. Since the nodes in a blockchain could

behave maliciously, blockchains mainly use Byzantine fault-

tolerant protocols to reach consensus.

In general, "ordering" and "execution" are the two main

tasks of any fault-tolerant system. Fault-tolerant protocols

mainly follow an order-execute paradigm where the network

first, orders transactions and then executes them in the same

order on all nodes sequentially.

Existing blockchain systems can be divided into two main

categories: permissionless blockchain systems, e.g., Ethereum

(with PoS-based consensus) [3] and permissioned blockchain

systems, e.g., Tendermint (with BFT-type consensus) [25].

Permissionless blockchains are public, and anyone can par-

ticipate without a specific identity. Permissionless blockchains

mainly follow the order-execute paradigm where nodes val-

idate the transactions, put the transactions into blocks, and

try to solve some cryptographic puzzle. The lucky peer that

solves the puzzle multicasts the block to all nodes. When a

node receives a block of transactions, it validates the solution

to the puzzle and all transactions in the block. Then, the node

executes the transactions within a block sequentially. Such a

paradigm requires all nodes to execute every transaction and

all transactions to be deterministic.

Figure 1(a) shows the transaction flow for a permissionless

blockchain. When a peer receives transactions from clients, in

step 1, the peer validates the transactions, puts them into a

block, and tries to solve the cryptographic puzzle. If the peer

is lucky (p3 in the figure) and solves the puzzle before other

peers, it multicasts the block to all the peers. All the nodes

then validate the block and its transactions (step 3), execute

the transactions sequentially (step 4), and finally, update their

respective copies of the ledger. Note that if multiple peers

solve the puzzle at the same time, a fork happens in the

blockchain. However, once a block is added to either of the

fork branches, nodes in the network join the longest chain.

A permissioned blockchain, on the other hand, consists of

a set of known, identified nodes but which do not fully trust

each other. In permissioned blockchains, since the nodes are

known and identified, traditional consensus protocols can be

used to order the requests [11].

A permissioned blockchain can follow either order-execute

or execute-order paradigm. In order-execute permissioned

blockchains, as can be seen in Figure 1(b), a set of peers (might

be all of them) validate the transactions, agree on a total order

for the transactions, put them into blocks and multicast them to

all the nodes. Each node then validates the block, executes the

transactions using a "smart contract", and updates the ledger. A

smart contract is a computer program that self-executes once

it is established and deployed. Smart contracts are similar to

databases triggers where the logic of the contract is triggered

to be executed once some conditions or terms are met. They

have the advantages of supporting real-time updates, accurate

execution, and little human intervention.

In order-execute permissioned blockchains, similar to order-

execute permissionless blockchains, every smart contract runs

on every node. Smart contracts include the logic of appli-

cations and it might be desirable to restrict access to such

contracts. While cryptographic techniques are used to achieve

confidentiality, the considerable overhead of such techniques

makes them impractical [5]. Furthermore the sequential exe-

cution of transactions on every node reduces the blockchain
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(a) Order-Execute Paradigm (Permissionless) (b) Order-Execute Paradigm (Permissioned) (c) Execute-Order Paradigm (Permissioned)

Fig. 1. Existing Paradigms for Blockchains

performance in terms of throughput and latency.

In contrast to the order-execute paradigm, Hyperledger Fab-

ric [5] presents a new paradigm for permissioned blockchains

by switching the order of execution and ordering. The execute-

order paradigm was first presented in Eve [22] in the context

of Byzantine fault-tolerant SMR. In Eve peers execute transac-

tions concurrently and then verify that they all reach the same

output state, using a consensus protocol. In fact, Eve uses an

Optimistic Concurrency Control (OCC) [24] by assuming low

data contention where conflicts are rare.

Hyperledger Fabric uses a similar strategy; a client sends a

request to a subset of peers, called endorsers (the nodes that

have access to the smart contract). Each endorser executes

the request and sends the result back to the client. When

the client receives enough endorsements (specified by some

endorsement policy), it assembles a transaction including all

the endorsements and sends it to some specified (ordering)

peers to establish a total order on all transactions. This

set of nodes establishes consensus on transactions, creates

blocks, and broadcasts them to every node. Finally, each peer

validates a transaction within a received block by checking the

endorsement policy and read-write conflicts and then updates

the ledger. Since a validation phase occurs at the end, the

paradigm is called execute-order-validate. Figure 1(c) presents

the flow of transactions in Fabric. Note that in Fabric the

consensus protocol is pluggable and the system can use a

crash fault-tolerant protocol, e.g., Paxos [27], a Byzantine

fault-tolerant protocol, e.g., PBFT [13], or any other protocol.

While Fabric solves the confidentiality issue by executing

each transaction on a specified subset of peers (endorsers)

and increases the performance of blockchains by executing the

transactions in parallel (instead of sequentially as the order-

execute paradigm does), it performs poorly on workloads with

high-contention, i.e., many conflicting transactions in a block,

due to its high abort rate.

