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Abstract—Information Retrieval (IR) plays a pivotal role in
diverse Software Engineering (SE) tasks, e.g., bug localization
and triaging, bug report routing, code retrieval, requirements
analysis, etc. SE tasks operate on diverse types of documents
including code, text, stack-traces, and structured, semi-structured
and unstructured meta-data that often contain specialized vo-
cabularies. As the performance of any IR-based tool critically
depends on the underlying document types, and given the
diversity of SE corpora, it is essential to understand which models
work best for which types of SE documents and tasks.

We empirically investigate the interaction between IR models
and document types for two representative SE tasks (bug lo-
calization and relevant project search), carefully chosen as they
require a diverse set of SE artifacts (mixtures of code and text),
and confirm that the models’ performance varies significantly
with mix of document types. Leveraging this insight, we propose
a generalized framework, SRCH, to automatically select the
most favorable IR model(s) for a given SE task. We evaluate
SRCH w.r.t. these two tasks and confirm its effectiveness. Our
preliminary user study shows that SRCH’s intelligent adaption of
the IR model(s) to the task at hand not only improves precision
and recall for SE tasks but may also improve users’ satisfaction.

Index Terms—Information retrieval; IR metrics; project rec-
ommendation; bug localization

I. INTRODUCTION

Information retrieval (IR) plays a pivotal role in many Soft-

ware Engineering (SE) tasks. Haiduc et al. [1] identified more

than 20 different SE tasks, e.g., feature location, traceability

link recovery, bug localization and triaging, that benefit from

IR. IR techniques generally depend on three key components:

(i) a query that expresses the user’s information need; (ii)

a corpus of candidate documents from which the relevant

information is extracted; and (iii) an IR model that considers

a query and a corpus of candidate documents, and computes

a similarity score between the query and each candidate

document. Typically, the candidate documents are then ranked

by decreasing values of the similarity scores. Similarity scores

based on similar bag-of-words (e.g., VSM [2], BM25 [3]) and

context-based matching (e.g., LSI [4], WMD [5]) are some

well-known IR models that measure document similarities.

When applying IR to SE tasks, well-established models such

as the above are typically used as they are already stable,

fine-tuned and well-explored, and perhaps SE researchers are

primarily concerned with solving their SE problem rather than

exploring alternatives among IR models. Although further

tuning these models for SE tasks has been investigated [6],

IR models have been developed mainly for natural language

(NL) text corpora. But SE corpora, which often contain diverse

document types including source code, test cases, bug reports,

API documentation, project overviews, etc., are linguistically

quite different from conventional natural language even when

in text form [7]. For example, researchers have shown that

Google web-search, whose IR models are heavily optimized

for natural text, does not perform as well for code search [8].

Thus, we start this paper with a very simple question:

among the available IR models, are there any models (or their

combinations) that work better for a given SE task than others?

In particular, we investigate whether choice among IR models

has any significant impact on the SE task at hand—which

model is suitable for source code elements (e.g., method

names), which model is right for specific kinds of documents

(e.g., bug reports), which model is more appropriate for tasks

measuring the similarities across these two types of artifacts

(e.g., for bug localization)? We devise a lightweight framework

to automate the model selection, combination, and parameter

tuning process, and show that tools built with such informed

choices can outperform baseline tools by a significant margin.

We investigate two representative tasks—that often arise

during software maintenance—where IR techniques have often

been used in the past: (i) bug localization: given a bug

report as query, retrieve the most likely to be relevant source

file(s), so the developer can fix the bug [9]–[15], and (ii)

project recommendation: given a GitHub project as query,

find functionally similar GitHub projects, for the developer

to explore “issues”, test cases, reviews, and other artifacts that

may grant insights that could lead to improving the developer’s

own project [16]–[22]. These tasks are carefully chosen to

require using IR methods across multiple different kinds of

SE document types. While bug localization relies on similarity

computation between heterogeneous document types (code

vs. bug report), for project recommendation similarity needs to

be measured among multiple different but homogeneous types

of documents (code vs. code, GitHub description vs. descrip-

tion, GitHub readme vs. readme, etc.).

We studied 1100 bug reports for bug localization and 1832
GitHub projects for project recommendation considering a

range of different IR models. We found that BM25 performs

best for the code vs. bug report of bug localization, but



it is not as effective for project recommendation’s homoge-

neous document comparison. For the various natural language

comparisons of project recommendation, the LSI and WMD

context-aware models worked better, while the keyword-based

bag-of-words VSM model performs best for code vs. code.

Given the availability of many off-the-shelf IR models, it

is challenging to choose the right one for these and other

SE problems, particularly when any given model is likely to

require tuning to achieve its optimal performance for the task

and corpus at hand [23]–[25]. Moreover, for those SE tasks

that involve different mixes of comparisons across documents,

a single IR model may not be the best choice for all similarity

comparisons. We constructed our generic framework, SRCH

(Software Search), to automatically select the optimal IR

model, or set of models, for a given SE task.

We evaluate SRCH w.r.t. the two tasks introduced above: For

project recommendation, SRCH recommends similar projects

with a mean average precision of 76% for finding top-10

related projects (MAP@10). SRCH boosts the accuracy of

project recommendation up to 24% w.r.t. baseline tools that use

off-the-shelf VSM or LSI. SRCH also significantly outperforms

two state-of-the-art tools: CLAN [16] and RepoPal [22] by

186% and 107%, respectively, at MAP@10. The BM25-based

model selected by SRCH for bug localization outperforms the

VSM-based baseline, achieving up to 43% performance gain,

even though VSM has been previously been used in many

previous bug localization tools, e.g., [12], [26]–[28].

We also conducted a preliminary user study with 12
users to evaluate SRCH w.r.t. project recommendation: these

users found useful recommendations within top-5 outcomes

(MAP@5) for 88% of the example queries.

