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Abstract. There has been much recent interest in finding unconstrained local minima of smooth
functions, due in part to the prevalence of such problems in machine learning and robust statistics. A
particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods
that make use of regularization and trust regions have been analyzed from such a perspective. More
recent proposals, based chiefly on first-order methodology, have also been shown to enjoy optimal
iteration complexity rates, while providing additional guarantees on computational cost. In this
paper, we present an algorithm with favorable complexity properties that differs in two significant
ways from other recently proposed methods. First, it is based on line searches only: Each step
involves computation of a search direction, followed by a backtracking line search along that direction.
Second, its analysis is rather straightforward, relying for the most part on the standard technique for
demonstrating sufficient decrease in the objective from backtracking. In the latter part of the paper,
we consider inexact computation of the search directions, using iterative methods in linear algebra:
the conjugate gradient and Lanczos methods. We derive modified convergence and complexity results
for these more practical methods.
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1. Introduction. We consider the unconstrained optimization problem

(1) min f(z),

where f : R® — R is a twice Lipschitz continuously differentiable function that is
generally nonconvex. Some algorithms for this problem seek points that nearly satisfy
the second-order necessary conditions for optimality, which are that V f(z*) = 0 and
V2f(z*) = 0. These iterative schemes terminate at an iterate x, for which

(2) Vi)l <€ and  Auin(V2f(21)) = —en,

where ¢4, e € (0,1) are (typically small) prescribed tolerances. Numerous algorithms
have been proposed in recent years for finding points that satisfy (2), each with a
complexity guarantee, which is an upper bound on an index k that satisfies (2), in
terms of €4, ey, and other quantities. We summarize below the main results.
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Classical second-order convergent trust-region schemes [10] can be shown to sat-
isfy (2) after at most O(max{e,? €' €5 }) iterations [9]. Cubic regularization meth-
ods in their basic form [6] have better complexity bounds than trust-region schemes,
requiring at most O(max{e, ?, ;7 }) iterations. The difference can be explained by the
restriction enforced by the trust-region constraint on the norm of the steps. Recent
work has shown that it is possible to improve the bound for trust-region algorithms us-
ing specific definitions of the trust-region radius [13]. The best-known iteration bound
for a second-order algorithm (that is, an algorithm relying on the use of second-order

derivatives and Newton-type steps) is O(max{e, 3/ 2,6;{3}). This bound was estab-
lished originally (under the form of a global convergence rate) in [17] by considering
cubic regularization of Newton’s method. The same result is achieved by the adaptive
cubic regularization framework under suitable assumptions on the computed step [9].
Recent proposals have shown that the same bound can be attained by algorithms
other than cubic regularization. A modified trust-region method [11], a variable-
norm trust-region scheme [16], and a quadratic regularization algorithm with cubic
descent condition [2] all achieve the same bound.

When ¢, = ey = € for some € € (0,1), all the bounds mentioned above reduce to
O(e™3). Tt has been established that this order is sharp for the class of second-order
methods [9] and it can be proved for a wide range of algorithms that make use of
second-order derivative information; see [12]. Setting ez = €'/ and €, = € for some
¢ > 0 yields bounds varying between O(¢~%) and O(¢~3/2), the latter being again
optimal within the class of second-order algorithms [8].

A new trend in complexity analyses has emerged recently that focuses on mea-
suring not just the number of iterations to achieve (2) but also the computational
cost of the iterations. Two independent proposals, respectively based on adapting
accelerated gradient to the nonconvex setting [4] and approximately solving the cu-
bic subproblem [1], require O(log(2)e~7/4) operations (with high probability, showing
only dependency on €) to find a point x, that satisfies

3) IVf(@o)l <€ and Awin(V?f(2r)) = —V/Lu

[

Y

with Ly being a Lipschitz constant of the Hessian. The difference factor of ¢~1/4

by comparison with the complexities of the previous paragraph is due to the cost
of computing a negative eigenvalue of V2f(xy) and/or the cost of solving the linear
system. A later proposal [3] focuses on solving cubic subproblems via gradient de-
scent, together with an inexact eigenvalue computation: It satisfies (3) in at most
O(log(1)e™2) with high probability. Another technique [14] requires only gradient
computations, with noise being added to some iterates. It reaches with high probabil-
ity a point satisfying (3) in at most O(log4(%)e*2) iterations. Up to the logarithmic
factor, this bound is characteristic of gradient-type methods, but classical work estab-
lishes only first-order guarantees [5]. Although this setting is not explicitly addressed
in the cited papers, it appears that to reach an iterate satisfying (2) with e, = ey = ¢,
the methods studied in [1, 4] would require O(log(2)e~7/2) iterations, while the meth-
ods described in [3] and [14] could require O(log(1)e~?) and O(log*(%)e~?) iterations,
respectively. Although these bounds look worse than those of classical nonlinear op-
timization schemes, they are more informative in that they not only account for the
number of outer iterations of the algorithm, but also for the cost of performing each
outer iteration (often measured in terms of the number of inner iterations, each of
which has similar cost). We note, however, that unlike the classical complexity re-
sults, the newer procedures make use of randomization, so the bounds typically hold
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only with high probability.