Two transactions conflict if they access the same data

and one of them is a write operation. In such a situation,

the order of executing the transactions is important, indeed,

the later transaction in a block has to wait for the earlier

transaction to be executed first. As a result, if two conflicting

transactions execute in parallel, the result is invalid. Although

Fabric guarantees correctness by checking the conflicts in the

validation phase (the last phase) and disregarding the effects

of invalid transactions, the performance of the blockchain is

highly reduced by such conflicts.

III. THE OXII PARADIGM

In this section, we introduce OXII, a new order-execute

paradigm for permissioned blockchains. OXII is mainly de-

signed to support distributed applications with high-contention

workloads.

OXII consists of a set of nodes in an asynchronous dis-

tributed network where each node has one of the following

roles:

• Clients send operations to be executed by the blockchain.

• Orderers agree on a total order of all transactions.

• Executors validate and execute transactions.

The set of nodes in OXII is denoted by N where O of them

are orderers, and E of them are executors.

OXII supports distributed applications running concurrently

on the blockchain. For each application a program code

including the logic of that application (smart contract) is

installed on a (non-empty) subset of executor peers called

the agents of the application. We use A = {A1, ..., An} to

denote the set of applications (ids) and Σ(Ai) to specify

the non-empty set of agents of each application Ai where

Σ : A �→ 2E − ∅. Every peer in the blockchain knows the

agents of each application and the set of orderers.

Each pair of peers is connected with point-to-point bi-

directional communication channels. Network links are pair-

wise authenticated, which guarantees that a Byzantine node

cannot forge a message from a correct node, i.e., if node i
receives a message m in the incoming link from node j, then

node j must have sent message m to i beforehand.

A. Orderers
Checking accesses, ordering the requests, constructing

blocks, generating dependency graphs, and multicasting the

blocks are the main services of orderers in the OXII paradigm.

Since multiple applications run on the blockchain and each

application might have its own set of clients, orderers act as

trusted entities to restrict the processing of requests that are
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Fig. 2. The Components of OXII Paradigm

sent by unauthorized clients. If a client is not authorized to

perform an operation on the requested application, orderers

simply discard that request. Orderers also check the signature

of the requests to ensure their validity.

Orderers use an asynchronous fault-tolerant protocol to

establish consensus. Fault-tolerant protocols use the state ma-

chine replication algorithm [26] where replicas agree on an

ordering of incoming requests. The algorithm has to satisfy

two main properties, (1) safety: all correct nodes receive

the same requests in the same order, and (2) liveness: all

correct client requests are eventually ordered. Fischer et al.

[19] show that in an asynchronous system, where nodes can

fail, consensus has no solution that is both safe and live.

Based on that impossibility result, most fault-tolerant protocols

satisfy safety without any synchrony assumption and consider

a synchrony assumption to satisfy liveness.

OXII, similar to Fabric [5], uses a pluggable consensus

protocol for ordering, thus resulting in a modular paradigm.

Depending on the characteristics of the network and peers

OXII might employ a Byzantine, a crash, or a hybrid fault-

tolerant protocol. The number of orderers is also determined

by the utilized protocol and the maximum number of simulta-

neous failures in the network. For example, crash fault-tolerant

protocols, e.g., Paxos [27], guarantee safety (consistency) in

an asynchronous network using 2f+1 nodes to overcome the

simultaneous crash failure of any f nodes while in Byzantine

fault-tolerant protocols, e.g., PBFT [13], 3f+1 nodes are

needed to provide safety in the presence of f malicious nodes.

Furthermore, orderers do not have access to any smart contract

or the application state, nor do they participate in the execution

of transactions. This makes orderers independent of the other

peers and adaptable to a changing environment.

Orderers batch multiple transactions into blocks. Batching

transactions into blocks improves the performance of the

blockchain by making data transfers more efficient especially

in a geo-distributed setting. It also amortizes the cost of cryp-

tography. The batching process is deterministic and therefore

produces the same blocks at all orderers.

Figure 2 shows the components of the OXII paradigm.

As can be seen, clients send requests (transactions) to be

executed by different applications. Here, transactions T1 and

T3 are for some application A1 and T2, T4, and T5 are for

another application A2. The orderers, i.e., o1, o2, o3, and

o4, then order the transactions and put them into a block. In

the figure, orderers use PBFT [13] to order the requests. The

resulting block contains five transactions which are ordered as

[T1, T5, T4, T3, T2].
Next, orderers generate a "dependency graph" for the trans-

actions within a block. In order to generate dependency graphs

a priori knowledge of transactions’ read- and write-set is

needed. Each transaction consists of a sequence of reads and

writes, each accessing a single record. Here we assume that

the read-set and write-set are pre-declared or can be obtained

from the transactions via a static analysis, e.g., all records

involved in a transaction are accessed by their primary keys.