This paper makes the following contributions:

1) We provide empirical evidence that the success of IR-

based SE tasks depends significantly on the choice of

IR model(s), which in turn depends on the underlying

document type(s), and that careful selection, combination

and tuning of IR models can improve the accuracy of IR-

based SE tasks.

2) We propose and evaluate SRCH, our generic framework to

automate IR model selection and tuning for SE tasks. We

also show that SRCH can be used in legacy environments

to improve accuracy.

3) We curate a valuable dataset of 1832 GitHub projects

by retrieving their descriptions, readme contents, class

and method names, imported package usage, and APIs for

project recommendation, where we manually associated

each project with a fine-grained category that describes

its functionalities. Our dataset is publicly available at

https://github.com/masud99r/IR-in-SE

II. BACKGROUND

A. IR Models

1. Vector Space Model (VSM) [2] models represent docu-

ments (D) and queries (q) as N-dimensional vectors, where N
is the size of the vocabulary, and each dimension corresponds

to a separate word or term. Each vector element represents the

weight of the corresponding term; i.e., q = (qw1, ..., qwN )
and D = (Dw1, ..., DwN ) where the qwi and Dwi are the

weights of the term i in a bag-of-words (BOW) representation

of vocabulary size N . An effective way to compute the term

weight is the term frequency-inverse document frequency (TF-

IDF), where TF represents the importance of the term in

a document, and IDF represents how valuable or rare the

term is across all the documents. Then the similarity between

two documents is computed as the cosine angle between

corresponding vectors as sim(q,D) = cos(q,D) = qTD
||q|| ||D|| .

Implications: The VSM model is effective and simple to

implement. However, as a BOW-based approach, it ignores

token order. In the cosine similarity formula, the magnitudes

of the document vectors (||q|| and ||D||) are in the denominator

and give smaller cosine values for larger dimensional vectors.

Thus, longer documents may be penalized because they have

more components that are indeed relevant.

2. BM25 [3] (BM stands for Best Matched, 25 refers to a

standard encoding) is a different BOW model that looks for

how many of the query terms are present in a document. It

ranks the document with the highest number of query terms,

normalized by document length, at the top.

Implications: A distinguishing feature of BM25 is that it

treats a matching term’s importance in the document and in the

query differently, and also gives special attention to that term’s

frequency in the query. This improves performance when the

query and document are of different types. Then document

length normalization enables more accurate rank prediction

when candidate documents are of various lengths. Despite

these advantages, BM25 is (like VSM) a keyword-matching

model that ignores word order. Thus BM25 might fit well

where document length varies and token order doesn’t matter.

3. Latent Semantic Indexing (LSI) [4] assumes that words

with similar meaning will have similar context. LSI projects

a higher dimensional document-term co-occurrence frequency

matrix into a lower dimensional latent space to create doc-

ument vectors. An effective way of using LSI is to use

the TF-IDF weight instead of the raw co-occurrence count

of a term. The IDF can be estimated from the document

corpus. After inferring the lower dimensional vector of both

query and candidate documents, cosine similarity computes

the similarity between two document vectors as equation

sim(q,D) = cos(q,D) = qTD
||q||||D|| .

Implications: Intuitively, the dimension reduction step com-

putes similarity scores for every word w.r.t. every other based

on their co-existence in a common context. In this way, LSI

captures the meaning of synonyms and homonyms in the latent

space. As opposed to VSM and BM25, LSI can differentiate

documents with synonymous and homonymous words but few

semantic similarities.

4. Word Embedding. This approach also assumes that similar

words should have similar context [29]. In Word Embedding,

a natural language processing (NLP) technique, each word

w is represented by a d-dimensional vector of real numbers.

This vector is learned from the context formed by the words



preceding and following w in a sentence. Similar words

should have similar context thus similar embedding. Many

popular similarity measures like cosine similarity can be used

to measure similarities between the embedded documents.

Among them, Word Mover’s Distance (WMD) has proved to

be the winner [5]. For each query term, WMD searches for the

semantically closest term in each document, where the distance

between two terms is calculated as a Euclidean distance in

the word embedding space. The summation of the minimum

distances for all query terms represents the distance from a

query to a candidate document.

Implications: As word embedding captures the words’

contextual information, WMD bridges the semantic gap be-

tween documents. For example, say the descriptions of two

projects are “image gallery app for Lollipop” and “Android

photo viewer”. They are very close in meaning but have

no shared words. Thus, traditional similarity measures like

a keyword-based BOW model could not find any similarity

between these two documents. In contrast, WMD can effi-

ciently judge that they are highly similar since they have

very similar word embeddings. In SE artifacts, synonymous

terminology is common;e.g.,upgrade and update are often used

interchangeably. WMD may be useful to detect similarity

among documents with no identical words.

B. Studying SE Tasks

We analyze the effect of different IR models on different

types of software documents w.r.t. two tasks that often arise

during software maintenance:

(i) Bug Localization. Given a bug report as the query,

this task ranks all the source files in the project repository

based on their relevance to the query [9]–[15]. The files that

top the ranking are more likely to contain the root cause of

the bug. For example, for bug report id 369884 [30] in the

Eclipse-Platform-UI [31] project, file E4Application.java [32]

was fixed (see Table IV). A perfect bug localization tool would

rank this file at top if queried with the above bug report.

(ii) Project Recommendation. During projects’ evolution,

developers often look for similar applications from which to

port similar features [33], [34], explore relevant test cases and

library usage [35], and look for other artifacts that may grant

insights to improve the developer’s own project [16]. Given a

project as a query, this task tries to find functionally similar

projects from GitHub. A ranked list of projects is retrieved

with the most relevant projects at the top [16]–[22]. For

example, screenbird [36] and FFmpegRecorder [37] are both

Video Recorder software. For a query with the first project,

the tool should return a list of Video Recorder projects that

includes the second project (see Table VI).

