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Abstract. One of the key challenges in engineering education is the problem of
teaching future engineers’ professional skills. Engineering students need to
know what they do and do not know. This is termed metacognition. There is still
quite a bit that we do not know about how metacognition develops in classroom
settings. In this study, we discuss an exploration of these issues using both
physical and virtual reality (VR) simulations of manufacturing systems; which
are performed by student teams. We discuss the incorporation of measures of
metacognition into a model of conflict and error to predict what types of
experiences may be most helpful to produce improved metacognition in engi-
neering students.
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1 Introduction

Two million manufacturing jobs may go unfilled in the next decade because of a skills
gap and a decline in education in areas such as engineering [1, 2]. One such skill,
problem solving, is most critical. Engineers are required to have both technical skills,
which are part of the traditional engineering curriculum, and non-technical skills which
are often not taught or fostered. These non-technical skills can determine a future
engineer’s success when working in teams, deriving novel solutions to ill-defined
problems, and determining the viability of any solution. In most cases, engineering
students are taught structured strategies for solving problems. These steps include:
(1) defining the problem, (2) understanding the process, (3) identifying root causes,
(4) developing solutions and sustaining the improvement. In addition, several
methodologies help problem solving such as Lean, Six Sigma, Design for Six Sigma,
and Business Process Re-Engineering [3]. However, when the problem is ill-defined,
the process muddled, or solution is unclear, problem solving strategies need to be
redeveloped and reassessed. Regardless of the methodology or strategy, engineers must
know what questions to ask, when to ask them, and how to convey the proper infor-
mation to other engineers on their teams as well as other stakeholders.

When working in teams, engineers face challenges. Within the team, there must be
a shared understanding within and between each team member. Knowing what is
known within themselves and each other is termed metacognition [4]. Developing this
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skill in new engineers is a key component of the emerging engineering curriculum as
demanded by employers. Training engineering students to understand this concept is
key to deriving the best solution for a problem [5].

Physical drawings and models that engineers are accustomed to working with are
explicit. They can be viewed, manipulated, and easily discussed. Metacognition is
implicit and involves the construction of a mental representation by the problem solver
[6]. This makes metacognition particularly difficult to teach and examine. In the
engineering curriculum, many solutions are possible for a given problem. However,
with given affordances and constraints, only one optimal solution exists. It is up to the
curriculum to instruct students in ways of finding that one optimal solution. While there
are explicit methods, if an engineer does not use implicit methods and think critically, a
less than optimal solution is easily chosen. In psychology, research has suggested that
one of the reasons for choosing a less than optimal solution and believing it to be the
optimal solution is the lack of a proper mental representation constructed through a
good understanding of what is known and what needs to be known. To date, there is
little research on how design and manufacturing solutions are determined when stu-
dents solve problems in class and how their teamwork and questions contribute to their
mental representations are made during the classroom exercise [7].

Knowing what is known and what needs to be known guides the students’ decision
of when they are ready to solve a problem. Flavell defined this idea in a study of school
children under the age of 12 years old who were asked to study a set of items until they
could recall them without error (i.e., the problem) [8, 9]. In this study, older students
were able to accurately assess when they knew the items perfectly. When tested, they
were able to recall the items without any errors. Younger children thought that they
were able to accurately assess when they knew the items perfectly. When tested, the
younger children’s performance was less than perfect.

In a subsequent study by Markman [10] in children under the age of 12, they were
asked to evaluate instructions and detect any errors in the simple instructions. The
researchers incorporated obvious errors and omissions. The younger students were
surprisingly poor at detecting the errors and thought that they understood the instruc-
tions until they started the procedure. In both cases, students believed that they had
memorized and understood, but they had not. The monitoring of their own memory and
comprehension was flawed as they built mental representations of the problem space.

Understanding how knowledge is integrated and monitored is termed metacogni-
tion. According to Flavell, metacognition plays an important role in communication,
comprehension, writing, attention, memory, problem solving, and social cognition as
well as self-control, self-instruction. social learning, personality development, and
education (p. 906) [S]. In education, we see that educators need additional tools
developed to help engineering students improve this process as they solve complex and
multi-layered problems. The parts of metacognition are complex. In Flavell’s model,
there are four subcategories of metacognition: knowledge, experiences, goals, and
actions. Metacognitive knowledge is the idea that other people are those with separate
thoughts, tasks, and experiences. For example, you may believe that another person is
better or worse at a particular task (i.e. Jeff is better at algebra than I am). Metacognitive
goals are the objectives to be attained in the problem space. Metacognitive actions are
the behaviors to attain the goals.
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Within this framework exists a person’s thoughts about themselves and other
persons, their opinions, understanding, and beliefs about the task, and their approach in
using these resources to attain the goal with strategies that have worked in the past,
what they have learned currently, and what they can adapt from similar situations.
Metacognition is an interaction of all of these moving parts: understanding of self and
other persons, tasks, strategies, metacognitive knowledge, metacognitive experiences,
goals, and actions of the self and others [5]. Metacognition can be acquired, it can fail,
and it can be inaccurate. The lack of metacognition can lead a person to believe that
they have all the knowledge that they need to solve a problem, when they do not. This
would lead someone to select one course of action over another better course of action.
It can influence your communication style, critical thinking, decision making, and
problem solving [11].