Note that even if that assumption does not hold, the system

can employ other techniques like speculative execution [18]

to obtain the read-set and write-set of each transaction.

Given a transaction T , ω(T ) and ρ(T ) are used to represent

the set of records written and read, respectively. Each trans-

action T is also associated with a timestamp ts(T ) where for

each two transactions Ti and Tj within a block such that Ti

appears before Tj , ts(Ti) < ts(Tj).
We define "ordering dependencies" to show possible con-

flicts between two transactions from the same or different

applications. Two transactions conflict if they access the same

data and one of them is a write operation.

Definition: Given two transactions Ti and Tj . An ordering
dependency Ti � Tj exists if and only if ts(j) > ts(i) and

one of the following hold:

• ρ(Ti) ∩ ω(Tj) �= ∅

• ω(Ti) ∩ ρ(Tj) �= ∅

• ω(Ti) ∩ ω(Tj) �= ∅

Definition: Given a block of transactions, the dependency
graph of the block is a directed graph G = (T , E) where T
is the set of transactions within the block and E = {(Ti, Tj) |
Ti � Tj}

We use the example in Figure 2 to illustrate the dependency

graph construction process. As can be seen the block consists

of five transactions which are ordered as [T1, T5, T4, T3, T2],
i.e., ts(T1) < ts(T5) < ts(T4) < ts(T3) < ts(T2). Since T4

reads data item b which is written by an earlier transaction

T1 there is an ordering dependency T1 � T4, thus (T1, T4)
is an edge of the dependency graph. Similarly, T2 writes data

item d which is also written by T5 (T5 � T2) and T3 writes

data item e which is read by T5 (T5 � T3). As a result, edges

(T5, T2) and (T5, T3) are also in the graph.

The constructed graph can be used by the executors to man-

age the execution of transactions. In particular, transactions

that are not connected to each other in the dependency graph,

e.g., T1 and T2, can be processed concurrently by independent

execution threads.

The dependency graph generator is an independent module

in the OXII paradigm. Therefore, it can also be adapted to a

multi-version database system [8]. In a multi-version database,

each write creates a new version of a data item, and reads are

directed to the correct version based on the position of the

corresponding transaction in the block (log). Since writes do
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not overwrite each other, the system has more flexibility to

manage the order of reads and writes. As a result, for any two

transactions Ti and Tj within a block where Ti appears before

Tj , Ti and Tj can concurrently write the same data item or Ti

reads and Tj writes the same data item. However, if Ti wants

to write and Tj wants to read the same data item, they cannot

be executed in parallel.
It should be noted that in some dependency graph con-

struction approaches, e.g., DGCC [33], transactions are broken

down into transaction components, which allows the system

to parallelize the execution at the level of operations. The

dependency graph generator module in OXII can also be

designed in a similar manner.
A dependency graph exposes conflicts between transactions

to give a partial order of transactions. Hence, as long as

the transactions are executed in an order consistent with

the dependency graph, the results are valid. Indeed, using

dependency graphs results in higher concurrency by enabling

the non-conflicting transactions within a block to be executed

in parallel. Such parallelism improves the performance of

OXII paradigm in comparison to the traditional order-execute

paradigm where transactions are executed sequentially.
When the dependency graph is generated, orderers multicast

a message including the block and its dependency graph to all

executors. Depending on the employed consensus protocol,

either the leader or all the orderers multicast the message.

B. Executors
Executing and validating transactions, updating the ledger

and the blockchain state, and multicasting the blockchain

state after executing transactions are the main services of

executor peers. Executors in OXII correspond to the endorsers

in Hyperledger [5]. Each executor peer maintains three main

components: (1) The blockchain ledger, (2) The blockchain

state, and (3) Some smart contracts.
The blockchain ledger is an append-only data structure

recording all transactions in the form of a hash chain. When a

block of transactions is executed and validated, each executor

peer appends the block to its copy of the ledger.
Each executor node is an agent for one or more applications

where for each application the smart contract of that appli-

cation, i.e., a program code that implements the application

logic, is installed on the node. When an executor receives

a block from the orderers, it checks the application of the

transactions within the block. If the executor is an agent

for any of the transactions, it executes the transactions on

the corresponding smart contract following the dependency

graph. In fact, the executor confirms the order of dependent

transactions and executes independent transactions in parallel.

Finally, it multicasts the execution results (updated blockchain

state) to all other peers.
For each transaction within a block where the executor is not

an agent of the transaction, the executor waits for matching

updates from a specified number of executors, who are the

agents of the transaction, before committing the update. This

is needed to prevent a malicious executor to commit an invalid

result and also tolerate the non-deterministic execution of

Fig. 3. The Flow of Transactions in ParBlockchain

transactions. The required number of matching results from

executors is decided by the system and known to all executors

(similar to endorsement policies in Hyperledger). We use τ(A)
to denote the required number of matching updates for the

transactions of application A.