III. METHODOLOGY

A. Study Subjects

We analyze a wide variety of projects for studying the two

SE tasks introduced in Section II-B. For bug localization,

Table Ia, we collect a benchmark bug report dataset [26],

[38] that contains 1100 bug reports from four projects. For

project recommendation, Table Ib, we use a total 1832 GitHub

projects across 112 functional categories.

B. Data Collection

Collecting Bug Report Data. The bug report dataset, which

has been used previously for bug localization in [26]–[28],

[38], studies four projects: Birt [39], Eclipse Platform UI

(Eclipse-UI) [31], Eclipse JDT [40], and SWT [41]. Each bug

report contains a summary, description, report time, and status

of its fix along with the bugfix commit. We downloaded the

before-fix version of each project, and treated its files that

were deleted or modified in the bugfix commit as the true

buggy files. Any files added to the before-fix version cannot

be predicted, so are not part of the evaluation.

TABLE I: Study Subjects

(a) Bug Localization task

Time Range # bug # Java files in versions # API
Project (mm/yy) reports median total entries

Birt 06/05 -12/13 200 8770 1770K 957
Eclipse-UI 10/01 - 01/14 200 6141 1228K 1314

JDT 10/01 - 01/14 500 8819 4421K 1329
SWT 02/02 - 01/14 200 2794 559K 161

(b) Project Recommendation task

#Java #Method #Import
#Project #Category File Class #API Package

Method-A 1590 78 216K 4.9M 1.5M 2.04M
Method-B 242 55 14K 0.3M 0.1M 0.12M

Total 1832 112 230K 5.2M 1.6M 2.16M

Collecting GitHub Projects. For studying project recom-

mendation, we collect GitHub open source projects using the

following two approaches: First, in (i) Method-A, we search

GitHub with keywords representing project functionalities

(e.g., media player, text editor, etc.), and download the relevant

projects. However, as GitHub search primarily looks at project

descriptions, a project without a proper description will not

be retrieved in this step. Hence, in (ii) Method-B, we instead

found GitHub projects with Google Play links and utilized

their Google Play descriptions.

Method-A. Given a project functionality (e.g., Video

Recorder), we use GitHub search API [42] to search for

relevant projects using the functionality term as the search

keyword. We select different types of functionalities using

the DMOZ Ontology [43], which is a hierarchical directory

of the Web. In this ontology, any category under ‘software’

represents a meaningful functionality (e.g., Spelling Software,

Grammar and Spell Checkers, etc.). We remove homonyms to

reduce confusion of the search task. This approach gives us

90 different types of project functionalities.
We use these functionalities to retrieve different types of

Java projects from GitHub. We exclude the forked projects

as they include near-identical projects and overfit our project

similarity data. For each query, we select the top 1, 000
projects with 3-star rating and above from the search results.

We end up with 2180 unique projects under 90 categories,

where some projects may belong to multiple categories.



We further manually investigate the associated categories

of each project, because GitHub search is mostly based on

keyword matching and in some cases it leads to inaccurate cat-

egorization. For example, project Eid-Applet [44]’s description

is “eID Applet to enable BE eID cards within web browsers

and it is retrieved by the query Web Browser”. The retrieved

project is certainly not a Web Browser but an Applet. While

manually investigating the project annotation, we further mod-

ify, delete, and add categories (i.e. functionalities) as needed.

We also remove some ambiguous projects. This reduces to

1590 projects under 78 different functionalities.

Method-B. Here we collect 242 GitHub projects that have

Google Play links in their descriptions or README contents

but lack keywords about project functionalities. Again we

exclude forked projects and projects with less than 3 stars to

try to avoid toy projects [45]. Then we manually annotate these

projects using the details available in Google Play, particularly

the app description, similar app suggestion, category, etc.. We

found some new project functionalities not seen in Method-A.

Finally, our dataset has 1832 (1590 + 242) projects with

112 different functionalities, shown in Table Ib, where Media

Player, Search Engine, Database Systems, etc. are the top

functionalities with the most member projects.

For both methods, two authors of this paper (separately)

annotated by project category; they agreed in 95% of cases,

and resolved disagreements by discussion. As the annotator

needed to consult various documents (i.e. description, readme,

Google store, etc.) to determine functional category, it required

tremendous manual effort to annotate all the projects. Per

annotator, it took on average 3 minutes per project and in

total approx. 90 working hours.

C. Feature Extraction

Features of the bug localization task. We extract six different

features similar to Ye et al. [26]:

(i) Source Code: To begin with, we consider all the source files

as a single document. Next, to compare with the baseline [26],

we also implement another setting where only the method

bodies of a source file are considered eliminating import

statements, class names, etc.. We extract the method bodies

using an Eclipse JDT [40].

(ii) API Description: To bridge the lexical gap between text

and code, we leverage the API documentation. We build the

document for a source file by concatenating the description of

all the API classes used in the source files.

(iii) Collaborative Filtering Score: For a given bug report, the

bug-introducing files may be the same files that were fixed

before to fix similar prior bugs [46]. This feature prioritizes

the previously fixed files. For each file, we build a document

concatenating all the previous bug reports for which the file

was responsible. The similarity is calculated between the query

bug report and this constructed document.

(iv) Class Name: The existence of Class name tokens in a bug

report is a strong indication that the corresponding Class file

might be responsible for the bug. It is hypothesized that the

longer the Class name, the stronger the signal of bugs [26].

This feature concatenates all the class names per file.

(v) Bug-Fixing Time: If a source file was fixed recently, it

is more likely to contain bugs than a file that was fixed a

long time ago [26]. This score is calculated by the inverse

of the time difference in months between the query’s bug

reporting time and the most recent (previous) bug fix time

of the corresponding source file.