Garrison and Akyol [12] discuss the role of metacognition in collaborative envi-
ronments such as engineering in which self-regulated learning plays a role. Metacog-
nition mediates knowledge construction and collaboration. Students must be aware of
each other’s metacognition in order to construct meaning. In this case, students as co-
learners constantly assess internal and external conditions. They may ask for help or
provide help to realize the learning goal.

Zohar and Lustov [13] recognize that teaching metacognition leads to teaching
higher order thinking which establishes ideas about causation in problem solving.
However, teaching strategies require a learners’ self-knowledge of their own judgment
of learning and feeling of knowing. Back to the two studies with the children by Flavell
[8, 9] and the one by Markman [10]. It was clear that the younger children had not yet
developed an accurate judgment of learning which caused them to make errors in both
the memory recall task [8, 9] and the detecting errors in instructions task [10].

Judgment of learning and feeling of knowing are impacted by the limited resources
in working memory [14]. Working memory integrates the current state with past,
regulates attention, and allocates cognitive resources during learning. When a student is
learning something for the first time, their working memory may allocate full attention
to the task as they integrate the instructions with strategies, tasks, goals, and previous
experience. As they begin to learn the task, students with good metacognitive strategies
will monitor for uncertainty in an uncertainty monitoring state. This type of monitoring
requires intensity in attention and good self-regulation. As this is an internal and
implicit process, it is difficult to verbalize what mental representations are being
constructed, how, why, and when. Often, it is only when an important component is
lacking, that individuals know their representation is lacking. Because of the internal
implicit nature of metacognition, observation and some self-report has been the primary
way to measure it [15]. For this study, we will have students engage in a manufacturing
exercise individually and in teams in such a way that metacognition increases within
and between students. We will integrate an improved measurement paradigm to detect
changes during the exercise.
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2 Simulations

We expect that up to ten teams of four students in each team will participate in this
study. We are using physical and virtual reality simulations of two different manu-
facturing systems, craft production and mass production, as a framework. In both
manufacturing processes, the students manufacture a car made of Legos building
blocks from a larger Lego kit. Students will start individually in the craft production
exercise in either the virtual reality or physical simulation. In this portion of the task,
they will learn their role, expectations, and overall goals of the task. Following this,
students will then come together to take part in the mass production exercise. During
each exercise, we will be observing the participants’ interactions including the ques-
tions that they ask and answer and how their knowledge base and overall metacognition
changes from the beginning to the end of the simulation. Then, they will report their
own understanding of the exercise and their perception of others’. During the virtual
reality part of the exercise, we will use eye-tracking to model their knowledge change.
The use of eye-tracking in this type of study is novel.

Within the virtual reality simulation, an eye-tracker will record fixation points,
latencies, and saccades. The latencies and fixations points will add to our ability to
model attention and tie it to their answers on the metacognitive measures as shown in
Van Gog and Jarodzka [16]. As participants use the virtual reality game, we expect that
their performance will begin to approach an expert’s performance in the same game as
their metacognition improves as measured by the Engineering Design Metacognitive
Questionnaire (EDMQ) developed by Lawanto [17] as well as the Metacognitive
Awareness Inventory (MAI) [12] and Group Style Inventory (GSI) [18]. Other ques-
tionnaires such as Flow State Scale (FSS) will also be used [19] (Fig. 1).

Fig. 1. Student in the virtual reality engineering simulation.
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3 Analysis

We are incorporating the raw eye tracking data as a measure of metacognition into a
model of conflict and error to predict what types of experiences are most beneficial when
training metacognitive skills. The raw eye tracking data analysis using signal detection
theory (SDT) [20] as an approach to differentiating stimuli and quantifying a student’s
performance as it approaches expert performance over the course of the simulation. For
example, initially we expect that the student will survey the Lego car parts that are
available and focus on one or two options to use to manufacture their car. As the student
considers the affordances and constraints of each choice, he will vacillate between the
choices eventually settling on one and choosing that one. Expert performance is similar,
but the vacillation time is less as the expert knows which choice is optimal.

Through comparing the student data to the expert data, we obtain a more accurate
estimate of what the student is considering and how the metacognition is developing in
terms of sensitivity (an observer’s ability to discriminate stimuli) and response bias (an
observer’s standards for producing different behavioral responses) [20]. As the virtual
reality simulation progresses, they view and choose items to construct the car. It is
during this viewing of items that they attend to, the amount of time that they attend to
them, the order in which they attend to them and their choice of attention to each of the
items. Let us discuss the details of how that score will be derived.