In Figure 2, executor nodes e1 and e2 are the agents of

application A1 (with transactions T1 and T3) and executor

nodes e3 and e4 are the agents of application A2 (with

transactions T2, T4 and T5).

IV. PARBLOCKCHAIN

In this section, we present ParBlockchain, a permissioned

blockchain designed specifically in the OXII paradigm. We

first give a summary of ParBlockchain and then explain the

ordering and execution phases in detail.

A. ParBlockchain Overview

ParBlockchain is a permissioned blockchain designed in the

OXII paradigm to execute distributed applications.

The normal case operation for ParBlockchain to execute

transactions proceeds as follows. Clients send requests to the

orderers and the orderers run a consensus algorithm among

themselves to reach agreement on the order of transactions.

Orderers then construct a block of transactions and generate

a dependency graph for the transactions within the block.

Once the dependency graph is generated, the block along

with the graph is multicast to all the executor nodes. The ex-

ecutors which are the agents of the applications of transactions

within the block, execute the corresponding transactions and

multicast the results, i.e., updated records in the datastore, to

every executor node. Each executor node in the network waits

for the required number of matching results from the executors

before updating the ledger and blockchain state (datastore).

The required number of matching results for each application,

which is needed to deal with malicious executors and the non-

deterministic execution of transactions, is determined by the

system and might be different for different applications.

The flow of transactions in ParBlockchain can be seen in

Figure 3 where p3, p4, and p5 are the orderer nodes, and

p1, p2, and p6 are the executor nodes from which p1 and

p2 are the agents for the requests. Upon receiving requests
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from clients, orderers order the requests, put them into a

block, generate the dependency graph for the block, and

multicast the block along with the graph to all the executor

nodes. The agents of the corresponding application (p1 and

p2) execute the transactions and multicast the updated state of

the blockchain to the other executor nodes. Upon receiving the

required number of matching messages for each transaction,

each executor commits (or aborts) the transaction by updating

the blockchain state. The block is also appended to the ledger.

B. Ordering Phase
The goal of the ordering phase is to establish a total order

on all the submitted transactions. A client c requests an

operation op for some application A by sending a message〈
REQUEST, op, A, tsc, c

〉
σc

to the orderer p it believes to

be the primary (an orderer node that initiates the consensus

algorithm). Here, tsc is the client’s timestamp and the entire

message is signed with signature σc. We use timestamps of

clients to totally order the requests of each client and to ensure

exactly-once semantics for the execution of client requests.

Upon receiving a client request, the primary orderer p
checks the signature to ensure it is valid, makes sure the client

is allowed to send requests for application A (access control),

and then initiates a consensus algorithm by multicasting the

request to other orderers. Depending on the utilized consensus

protocol, several rounds of communication occurs between

orderers to establish a total order on transactions.

Once the orderers agree on the order of a transaction, they

put the transaction in a block. Batching multiple transactions

into blocks improves the throughput of the broadcast protocol.

Blocks have a pre-defined maximal size, maximal number of

transactions, and maximal time the block production takes

since the first transaction of a new block was received. When

any of these three conditions is satisfied, a block is full. Since

transactions are received in order, the first two conditions are

deterministic. In the third case, to ensure that the produced

blocks by all orderers are the same, the primary sends a cut-
block message in the consensus step of the last request.

When a block is produced, orderers generate a dependency

graph for the block as explained in Section III-A. Generating

dependency graphs requires a priori knowledge of transac-

tions’ read- and write-set. Here, we assume that the requested

operations include the read- and write-set.

When the graph is constructed, each orderer node o multi-

casts a message
〈
NEWBLOCK, n, B,G(B),A, o, h

〉
σo

to all

executor nodes where n is the sequence number of the block,

B is the block consisting of the request messages, G(B) is

the dependency graph of B, A is the set of applications that

have transactions in the block, and h = H(B′) where H(.)
denotes the cryptographic hash function and B′ is the block

with sequence number n−1.

C. Execution Phase
Each request for an application is executed on the specified

set of executors, i.e., agents of that application. Upon receiving

a new block message
〈
NEWBLOCK, n,B,G(B),A, o, h

〉
σo

from some orderer o, executor e checks the signature and the

Algorithm 1 Execution of Transactions on an executor e
Input: A block B and its dependency graph G(B)

1: Initiate Set We to be empty
2: for transaction x in B do
3: if e is an agent of x’s application then
4: Add x to We

5: end if
6: end for
7: while We in not empty do
8: for transaction(node) x in We do
9: if all Pre(x) are in Ce ∪Xe then

10: trigger Execute(x)
11: end if
12: end for
13: end while

hash to be valid and logs the message. It also checks the set

A to see if the block contains any transaction that needs to be

executed by the node, i.e., an application Ai ∈ A such that

e ∈ Σ(Ai).
When an executor node receives a specified number of

matching new block messages, e.g., f + 1 messages if the

consensus protocol is PBFT, it marks the new block as a valid

block and enters the execution phase. The execution phase

consists of three procedures that are run concurrently: (1)

Executing the transaction following the dependency graph, (2)

Multicasting commit messages including the execution results

to other executor nodes, and (3) Updating the blockchain state

upon receiving commit messages from a sufficient number of

executor nodes.