(vi) Bug-Fixing Frequency: It is also assumed [26] that if

a file has been responsible for fixing many previous bugs, it

is more likely to contain bugs in future. Thus, this score is

calculated as the number of bugs previously fixed in a file.

Features of project recommendation task. We choose five

types of SE artifacts:

(i) Project Description: This textual artifact is often short and

concisely represents the project functionality.

(ii) Readme Content: This textual artifact usually contains

a detailed description including how to install and run the

project.

(iii) Method & Class names: Developers often use meaningful

identifier names when implementing their project [47]. Thus,

it might be possible that projects with similar functionalities

use similar method or class names. For example, two text

editor applications may have similar methods with names

copy, paste, save, etc. To check this hypothesis, we retrieved

method and class names that are declared within a project.

(iv) Import Package name: Similar projects often use similar

API packages [16]. This motivates us to use imported API

package names and class names as features. We use the Eclipse

JDT [40] framework to collect these names.

(v) API name: The API Class refers to the classes defined

in system libraries or other third-party libraries or packages.

To extract these, using Eclipse JDT, we first extract all the

classes used in a project and then remove the classes defined

within the project from this list. The remaining class names

are assumed to be API names.

D. Data Pre-processing

For each feature, we use standard natural language process-

ing (NLP) techniques for data processing like tokenization,

normalization, stemming, and stopword removal. First, we

clean the documents by removing the special characters (i.e.

non-English) and punctuation. As a convention, Java uses

camel case format for class, method, and variable names. For

such compound tokens (e.g., TerminalFactory), in both text

and code artifacts, we further extract smaller token units (i.e.

Terminal and Factory). We also keep the original compound

token to keep actual keyword information. We then normalize

the tokens: remove numeric characters and convert to lower

case letters. To avoid bias from the frequently occurring but

less informative tokens we remove two types of stopword:

standard English stopwords (adopted from [48]) and Java

language related stopwords, i.e. keywords [49]: void, public,

while, etc. To reduce the unwanted lexical gap between tokens,

we apply the Porter Stemmer[50] to convert words to its base

form (e.g., convert computes and computed into comput).



E. Evaluation Metric

We evaluate an IR task w.r.t. its ground truth sets, i.e., given

a query and a candidate document, we check whether the

retrieved results match its corresponding ground truth. We use

several standard evaluation metrics [51] as described below:
1. Precision (P). For a given query q, precision is the fraction

of retrieved documents that are also present in the ground

truth set. Thus, P = r
d

, where r is the number of relevant

items from the retrieved d documents.
2. Recall (R). For a given query q, recall is the fraction of

relevant documents that are retrieved. If t be the total relevant

documents for the query q, the recall is R = r
t
.

3. Mean Average Precision (MAP). For a set of queries,

MAP is the mean of the average precision of individual

queries [51]. First, for each query, an average precision is

computed for each rank. Given a query(q) and its rank-

ing documents, the average precision of q is calculated as

AvgPrec(q) = (
∑R

i=1
i

ranki
)/R, where R is the total number

of relevant documents, ranki is the ranking position of the

relevant document i in the retrieved ranking and i/ranki = 0
if the relevant document i was not retrieved by the model.

Then we take the mean of this average precision across all the

queries using equation MAP (Q) = 1
|Q|

∑|Q|
j=1 AvgPrec(qj)

to get MAP . Here, Q is the entire query set.
4. Mean Reciprocal Rank (MRR). Given a retrieved list for a

query, the reciprocal rank is computed as the multiplicative

inverse of the rank of the first relevant document. The mean

of such reciprocal rank across all the queries are taken using

equation MRR(Q) = 1
|Q|

∑|Q|
i=1

1
ranki

. Here, ranki is the

rank position of the first relevant document for the ith query.
5. Normalized Discounted Cumulative Gain (NDCG) is an-

other popular metric for evaluating search-related tasks, em-

phasizing retrieving highly relevant documents [51]. Instead

of binary judgment, relevant or irrelevant, higher value on a

scale of [0, r], where r > 2, indicates greater relevance.
We evaluate a search result by computing these evaluation

metrics at different rank cut-offs. During comparison we use

percentage gain computed as gain = (b − a)/a ∗ 100, any

metric value changes from a to b.

F. Model Configurations

Performance of IR models varies significantly with different

parameter settings [23], [25]. For a fair comparison, we tune

each model to its best performing configuration for each task,

shown in Table II. Since tuning is not the main focus of

the paper, we simply did an exhaustive search varying the

parameter values at regular intervals and chose the best.

TABLE II: Best performing models’ configurations

VSM BM25 LSI Word2Vec

Min Min Min Projected Min Window Vocab

DF DF k1 k2 b DF Dim. DF Dim. Size Size

project recommendation 2 2 1.5 1.5 0.75 2 100 5 300 5 18M

bug localization 1 2 1.5 1.5 0.75 15 100 5 100 10 21.8K

We train a skip-gram word2vec [52] word embedding model

which is used by WMD. We use a diverse collection of 3.7M

Wikipedia articles [53] for the training data. These articles

usually contain multiple paragraph descriptions of Wikipedia

concepts. Since a project description is usually shorter in

length and might not be represented by the Wikipedia articles,

we also include 7.5M GitHub project description collected

using GHTorrent [54]. We also tried other word2vec models

for import package and API, using corresponding documents

for training, but found the resulting embedding less effective

w.r.t. the project recommendation task. We use Gensim’s [55]

Python implementation of word2vec to train on our data.

For WMD in the bug localization task, we used a pre-trained

word2vec model which is trained on source code and API

documentation and found to be effective on the same dataset

for bug localization [38].