Eye-tracking and gaze-tracking tools have made tremendous strides in providing
information on a number of perceptual and cognitive processes, including focus and
attention, information processing, and cognitive workload [21]. An eye-tracker is a
device that measures eye movements, pupil size, focus, and other characteristics of one
or both eyes while engaged in a given task. Through the measurement of these char-
acteristics, an eye tracker enables researchers to track an individual’s eye movement
patterns across an entire task. In this study, participants were equipped with a virtual
reality headset outfitted with an eye-tracker within the mark. This eye-tracker model
utilizes a scene camera to record the direction in which the participant is looking, and a
second camera pointed at the participant’s eye is used to examine fixations. The
information from the eye-tracker collects two basic measures: gaze fixation and sac-
cade. Previous literature has established that these measures are sufficient measures of
attention and information processing as it relates to learning in knowledge change and
metacognition [22]. The Fixation will measure the amount of attention in terms of
location (area of interest- AOI) and in terms of time [23] and the Saccade will measure
the length of time for which items on the screen are attended to [24]. Within these two
measures, there is spatial and temporal information as seen in Table 1.

Calculating these measures alone for each participant would be helpful but not as
useful as when the measures are compared to the performance of an expert with
knowledge of the optimal solution and a complete and accurate mental representation
of the problem space (i.e. the subject matter expert or SME). We want the participant
performance to approach expert performance as their information processing behavior
starts to match the behavior of the SME in the same virtual reality exercise. The SME
sets the optimum areas of interest (AOI) and benchmarks the gaze points and optimum
loiter. The eye tracking data will be segregated into the following categories and
processed as described in A-D.
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Table 1. Measures of eye-tracking.

Spatial measure

Temporal measure

Fixation
(attention- correct
item)

Saccade (order of
processing, correct
length of time)

Gaze Point- as an X,Y coordinate
as the center of the optimum Area
of Interest/AOI (attention to
correct item)

Order of gaze points- what the
participant looks at first, second,
third, and so forth

Time stamp of gaze point —
gathered each 16.7 ms

Loiter of fixation- the amount of
time the participant gazes before
the next saccade (attention-

correct length of time)

A. Attention Location Difference Score-ALDS. The root mean square or RMS value
from the center of the SME’s AOI for each salient item will be calculated. The RMS
value from the center of the participant’s AOI for each salient item will be calculated.
The difference between the two scores will be calculated to derive the Item Location
difference score or ALDS.

B. Attention Time Difference Score-ATDS. The amount of time that the SME loiters
on a particular item before moving onto the next item indicates the amount of information
processing time needed to incorporate the item and decide. This loiter time between large
saccades will be calculated and then each participant’s loiter time will be subtracted from
the SME’s ideal time to find the attention time difference score or ATDS.

C. Number of Fixations Difference-Fxd. As outlined in the original document, the
number of fixations also plays a factor and can moderate duration time by distraction.
The number of fixations difference before a major saccade will be Fxd.

These measures will comprise the individual’s eye tracking performance.

Participant Individual Eye Tracking Performance = ALDS + ATDS + Fxd

We expect that this performance equation will change as the participant engages in
continued game play and will begin to approach the SME model of performance. For
example, a very good model of performance in the game may be an ALDS of 13 (the
center of the AOI was within thirteen pixels of the center of the expert AOI),
ATDS = 53 (fixated about 53 ms longer than the expert), Fxd = 2 (two additional
fixations than the expert). The score for this participant would be 68 (13 + 53 + 2).
This would be a fairly good score as earlier in the exercise the same participant had a
farther AOI (139 pixels) and a longer difference in fixation ATDS = 106, with more 18
more fixations Fxd = 18. This score of 163 (39 + 106 + 18) essentially described
performance more distant from the ideal of 68 and could be described as a 95-point
improvement. With this model, participant’s micro-improvement in the tasks can be
observed over individual items and over sections of the game temporally.

When we incorporate this into a Conflict (C) and Error (E) model we can predict
the team performance by examining the divergence of acceptance of a specific task, the
task time to solve the problem, the disparity between the expected state and the actual
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state. Conflicts and errors are very common and can occur in any problem solving
process. We will focus on conflicts occurring during the problem solving process
among collaborative undergraduate engineering student teams. Such C & Es can
impact team performance and lead to ineffective solutions. Suppose that there is a
conflict between two collaborative engineering teams working to solve a given problem
related to a manufacturing process in product design. Error is the deviation between
intentions and actions. We define the conflict as the competition between two or more
simultaneously activated response tendencies represented by the difficulty level of the
problem. If a student considers a given task easy whereas another student considers it
difficult, a conflict, will occur. An error, will occur if a student did a task wrong,
reflected by his/her performance certainty. If an error is not caught during the problem
solving process, the error can lead to wrong or ineffective solutions. We will be
measuring the flow of information between the collaborating team members, the
probabilities of the perception of difficulty and the conflicts. We expect that this model
will predict collaborative problem solving and an improvement in metacognition
between and within team members.