If an executor node is not an agent of any transaction within

the block, the node becomes a passive node and only the third

procedure is run to update the blockchain state. However, if

a node is an agent for some transaction’s application in the

block, it runs all three procedures; executes the corresponding

transactions following the dependency graph, multicasts the

results, and also updates the blockchain state.

A transaction can be executed only if all of its "prede-

cessors" in the dependency graph are committed. We define

functions Pre and Suc to present the set of predecessors

and successors of a node in a dependency graph respectively.

More formally, Given a dependency graph G = (T , E), and

a node (transaction) x in T , Pre(x) = {y | (y, x) ∈ E} and

Suc(x) = {y | (x, y) ∈ E}.
The execution procedure on a node e is shows in Al-

gorithm 1. An empty set We is initiated to keep all the

transactions that will be executed by executor e, i.e., e is an

agent for the application of those transactions. Set Xe stores

the executed transactions by e and Ce keeps the committed

transactions. For each transaction x in We, the procedure

checks the predecessors of x, if x has no predecessor, or all of

its predecessors are executed by e or committed, transaction

x is ready to be executed, so an execution thread is triggered.

To multicast the execution results depending on the trans-

actions’ applications three different situations could happen.

If all the transactions within a block belong to the same

application, an agent e executes all of the transactions fol-

lowing the dependency graph and multicast a commit mes-

sage
〈
COMMIT, S, e

〉
σe

to all other executor nodes. Here,
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Algorithm 2 Multicasting the Results

1: Initialize set Xe to be empty
2: cut = false
3: Upon obtaining an execution result (x, r)
4: Add pair (x, r) to Xe

5: Remove x from We

6: for y where (x, y) is an edge in G(B) do
7: if y’s application is different from x’s application then
8: cut = true
9: break

10: end if
11: end for
12: if cut = true then
13: Multicast

〈
COMMIT, Xe, e

〉
σe

to all executors

14: Clear Xe

15: end if

S presents the state of the blockchain and consists of a set

of pairs (x, r) where x is a transaction (id) and r is the set

of updated records resulting from the execution of x on the

datastore. Note that if a transaction x is not valid, the executor

puts (x,"abort") in S.

If the transactions within a block are for different ap-

plications but the transactions of each application access a

disjoint set of records, the agents still can execute the cor-

responding transactions independently and multicast a single

commit message with all the results to other executor nodes.

In this case, the dependency graph is disconnected and can be

decomposed to different components where the transactions of

each component are for the same application and there is no

edge that connects any two components.

However, if there are some dependencies between the

transactions of two applications, the agents of those two

applications cannot execute the transactions independently. In

fact, the agents of one application have to wait for the agents of

other applications to execute all their transactions and send the

commit message which might result in a deadlock situation.

Figure 4 shows three dependency graphs for a block of

seven transactions T1 to T7. In Figure 4(a), all the seven

transactions belong to the same application, A1. Therefore,

the agents of application A1 can execute the transactions

following the dependency graph and multicast the results of all

transactions together when they all are executed. In Figure 4(b)

although the transactions belong to different applications (T2,

T3, T5, and T7 are for application A1 and T1, T4 and T6 are

for application A2), there is no dependency between the trans-

actions of application A1 and the transactions of application

A2. As a result, the agents can still execute independently and

multicast the results once the execution of their transactions

is completed. However, in Figure 4(c) since there are some

dependencies between the transactions of the two applications,

the agents cannot execute their transactions independently. For

example, to execute transaction T2, the agents of application

A2 need the execution results of transaction T5 from the agents

of A1. Similarly, transaction T4 cannot be executed before

committing the execution results of transaction T6.

To prevent a deadlock situation, one possibility is that

agents send a commit message as soon as the execution of

each transaction is completed. While this approach solves the

Algorithm 3 Updating the Blockchain State

1: for transaction x in B do
2: Initialize set Re(x) to be empty
3: end for
4: Initialize set Ce to be empty
5: Upon Receiving a valid

〈
COMMIT, S, n

〉
σn

message

6: for valid (x, r) ∈ S do
7: Add (r, n) to Re(x)
8: if Matching records in Re(x) ≥ τ(A) then
9: Update the blockchain state

10: Add x to Ce

11: end if
12: end for

blocking problem, the number of exchanged commit messages

will be large. Indeed, if a block includes n transactions and

each application has on average m agents, there will be total

n ∗m exchanged commit messages for the block.

A more efficient way is to send commit messages when the

execution results are needed by some other agents. Basically,

an agent keeps executing the transactions and collecting the

results until the results of an executed transaction is needed

by some other transactions which belong to other applications.