IV. EMPIRICAL STUDY

Our central question is, for a given SE task, whether the

choice of IR models matters significantly across different

types of SE artifacts. In general, IR models are applied either

on heterogeneous or homogeneous artifacts, depending on

whether queries and documents are of different or similar

types, respectively. The bug localization task is a classic

example of the former where query and candidate document

types are different (bug report vs. source code). In contrast,

in project recommendation, IR models are applied to homo-

geneous artifacts: code vs. code, description vs. description,

readme vs. readme, etc. We investigate the impact of different

IR models: For each model, we choose its best performing

configuration as shown in Table II.

RQ1. How well do different IR models perform across

heterogeneous SE artifacts for the bug localization task?

TABLE III: Impact of different IR models on the bug localization
task using heterogeneous artifacts

Birt Eclipse-UI JDT SWT

VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD

MAP@10 0.11 0.03 0.17 0.02 0.10 0.06 0.29 0.02 0.06 0.02 0.28 0.00 0.10 0.11 0.42 0.01

MRR 0.13 0.04 0.18 0.02 0.12 0.08 0.30 0.02 0.08 0.03 0.31 0.01 0.12 0.13 0.44 0.01

P@10 0.03 0.02 0.05 0.02 0.04 0.03 0.08 0.02 0.02 0.01 0.07 0.00 0.04 0.04 0.10 0.01

R@10 0.13 0.05 0.23 0.02 0.16 0.08 0.45 0.02 0.14 0.04 0.43 0.00 0.18 0.20 0.55 0.01

Best performing values are highlighted in Red (bold) for each project

We check the similarities between bug reports and source

files by studying 1100 bug reports from four projects. The

query is the bug report and the documents are different source

code files and meta-data. A successful IR model will rank the

actual buggy file(s) at the top. Table III summarizes the results.

TABLE IV: Sample results for bug localization

Bug Reports and Fixed File Rank

Bug 369884 [30] platform:/plugin/ not used for applicationXMI ... BM25=1
used for CSS resources or Icons. ... applicationXMI parameter. VSM=31
Also the e4 wizard should be adjusted to create the right URI. LSI=110
Fixed File : E4Application.java [32] WMD=5983

BM25 is the best performing model over all the models

(tuned following Section III-F) across all the projects it out-

performs other models significantly and achieves a percentage

gain of (MAP@10, MRR): Birt (54%, 38%), Eclipse-UI

(190%, 150%), JDT (366%, 287%), and SWT (320%, 266%),



TABLE V: Impact of different IR models on project recommendation using homogeneous artifacts

Description Readme Method Class Import Package API
VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD VSM LSI BM25 WMD

MAP@10 0.51 0.57 0.51 0.51 0.37 0.39 0.26 0.29 0.37 0.36 0.16 0.25 0.29 0.24 0.07 0.20 0.31 0.25 0.22 0.25
MRR 0.56 0.61 0.55 0.57 0.44 0.45 0.30 0.34 0.43 0.40 0.19 0.29 0.34 0.29 0.08 0.26 0.35 0.28 0.26 0.30
P@10 0.40 0.49 0.41 0.33 0.25 0.29 0.14 0.14 0.23 0.24 0.07 0.10 0.16 0.13 0.03 0.08 0.17 0.13 0.10 0.12
R@10 0.13 0.16 0.13 0.10 0.07 0.08 0.03 0.03 0.06 0.07 0.02 0.03 0.05 0.03 0.01 0.02 0.05 0.04 0.04 0.04

Best performing values are highlighted in Red (bold) for each project

compared to the second best VSM model. For all individual

queries these differences are statistically significant (p-value

≤ 0.05) with medium to large Cohen’s d effect size [56].

Table IV shows an example, where BM25 ranks the intended

file at top-1 position, whereas VSM ranks it at 31st place.

Discussion. Our documents are source code files and the query

is a bug report. Since source code files can vary significantly

in length, cosine similarity methods like VSM and LSI inad-

vertently hurt longer documents as the document length ||D||
is in the denominator of the cosine function (see Section II).

BM25 mitigates this with document length normalization.

Moreover, VSM and LSI assume both query and document

are of same type and represent them in the same conceptual

space. For heterogeneous artifacts, representing them in the

same space is not necessarily effective. Further, context-aware

models like LSI and WMD are less effective—the same term

can exist in different surroundings across two different types

of documents. In the example of Table IV, the term “e4”,

which is one of the most important terms to associate the

report with the file, appears in very different contexts: in the

query “e4” appears in the bug report text, while in the source

file document it is the class/file name.

Result 1: BM25 achieves best performance for measuring

similarities across heterogeneous documents for the bug lo-

calization task.

RQ2. How well do different IR models perform for

homogeneous SE artifacts for project recommendation?

Here, we study two types of SE artifacts: project documen-

tation (description and readme text) and source code (method

and class names, import package names, and API names).

For a given project set N , we take one project as the

query and consider the remaining N − 1 projects as candidate

documents. If the categories (i.e. functionalities) of a retrieved

project and the query project are identical, we consider that

as a success. We take the average performance across all the

projects in a query set to get overall performance. We apply

all four IR models to each feature and report the results for

200 query projects in Table V. We discuss the results mostly

w.r.t. MAP@10. However, a similar conclusion can be drawn

for all other evaluation metrics.

For the textual artifacts, in general, LSI achieves highest

performance for most of the evaluation settings. For project

description text, the LSI model performs best for all the

evaluation metrics and gains 11.76% compared to the second

best models (WMD, VSM, and BM25 perform comparably)

at MAP@10. Similarly, for readme files, the LSI model

TABLE VI: Top three Search Results for project recommenda-
tion task with description only feature. The keywords in bold
highlight the important keywords for matching.

Category Name : Description

Query

Video Recorder screenbird :a full cross platform video screen capture tool
and host. Java based screen recorder, and Django based web
backend distributed video processing engine that uses ffmpeg
... of AWS instances.

LSI
(1) Video Recorder FFmpegRecorder : An Android video recorder using ...