Acknowledgments. This material is based upon work supported by the National Science
Foundation under Grant No. (1830741). Awarded 8/1/18.

References

1. Deloitte. https://www?2.deloitte.com/

2. Levesque, K., Laird, J., Hensley, E., Choy, S.P., Cataldi, E.F., Hudson, L.: Career and
Technical Education in the United States: 1990 to 2005. Statistical Analysis Report. NCES
2008-035. National Center for Education Statistics (2008)

3. Aqlan, F., Al-Fandi, L.: Prioritizing process improvement initiatives in manufacturing
environments. Int. J. Prod. Econ. 196, 261-268 (2018)

4. Sengul, S., Katranci, Y.: Meta-cognitive aspects of solving indefinite integral problems.
Procedia - Soc. Behav. Sci 197, 622-629 (2015)

5. Garcia Pefialvo, F.J.: Entrepreneurial and problem solving skills in software engineers. J. Inf.
Technol. Res. 8, iv—vi (2015)

6. Bickhard, M.H.: Why children don’t have to solve the frame problems: cognitive
representations are not encodings. Dev. Rev. 21, 224-262 (2001)

7. Visser, W.: The Cognitive Artifacts of Designing. CRC Press, Boca Raton (2006)

8. Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive-
developmental inquiry. Am. Psychol. 34, 906 (1979)

9. Flavell, J.H., Friedrichs, A.G., Hoyt, J.D.: Developmental changes in memorization
processes. Cogn. Psychol. 1, 324-340 (1970)

10. Markman, E.M.: Realizing that you don’t understand: a preliminary investigation. Child
Dev. 48(3), 986-992 (1977)

11. Schraw, G., Dennison, R.: Assessing meta-cognitive awareness. Contemp. Educ. Psychol.
19, 460475 (1994)

12. Garrison, D.R., Akyol, Z.: Toward the development of a metacognition construct for
communities of inquiry. Internet High. Educ. 24, 66-71 (2015)


https://www2.deloitte.com/

102

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. J. Elliott et al.

Zohar, A., Lustov, E.: Challenges in Addressing Metacognition in Professional Development
Programs in the Context of Instruction of Higher-Order Thinking. Contemporary Pedagogies
in Teacher Education and Development. Intech Open (2018)

Coutinho, M.V, Redford, J.S., Church, B.A., Zakrzewski, A.C., Couchman, J.J., Smith,
J.D.: The interplay between uncertainty monitoring and working memory: can metacognition
become automatic? Mem. Cogn. 43, 990-1006 (2015)

Akturk, A.O., Sahin, L.: Literature review on metacognition and its measurement. Procedia
Soc. Behav. Sci. 15, 3731-3736 (2011)

van Gog, T., Jarodzka, H.: Eye tracking as a tool to study and enhance cognitive and
metacognitive processes in computer-based learning environments. In: International
Handbook of Metacognition and Learning Technologies, pp. 143—156. Springer (2013)
Lawanto, O., Santoso, H.B.: Development and validation of the engineering design
metacognitive questionnaire. In: American Society of Engineering Education (ASEE)
Annual Conference (2014)

Cooke, R.A., Szumal, J.L.: Measuring normative beliefs and shared behavioral expectations
in organizations: the reliability and validity of the organizational culture inventory. Psychol.
Rep. 72, 1299-1330 (1993)

Jackson, S.A., Marsh, H.-W.: Development and validation of a scale to measure optimal
experience: the flow state scale. J. Sport. Exerc. Psychol. 18, 17-35 (1996)

Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Wiley, New York
(1966)

Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols.
In: Proceedings of the Eye Tracking Research and Applications Symposium, pp. 71-78.
ACM Press, New York (2000)

Rayner, K.: The 35th Sir Frederick Bartlett lecture: eye movements and attention in reading,
scene perception, and visual search. Q. J. Exp. Psychol. 62, 1457-1506 (2009)
Costa-Gomes, M., Crawford, V.P., Broseta, B.: Cognition and behavior in normal-form
games: an experimental study. Econ. 69, 1193-1235 (2001)

Orquin, J.L., Ashby, N.J.S., Clarke, A.D.F.: Areas of interest as a signal detection problem
in behavioral eye-tracking research. J. Behav. Decis. Mak. 29, 103-115 (2016)



	A Study of Metacognitive Problem Solving in Undergraduate Engineering Students
	Abstract
	1 Introduction
	2 Simulations
	3 Analysis
	Acknowledgments
	References