At that time, the agent generates a commit message including

the results of all the executed transactions and multicasts it to

all executor nodes. Upon receiving a commit message from

an executor, the node validates the signature and logs the

message. Once the node receives the specified number of

matching results for a transaction, the results are reflected in

the datastore and the transaction is marked as committed.

Algorithm 2 presents the multicasting procedure on a node

e. An empty set Xe is initiated to store the results of the

executed transactions. When the execution of a transaction x
is completed, the execution result (x, r) is added to Xe and

transaction x is removed from the waiting transactions We.

Then, the procedure checks all the successor nodes of x
in the dependency graph. If any of the successor nodes of

x belongs to an application different from the application of

x, the execution result of transaction x might be needed by

other agents, thus a multicasting has to occur. To do so, node

e removes all the stored results from Xe and puts them in

a commit message and multicast the commit message to all

other executor nodes.

For example, in Figure 4(c), upon executing the transaction

T5, since T5 has a successor node T2 that belongs to another

application, the executor node multicasts a commit message

including the execution results of T5 to all other executor

nodes. Note that if T1 is already executed, the executor node

puts the execution results of T1 in the commit message as well.

Similarly, when the execution of T6 is completed, the executor

node multicasts a commit message including the execution

results of T6 and any other executed but not yet multicast

transactions.

Finally, the updating procedure receives commit messages

from other executor nodes and updates the blockchain state.

The updating procedure on a node e is presented in Algo-

rithm 3. the procedure first initializes an empty set Re(x) for

each transaction x in the block. It also initializes an empty set
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Fig. 4. Three Dependency Graphs

Ce to collect committed transactions. When node e receives

a commit message
〈
COMMIT, S, n

〉
σn

from some executor

n, it checks the signature to be valid and then checks the set

S. Recall that S consists of pairs of transactions and their

execution results. For each pair (x, r), it first checks whether

node n is an agent for the application of transaction x and

then a pair of (r, n), i.e., execution results and the executor

to Re(x). Assuming A is the x’s application, If the number

of the matching tuples in Re(x) is equal to τ(A), i.e., the

specified number of messages for the transaction’s application,

the execution results are valid and can be committed. As a

result, the procedure updates the blockchain state (datastore)

and adds the transaction x to the committed transactions Ce.

V. EXPERIMENTAL EVALUATIONS

In this section, we conduct several experiments to eval-

uate different paradigms for permissioned blockchains. We

discussed the two existing paradigms for permissioned

blockchains in Section II: sequential order-execute (OX) where

requests are ordered and then executed sequentially on ev-

ery node, and execute-order-validate (XOV) introduced by

Hyperledger Fabric [5] where requests are executed by the

agents of each application, ordered by the ordering service, and

validated by every peer. We implemented two permissioned

blockchain systems specifically designed in the OX and XOV

paradigms as well as ParBlockchain that is designed in the

OXII paradigm. It should be noted that our implementation

of XOV is different from the Hyperledger fabric system. Hy-

perledger is a distributed operating system and includes many

components which are not the focus of our evaluations. In fact,

the purpose of our experiments is to compare the architectural

aspect of the blockchain systems, thus, all three systems are

implemented using the same programming language (Java).

To have a fair comparison, we also used similar libraries and

optimization techniques for all three systems as far as possible.
We implemented a simple accounting application where

each client has several accounts. Each account can be seen

as a pair of (amount, PK) where PK is the public key of

the owner of the account. Clients can send requests to transfer

assets from one or more of their accounts to other accounts.

For example, a simple transaction T initiated by client c might

"transfer x units from account 1001 to account 1002". The

transaction is valid if c is the owner of account 1001 and the

account balance is at least x. Here the read-set of transaction T
is ρ(T ) = {1001} and its write-set is ω(T ) = {1001, 1002}.
A transaction might read and write several records.
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Fig. 5. Throughput/Latency Measurement by Increasing the Block Size

The experiments were conducted on the Amazon EC2

platform. Each VM is Compute Optimized c4.2xlarge in-

stance with 8 vCPUs and 15GM RAM, Intel Xeon E5-2666

v3 processor clocked at 3.50 GHz. For orderers, similar to

Hyperledger [5], we use a typical Kafka orderer setup with

3 ZooKeeper nodes, 4 Kafka brokers and 3 orderers, all on

distinct VMs. Unless explicitly mentioned differently, there

are three applications in total each with a separate executor

(endorser) node.

When reporting throughput measurements, we use an in-

creasing number of clients running on a single VM, until the

end-to-end throughput is saturated, and state the throughput

just below saturation. Throughput numbers are reported as the

average measured during the steady state of an experiment.