FFmpeg.
(2) Video Recorder FFmpegVideoRecorder : Customizable Android video

recorder library...
(3) Video Recorder jirecon : A Standalone recording container for ... video

recorder ...

VSM
(1) Video Recorder ScreenRecorder : containing service for recording video of

device screen
(2) Video Recorder VideoRecorder : Android video recorder project
(3) Media Player dttv-android : android video player based on dtplayer

BM25
(1) Video Recorder ScreenRecorder : containing service for recording video of

device screen
(2) Terminal Emulator DragonConsole : a cross platform Java based Terminal Em-

ulator.
(3) Search Engine LunarBase : real-time engine, ... records in one table, ... used

as a search engine

WMD
(1) Media Player supersonic : web-based media streamer ... audio and video

formats
(2) Readers Java java-manga-reader : directly from web. .., internet access is

required
(3) Search Engines SearchEngine : crawls seed web page ... search engine for a

website ...

performs best in most of the evaluation metrics —4.85%

improvement for MAP@10 w.r.t. VSM, the second best

model. Note that all the models are first tuned following

Section III-F to their best-performing configurations.

Table VI shows example ranked lists for all four models us-

ing only the description feature for a query project ‘screenbird’

with Video Recorders category. The top two projects retrieved

by LSI and VSM models are of the same categories as the

query. Notice that all these retrieved projects have keywords

“video” and “recording” in their descriptions. However, VSM

mistakenly retrieves a media player app as the third project

because of the word “video” in the description.

While the performance of LSI is better in textual artifacts,

VSM dominates for code artifacts. Compared to LSI, VSM

performs slightly better for the method and class feature and

significantly better for import package and API names with

20.59% and 24.29% improvement, respectively, at MAP@10.

Discussion. Among the code features, method and class names

perform best. This suggests that similar projects actually have

similar method and class names. This finding also confirms

the hypothesis of Allamanis et al. [47] that developers use

meaningful identifier names while writing a software program.

Both the context-aware models LSI and WMD show a



similar decreasing trend in performance going from project

document artifacts to code artifacts (see Table V). This result

indicates that context sensitivity, which is quite effective in

natural language text, is not that helpful for source code

artifacts. Further, among source code artifacts, LSI and WMD

perform better for method and class names, suggesting context

is more meaningful for these kinds of names than import pack-

ages and API names. Interestingly, all the projects retrieved

by WMD in Table VI are wrong, and they have few keywords

overlapping with the query project. However, a closer look will

reveal the document and query terms are related. This indicates

GitHub projects descriptions are not very complex. We may

not need a word embedding-based similarity metric, where

contextual similarity plays a pivotal role, and may undermine

simple keyword-based matching.
Except for the description feature, BM25 performs signif-

icantly worse for the rest of the artifacts. BM25 treats query

and document differently (see scoring equation in Section II),

although for homogeneous artifacts the query and documents

are linguistically identical. BM25 also assumes all the terms

in the query are important and does not normalize w.r.t. query

length. For example, in Table VI, all except the top project are

not correct for BM25. As it ignores inter-relationships among

query terms, BM25 emphasizes all parts of the query equally

so is misguided by the query’s variety of concepts. Thus, a

verbose query may hurt BM25 performance.

Result 2: For the homogeneous SE artifacts of the project

recommendation task, the context-aware LSI model performs

better for textual artifacts while the simple Bag-Of-Word based

VSM outperforms others for code artifacts.

The empirical study demonstrates that different IR mod-

els, or combinations of models, do better than others for

different SE tasks involving different mixes of document

types.

However, with many different IR models and their number

of available tuning parameters, the search space of finding a

suitable IR model (or combination of models) is quite large,

so it is non-trivial to find the optimal one. To facilitate the tool

builder, we devise a light-weight framework that automatically

selects the right model(s) for a given SE task.

V. SRCH FRAMEWORK

For a given SE task, SRCH takes as inputs a query and a set

of documents on which the query will operate, and a potential

set of IR models that SRCH will explore. Each document

is associated with some document features (F1, ..., Fn). For

example, for bug localization task bug report is a query and

source code, API description, etc. are the document features.

At a high-level, for each feature (Fi), SRCH selects an optimal

performing model and then aggregates all the chosen models

to generate the final model. The final model associates a

similarity score to each potential query-result candidate. The

final output is a ranked list of these candidates based on the

final score (S) attributed to them.

Thus, for a given candidate output (τ ), SRCH generates

score linearly combining all the per-feature models, i.e.,

S=
∑

i
λiM̂i(Fi,τ), where

∑
i
λi=1 (1)

where, M̂i is the output of optimal performing IR model for

feature Fi, i.e.,

M̂i=argmaxmj∈M{mj(Fi,τ)} (2)

SRCH involves two main steps: (i) Parameter Tuning. To

achieve an optimal performance SRCH empirically tunes the

underlying parameters using a set of training data. The training

data contains queries, documents, and ground truth results

(e.g., true buggy files for bug localization task). First, for

each document feature, SRCH selects the optimal performing

model using equation 2. Note that all the models are tuned

with their best-performing configuration before choosing the

best one. Next, SRCH linearly combines the output scores of

per-feature optimal model with an weighted average, as shown

in equation 1. SRCH empirically selects weights (λi)’s based

on training data satisfying the constraint
∑

i
λi=1.

(ii) Ranking Search Results. With the tuned final model, SRCH

assigns scores to each potential query-result candidate (τ1, ...,

τm). For each of the document τj , SRCH generates score Sj

with equation 1. Then SRCH sorts the target documents based

on their corresponding scores.

A. Framework Evaluation

RQ3. Can bug localization be improved using the SRCH

framework?