Our goal in this paper is to describe an algorithm that achieves optimal complex-
ity, whether measured by the number of iterations required to satisfy the condition (2)
or by an estimate of the number of fundamental operations required (gradient eval-
uations or Hessian-vector multiplications). Each iteration of our algorithm takes the
form of a step calculation followed by a backtracking line search. (To our knowledge,
ours is the first line-search algorithm that is endowed with a second-order complexity
analysis.) The “reference” version of our algorithm is presented in section 2, along
with its complexity analysis. In this version, we assume that two key operations—
solution of the linear equations to obtain Newton-like steps and calculation of the most
negative eigenvalue of a Hessian—are performed exactly. In section 3, we refine our
study by introducing inexactness into these operations and adjusting the complexity
bounds appropriately. Finally, we discuss the established results and their practical
connections in section 4.

Throughout the paper, ||-|| denotes the Euclidean norm, unless otherwise indicated
by a subscript. A vector v will be called a unit vector if |jv|| = 1.

2. A line-search algorithm based on exact step computations. We now
describe an algorithm based on exact computation of search directions, in particular,
the Newton-like search directions and the eigenvector that corresponds to the most
negative eigenvalue of the Hessian.

2.1. Outline. We use a standard line-search framework [18, Chapter 3]. Starting
from an initial iterate xg, we apply an iterative scheme of the form x11 = xx +
ardg, where dj is a chosen search direction and «y, is a step length computed by a
backtracking line-search procedure.

Algorithm 1 defines our method. Each iteration begins by evaluating the gradi-
ent, together with the curvature of the function along the gradient direction. This
information determines whether the negative gradient direction is a suitable choice
for search direction dg, and if so, what scaling should be applied to it. If not, we com-
pute the minimum eigenvalue of the Hessian. The corresponding eigenvector is used
as the search direction whenever the eigenvalue is sufficiently negative. Otherwise,
we compute a Newton-like search direction, adding a regularization term if needed to
ensure sufficient positive definiteness of the coefficient matrix. There are a total of
five possible choices for the search direction dj, (including two different scalings of the
negative gradient). Table 1 summarizes the various steps that can be performed and
the conditions under which those steps are chosen.

TABLE 1
Steps and associated decrease lemmas for Algorithm 1.

Context Direction Decrease

llgrll =0 - A < —€pg Vg Lemma 1
Ry < —en Rigr/llgkll Lemma 1

llgrll > eg | Bk € [~€n,en) —gi/llgkl*/? Lemma 2
llgxll < €9 | Ri € [—€m,e€m] A < —€m Vg Lemma 1
lokll < €9 | Ri € [—€m,€m) | Ak € [—€H, €] dy Lemma 4
llgrll > €9 | Rk > €en A < —€q Vi Lemma 1
llgrll > €g | R > em Ak € [—em,eq] || df, Lemma 4
llgll > eq | Bk > € Ak > €qg ay Lemma 3

Once a search direction has been selected, a backtracking line search is applied
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with an initial choice of 1. A sufficient condition related to the cube of the step norm
must be satisfied; see (7). Such a condition has been instrumental in the complexity
analysis of recently proposed Newton-type methods achieving the best known iteration
complexity rates [2, 11].

At most one eigenvector computation and one linear system solve are needed per
iteration of Algorithm 1, along with a gradient evaluation and the Hessian-vector
multiplication required to calculate Ry.

The algorithm contains two tests for termination, with the option of switch-
ing to a “Local Phase” instead of terminating at a point that satisfies approximate
second-order conditions. The Local Phase aims for rapid local convergence to a point
satisfying second-order necessary conditions for a local solution; it is detailed in Al-
gorithm 2. Termination (or switch to the Local Phase) occurs at an iteration k at
which an (e4, g )-approzimate second-order critical point is reached, according to the
following definition:

(8) min {[lgell [grs1l} < €5 and Amin( V2 (24)) > —er.

where g, = Vf(z1), etc. As we see below, the quantity min{]||gx ||, ||gr+1]|} arises nat-
urally in the decrease formula we establish for the steps computed by Algorithm 1.
In fact, for the methods we reviewed in the introduction, one observes that the de-
crease formulas obtained for their steps either involve only ||gx|| [1, 3, 4, 14, 17], only
lgr+1l] [2, 11, 16], or the minimum of the two quantities [7]. The latter case appears
due to the presence of both gradient-type (see Lemma 2) and Newton-type steps (see
Lemmas 3 and 4).