A. Choosing the Block Size
An important parameter that impacts both throughput and

latency is the block size. To evaluate the impact of the block

size on performance, in this set of experiments, assuming

that the transactions have the same size, we increase the

number of transactions in each block from 10 to 1000 in

a no-contention workload. For each block size, the peak

throughput and the corresponding average end-to-end latency

is measured. As can be seen in Figure 5, by increasing the

number of transactions per block till ∼200, the throughput of

OXII increases, however, any further increasing reduces the

throughput due to the large number of required computations

for the dependency graph generation. Similarly, by increasing

the number of transactions per block till ∼200, the delay

decreases. Afterward, adding more transactions to the depen-

dency graph becomes more time consuming than multicasting

the block. As a result, OXII is able to process more than 6000
transactions in 78ms with 200 transactions per block. In the

OX paradigm, since nodes execute transactions sequentially,

the block creation time is negligible in comparison to the exe-

cution time, thus other than in the first experiment, increasing

the number of transactions per block does not significantly

affect the throughput and latency. In the XOV paradigm, since

executors (endorsers) of the three applications can execute

the transactions in parallel, the performance is better than

OX (twice as much as OX in its peak throughput). However,

its performance is still much less than OXII, i.e., the peak

throughput of XOV is 30% of the peak throughput of OXII as

OXII can execute many (and not only three) non-conflicting

transactions in parallel. As can be seen, the peak throughput

of XOV is obtained in ∼100 transactions per block.
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Fig. 6. Throughput/Latency Measurement by Increasing the Degree of Contention in the Workload

B. Performance in Workloads with Contention
In the next set of experiments, we measure the performance

of all three paradigms for workloads with different degrees of

contention. we consider no-contention, low-contention (20%
conflict), high-contention (80% conflict), and full-contention

workloads where the results are shown in Figure 6(a)-(d)

respectively. Note that the dependency graph of each block

in the first workload has no edge whereas the dependency

graph of each block in the last workload is a chain. In OX

and OXII there are 200 transactions per block and for XOV,

we keep changing the block size to find its peak throughput.

Contentions could happen between the transactions of the

same application or the transactions of different applications

(if they access shared data). In OX, since nodes execute

transactions sequentially, there is no difference between these

two types of contention. In XOV also, since the execution is

the first phase, there is no much difference between contention

within an application or across applications and they both

result in transaction abort. In OXII, however, as discussed in

Section IV-C, for contention across applications, the agents

of different applications communicate to each other during

the execution of a block of transactions, thus the performance

is affected. As a result, in this set of experiments, for each

workload, we report the performance of OX, XOV, OXII with

conflicting transactions within an application, and OXII with

conflicting transactions across applications (the dashed line).
As mentioned earlier, in the OX paradigm, transactions are

executed sequentially. As a result, the performance of OX

remains unchanged in different workloads. XOV can execute

3 (number of applications) transactions in parallel and since

the workload has no-contention, the execution results are

valid. OXII, on the other hand, significantly benefits from no-

contention workloads by executing the transactions in parallel.

As shown in Figure 6(a), OXII executes more than 6000
transactions with latency less than 80 ms whereas the peak

throughput of OX is 900 transactions with more than 500 ms

latency. XOV can also execute around 1800 transactions in 600
ms (70% less throughput and 7.5 times latency in comparison

to OXII). Since the workload has no conflicting transaction,

there is no contention across applications.
By increasing the degree of contention (Figure 6(b) and

Figure 6(c)), the throughput of XOV decreases dramatically,

e.g., the peak throughput of XOV in a high-contention work-

load is around 25% of its peak throughput in a no-contention

workload. This decrease is expected because XOV validates

and aborts the conflicting transactions at the very end (last

phase). The throughput of OXII is also affected by increasing

the degree of contention, however, it still shows better perfor-

mance than both OX and XOV, i.e., OXII is still able to process

1600 transactions in sub-second latency whereas OX and XOV

process 900 and 350 transactions respectively. Processing the

workloads with contention across the applications decreases

the performance of OXII due to the increasing rounds of

communication between executors of different applications.

In a full-contention workload, as can be seen in Figure 6(d),

OXII similar to OX, executes the transactions sequentially,

but, because of the dependency graph generation overhead, its

performance is a bit worse than OX. The performance of the

XOV paradigm, on the other hand, is highly reduced. Since

all the transactions within a block conflict, it can only commit

one transaction per block (we reduced the block size of XOV

to record its peak throughput).

In a full-contention workload with contention across appli-

cations (dashed line in Figure 6(d)), OXII has high latency

and low throughput. Such a workload can be seen as a

chain of translations where consecutive transactions belong to

different applications. As a result, to execute each transaction,

a message exchange between a pair of executors is needed.

C. Scalability over Multiple Data Centers
In the last set of experiments, we measure the scalability

of the blockchain systems over multiple data centers. To this

end, each time we move one group of nodes, i.e., clients,

orderers, executors, or non-executors, to AWS Asia Pacific

(Tokyo) Region data center, leaving the other nodes in the

AWS US West Region data center (the RTT between these

two data centers is 113 ms). We consider a no-contention

workload. The results can be seen in Figure 7.