TABLE VII: Optimal models for different features identified by
SRCH framework for the bug localization task

Source API Collab. Class Bug Fix Bug Fix
Code Descr. Filter Name Time Freq

BugSrch BM25 BM25 BM25 N/A N/A N/A

BugSrch-VSM
(baseline) VSM VSM VSM N/A N/A N/A

SRCH systematically combines the optimal IR models

for bug localization features and produces a final model,

BUGSRCH. Among the six features used in this task (see

Section III), three features—Class Name, Bug fix time, Bug

fix frequency—are meta information that do not require any

IR model. We follow a similar technique to Ye et al. [26] to

compute the other feature values for both BUGSRCH and a

baseline we call BUGSRCH-VSM, which uses only the VSM

model (see Table VII). In RQ1 we observed that VSM is the

second best performing model on the bug-report dataset. Thus,

we only report and compare BUGSRCH w.r.t. BUGSRCH-VSM

here. Additionally, VSM has been popularly used in many

previous bug localization tools (e.g., [12], [26]–[28]).

Compare with State-of-the-art. We also compare BUGSRCH

results with a state-of-the-art bug localization tool, LR, pro-

posed by Ye et al. [26]. LR is methodologically similar to

our BUGSRCH as both use the same feature set to build a

combined model. LR also leverages a learning to rank model



to compute optimal feature weights, to generate a combined

model score. Thanks to Ye et al. [26] providing us the ranked

results for the original LR model, we could compute the

reported results of LR [26] for the same test set. For this

evaluation, we use the latest 200 bug-reports for JDT and 100
each for three other projects from the benchmark dataset of

Section III. The performance of the combined model heavily

depends on the assigned weights (λs). To mitigate such impact,

we calibrate the weights and report the best performance for

both BUGSRCH and BUGSRCH-VSM.

TABLE VIII: Percentage gain of BUGSRCH over baseline and
state-of-the-art tool. A positive value indicates an improvement

Gain over BUGSRCH-VSM Gain over LR
MAP@10 MRR P@10 R@10 MAP@10 MRR P@10 R@10

Birt 3.70 0.00 15.94 25.85 75.00 76.47 86.05 56.07
Eclipse-UI 8.82 8.33 16.67 18.01 12.12 11.43 55.56 14.44

JDT 43.33 42.42 39.10 28.32 2.38 4.44 -3.65 -9.31
SWT 21.74 22.92 13.98 11.96 27.27 28.26 12.77 8.80

Table VIII shows that the performance gain of BUGSRCH

over BUGSRCH-VSM and LR [26] in different evaluation met-

rics for the different projects. A positive gain value indicates

an improvement. We see BUGSRCH outperforms BUGSRCH-

VSM for all the projects, achieving up to 42% and 43% gain

at MRR and MAP values, respectively. Compared to the state-

of-the-art tool LR, BUGSRCH achieves improved performance

in most of the evaluation metrics for all the projects, achieving

up to 75% MAP, 76% MRR gain, and 86% better precision.

As noted, the LR tool combines the weights of different

features using a learning to rank method [26]. In contrast,

BUGSRCH uses the weight-tuning approach. Thus, the only

difference between BUGSRCH-VSM and LR is how they deter-

mine the combined weights, as both the tools use VSM as their

underlying IR model. The results of Table VIII also indicate

that a good weight-tuning might be better than a learning-

to-rank approach. Nonetheless, BUGSRCH outperforms both

tools, showing the effectiveness of our SRCH framework.

Result 3: The informed combination of IR models built by

SRCH significantly improves the bug localization performance

and significantly outperforms the example baseline and state-

of-the-art tools.

RQ4. Can project recommendation be improved using the

SRCH framework?

For project recommendation, SRCH generates a combined

model, which we call PROJSRCH.

Baseline Selection. To evaluate the effectiveness of PROJSRCH

(the combined model generated by SRCH), we build two

baseline tools: (i) PROJSRCH-LSI: uses only the LSI model

for all features, and (ii) PROJSRCH-VSM: uses only the VSM

model for all features. We choose LSI and VSM as they are

popular IR models and used by previous project recommen-

dation tools [16], [19], [22]. We use the same weights as

PROJSRCH for these baselines where they also achieve optimal

performance. Table IX shows the model assignments in detail.

TABLE IX: Optimal models for different features identified by
SRCH framework for the project recommendation task

Feature
Description Readme Method-Class Package API

ProjSrch LSI LSI VSM VSM VSM
ProjSrch-LSI LSI LSI LSI LSI LSI
ProjSrch-VSM VSM VSM VSM VSM VSM

State-of-the-art tools selection. We also compare PROJS-

RCH with two state-of-the-art project recommendation tools:

CLAN [16] and RepoPal [22]. CLAN compares JDK APIs

(packages and classes) used in the studied projects using the

LSI algorithm to establish similarities. Since CLAN’s source

code is not available, we reimplemented CLAN adhering to

the paper details. We further extended CLAN to incorporate

all the APIs studied by PROJSRCH, for a fair comparison. We

also tune the feature weights and report the best results at

weight import package = 0.9 and API = 0.1.

We find that VSM is the best performing metric for the

features used by CLAN (see RQ1). Thus, we build a modified

version of CLAN, PROJSRCH-vsmCLAN, where we replace

the similarity metric used by CLAN with VSM. We also

tune the weights and report the best results at weights import

package = 0.6 and API = 0.4.

The other state-of-the-art tool RepoPal [22] uses the GitHub

project popularity metric star-count and the readme content to

detect similar projects. They assume that projects starred by

the same user within a short period are similar. Thus, they cal-

culate star-relevance between two projects. They also calculate

a readme-relevance score based on the readme contents of the

two projects using VSM, and combine with the star-relevance

score to get the final similarity score. We use the publicly

available star-relevance implementation of RepoPal to get the

star-relevance score. As the other part of their system is not

available, we follow the paper’s descriptions to reimplement

the readme-relevance module and the combined model.