Moving the clients has the most impact on the XOV

paradigm because in XOV clients participate in the first

two phases. Indeed, they send the requests to the executors

(endorsers), receive endorsements, and then send the endorse-

ments to the orderer nodes. Whereas in OX and OXII, clients

send the requests and do not participate in other phases of the

protocol. As a result, as can be seen in Figure 7(a), the delay

of XOV becomes much larger.

Orderers are the core part of all three blockchains; they

receive transactions from clients, agree on the order of the

transactions, put the transactions into blocks, and send the

blocks to every node. As a result, moving them to a far data
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Fig. 7. Throughput/Latency Measurement by Moving a Group of Nodes to a Further Data Center

center, as shown in Figure 7(b), results in a considerable delay.

Note that in OX, a subset of nodes are considered as orderers.

In the last two experiments (Figure 7(c)-(d)), we move

executor (endorser) and non-exe nodes to the far data center.

Since there is no such a separation between nodes in the

OX paradigm, we do not perform these two experiments.

Moving executor nodes adds latency to the two phases of

communication in XOV (clients to executors and executors

to clients) and one phase of communication in OXII (orderers

to executors). Note that when the executors execute the mes-

sages and receive enough number of matching results from

other executors, the transaction is counted as committed. In

addition, no communication between executors is needed since

we consider a no-contention workload. Finally, moving non-

executor nodes has no impact on the performance of OXII,

because those nodes are only informed about the blockchain

state. But in XOV, non-executors validate the blocks.

VI. RELATED WORK

The Order-execute paradigm is widely used in different

permissioned blockchains. Existing permissioned blockchains

that employ the order-execute paradigm, differ mainly in their

ordering routines. The ordering protocol of Tendermint [25]

differs from the original PBFT in two ways, first, only a subset

of nodes participate in the consensus protocol and second, the

leader is changed after the construction of every block (leader

rotation). Quorum [14] as an Ethereum-based [3] permissioned

blockchain introduces a consensus protocol based on Raft [29]:

a well-known crash fault-tolerant protocol. Chain Core [1],

Multichain [21], Hyperledger Iroha [4], and Corda [2] are

some other prominent permissioned blockchains that follow

the order-execute paradigm. As discussed in Section II, these

permissioned blockchains mainly suffer from performance and

confidentiality issues. Hyperledger Fabric [5] is a permissioned

blockchain that employs the execute-order(-validate) paradigm

introduced by Eve [22]. Fabric presents modular design,

pluggable fault-tolerant protocol, policy-based endorsement,

and non-deterministic execution for the first time in the context

of permissioned blockchains. Several recent studies attempt to

improve the performance of Fabric [20], [30]–[32].

We utilize some of the Fabric properties such as modular

design and pluggable fault-tolerant protocol in OXII. However,

OXII is an order-execute paradigm. In addition, while Fabric

checks the read-write conflict in the last phase (validation)

which might result in transaction abort, OXII ensures correct

results by generating dependency graphs in the first phase

(ordering). As a result, workloads with contention benefit most

from OXII. Fabric also needs four phases of communications

other than the ordering protocol (clients to endorsers, endorsers

to clients, clients to orderers, and orderers to peers) while

OXII requires three phases (clients to orderers, orderers to

executors, executors to peers) which results in less latency. It

should be noted that since execution is the first phase of Fabric,

in comparison to OXII, its performance is less affected by

the inconsistencies between the execution results (arise from

malicious executors or non-deterministic execution).
In domain of permissionless blockchains also, concurrent

speculative execution of smart contracts in Ethereum using

software transactional memory primitives is proposed in [15].
Our work is also related to concurrency control in DBMS.

Concurrency control is the activity of coordinating concurrent

accesses to data [7]. Concurrency control protocols mainly

ensure the atomicity and isolation properties. Many techniques

have been proposed for concurrency control. Lock-based pro-

tocols, e.g., two phase locking (2PL) [10], [16], use locks

to control the access to data. Timestamp-based protocols [7],

[9] assign a global timestamp before processing where by

ordering the timestamp, the execution order of transactions

is determined. Optimistic Concurrency Control (OCC) [24]

and Multi-Version Concurrency Control (MVCC) [8] are two

widely used timestamp-based protocols. Dependency graphs

are also, as discussed in section III, used by several recent

studies for concurrency control [17], [18], [33].

VII. CONCLUSION

In this paper, we proposed OXII, an order-execute paradigm

for permissioned blockchain to support distributed applica-

tions that execute concurrently. OXII is able to handle the

workload with conflicting transactions without rolling back the

processed transactions or executing transactions sequentially.

Conflicts between the transactions of a single application as

well as the transactions of different applications are addressed

in OXII. We also presented ParBlockchain, a permissioned

blockchain system designed specifically in the OXII paradigm.

Our experimental evaluations show that in workloads with

conflicting transactions, ParBlockchain shows a better perfor-

mance in comparison to both order-execute and execute-order

permissioned blockchain systems.
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