Note that the omission of any meaningful feature in any

project might hurt the performance of the model that uses that

feature. As different tools are using different combination of

features we exclude the projects we annotated using method-B

as this set might contain projects with a missing feature (e.g.,

description). We also exclude the projects used as the query in

RQ1 to avoid any model selection bias for PROJSRCH. Finally,

we select a set of 1590 projects and report the results for a

query set of 1390 projects.

Results. Table X shows the percentage gain of PROJSRCH

over baseline tools PROJSRCH-LSI and PROJSRCH-VSM. We

see that PROJSRCH outperforms both the baseline tools in all

evaluation metrics, achieving a performance gain ranging from

4.88 to 24.79. This shows that an informed model choice for

feature artifacts boosts the performance of PROJSRCH.

TABLE X: Percentage gain of PROJSRCH over baselines

MAP@10 MRR P@10 R@10

PROJSRCH-LSI 6.56 4.88 13.34 17.56
PROJSRCH-VSM 12.58 9.38 21.51 24.79

We also compare the effectiveness of these models w.r.t.

two state-of-the-art tools, CLAN [16] and RepoPal [22], on





1100 bug reports, respectively, for two different SE problems,

where we also evaluate each of the individual models on

each type of artifact separately. We further characterize the

properties of the artifacts that might influence the models’

performance. Thus we confirm their findings, but at a much

larger scale for different IR models, document types and tasks.

The type of the query document has previously been found

to influence best choice of similarity metric [65], also con-

firmed by our findings. Other factors that we have not studied

yet may also influence the performance of SE tasks. For

example, incorporating user interaction has been found to be

effective in relevance feedback [66].

Panichella et al. [6] propose a Genetic Algorithm-based

approach to automatically configure and assemble IR models.

Other researchers propose heuristics-based [23] and search-

based [24], [25] optimization techniques to calibrate IR models

for improved performance. Automatically learning weights

while combining different IR models has also been pro-

posed [26], [67]. We complement these works by focusing

on similarity metrics choice for different SE document arti-

facts and demonstrate that an informed choice based on the

document features can lead to better performance.

Project Recommendation. Some prior researchers used

code clone analysis to establish project similarity [68]–[71],

designed to identify plagiarized apps. In contrast, we are inter-

ested in conceptual or functional similarities between projects.

Researchers also considered other collections of code-related

features such as API package and class names [16], identifier

names [17], method names, class names and code com-

ments [18] to establish project similarities. Other available

metadata has been used to find similar applications: col-

laborative tagging [19], GUI layout [20], API call intents,

permissions, and sensors [21], project popularity [22], etc..

In contrast, we perform an in-depth analysis of the role of

each sub-component and the different similarity metrics in

determining project similarities. Thus, we complement this

prior work. We have also empirically shown that an informed

combination of IR models and SE artifacts can outperform a

state-of-the art project recommendation tool.

Bug Localization. Many researchers have studied bug local-

ization using IR techniques [9]–[15]. Zhang et al. [72] presents

a survey. Proposed approaches to improve the bug localization

task include combining bug reports’ metadata [15], [26],

modifying standard IR models [12], identifying similar bug

fixes [12], [26], bug fix history [26], [73], source code meta-

data [73], combining topic models in a ranking metric [74],

program spectrum [75], software changes [76]. In contract, we

leverage the best performing similarity metrics on bug reports

and source code artifacts to improve this task, demonstrating

the use of SRCH rather than focusing on tool development.

Deep learning-based models DNNLOC [28], HyLoc [77]

have been found effective compared to LR [26], but deep

learning models come with huge cost (time and resources). In

contrast, we demonstrate that even a simple informed choice

of similarity metric can lead to significant improvement.

Researchers have also compared different IR models for

the bug localization task and found that simple text models

perform better than a topic model-based approach [10]. BM25-

based models were also found to be effective for finding

duplicate bug reports [78] and the bug localization task [79].

Our experimental results confirm their findings.

VIII. THREATS TO VALIDITY

From our experimental setup, some threats arise to internal

validity. Apart from similarity metric, there are some other

steps: preprocessing, stopword removal, stemming, etc. that

can impact performance [6]. We minimize the impact by ap-

plying similar techniques to all considered models in each step.

We also tune each model to its best performing configuration

to reduce parameter configuration bias [23], [25].

Due to the unavailability of previous tools, we re-

implemented CLAN [16] and part of Repopal [22]. To miti-

gate this threat, we confirmed our implementation by cross-

checking results with the reported results [22].

As GitHub hosts many open-source projects, our datasets

might not be representative, a threat to external validity (gener-

alizability). To increase the diversity in our project dataset, we

use the DMOZ Ontology [43], which is believed to represent

the whole Web. However, GitHub recently allows users to tag

their projects. Though tags are not available for all projects,

this tag information can be a possible alternative for DMOZ

category. To curate the dataset for project recommendation,

we manually annotated GitHub projects. To mitigate bias, two

annotators worked separately, and then reached consensus.

A further threat to external validity is our evaluation on only

two kinds of SE tasks. Future work will explore additional

tasks amenable to IR models.

IX. CONCLUSION

We argue that the SE community should not blindly use

any or even the best state-of-the-art IR model devised for

conventional natural language text. Instead, we should choose

carefully among competing IR models.

This work presents an in-depth empirical study to under-

stand the interaction between IR models and SE artifacts.

We found that an SE task’s mix of similarity comparisons,

between documents of the same or different types, has a

significant impact on the performance of different IR models.

Further, composing different models for different comparisons

required by the same task may be better than tuning a single

model. With this insight, we developed SRCH, a framework

to automatically select and compose IR models for the mix

of document type comparisons appropriate for the SE task at

hand. We evaluate SRCH and confirm its effectiveness on two

representative SE tasks selected to show different mixes of

document type comparisons, where our approach outperforms

baseline and state-of-the-art tools.
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