The main convergence results of this section are complexity results on the number
of iterations or function evaluations required to satisfy condition (8) for the first time.
(Algorithm 2 makes provision for reentering the main algorithm if the approximate
second-order conditions are violated at any point. This reentry feature is not covered
by our complexity analysis.)

2.2. Iteration complexity. We now establish a complexity bound for Algo-
rithm 1 in the form of the maximum number of iterations that may occur before the
termination conditions are satisfied for the first time. To this end, we provide guar-
antees on the decrease that can be obtained for each of the possible choices of search
direction.

In the rest of this paper, we make the following assumptions.

Assumption 1. The level set L¢(zo) = {z|f(z) < f(zo)} is a compact set.

Assumption 2. The function f is twice Lipschitz continuously differentiable on an
open neighborhood of £(zg), and we denote by L, and Ly the respective Lipschitz
constants for Vf and V2f on this set.

By the continuity of f and its derivatives, Assumption 1 implies that there exist
fiow € R, Uy > 0, and Uy > 0 such that, for every « € L(z0), one has

9) f@) 2 fow,  IIVF@ Uy, [V f(2)] < Un.

We point out that the choice Uy = L is a valid one for theoretical purposes. However,
Uy will serve as an explicit parameter of our inexact method in section 3, so we use
separate notation, to allow Ug to be an overestimate of L.

An immediate consequence of these assumptions is that, for any x and d such
that Assumption 2 is satisfied at = and = + d, we have

(10) Flo+d) < f() + V@) d+ 3"V @)+ Sl
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Algorithm 1 Second-order line-search method

Init. Choose z° € R™, 6 € (0,1), 7 >0, ¢, € (0,1), ey € (0,1);
for k=0,1,2,... do
Step 1. (First Order) Set g = Vf(zy);
if ||gx|| = 0 then
Go to Step 2;
end if
Compute Ry =
if Ry < —egy then
Set di = HI;—:”gk and go to Step LS;
else if Ry, € [—ey,en] and ||gx|| > €, then

9 V2 f(z1)gr .
lg 12 ’

Set dy = 7@5% and go to Step LS;
else

Go to Step 2;
end if

Step 2. (Second Order) Compute an eigenpair (vg,A;) € R™ x R, where
Ak = Amin (V2 f(21)) and vy is such that

(4) V2 f(zr)oe = Mvks Ve gk <0, [log]l = [~ Ael4s

if ||gx|| < €4 and A\, > —ey then

Terminate (or go to Local Phase);
else if \p < —ey then

(Negative Curvature) Set dj, = vg;
else if A\, > ey then

(Newton) Set dj, = dy, where

(5) V2 f(ar)dy = —gi;

else
(Regularized Newton) Set dj = dJ,, where

(6) (V2 f (k) +2eu) dfy = —gi;

end if

Go to Step LS;

Step LS. (Line Search) Compute a step length o = 67%, where j is the
smallest nonnegative integer such that

_n

Lol

(7) flzr + arde) < f(zk)
holds, and set zyy1 = z + agdk.
if d = d} or dy, = dj, and ||V f(zr11)| < €4 then
Terminate (or go to Local Phase);
end if
end for
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Algorithm 2 Local Phase

loop
Set gr. = V f(xx);
if ||gx|| > €5 then
Return to Algorithm 1;
end if
Compute Ay and vy as in (4);
if A\ < —epy then
Return to Algorithm 1;
else if A\, € (—epy,0] then
Set dy, = dj, from (6);
else
Set dy, = d}} from (5);
end if
Perform backtracking line search as in Step LS of Algorithm 1 to obtain xy1;
k< k+1;
end loop

The following four technical lemmas derive bounds on the decrease obtained from
each type of step. The proofs are rather similar to each other, and follow the usual
template for backtracking line-search methods.

We begin with negative curvature directions, showing that our choices for initial
scaling yield a decrease proportional to the cube of the (negative) curvature in that
direction.

LEMMA 1. Under Assumption 2, suppose that the search direction for the kth
iteration of Algorithm 1 is chosen either as dj, = %gk with R < —epy in Step 1
or di = vy in Step 2. Then the backtracking line search terminates with step length
ay = 09% with j;, < je + 1, where

(11) o= [1osy (LH‘ZU)L

and the decrease in the function value resulting from the chosen step length satisfies

AL V2 f () di] ]
(12) f(zr) = flop +apdy) > ce [W}
with
e = ! min {1 2793}
6 (LS
Proof. For the direction dy, = Rygx/||gx||, we have
T2
9i VI (@r)gr oo f
diV? f(an)dy = RyZmpe g = B = —ldl)”
For the other choice dj, = vy, we have d} V2 f(xg)d, = \j = —||di||?, so that in both
cases we have
|dTV2f($k)dk|
(13) Ak V2 f(ei)di = —lldy]® and - =R = il
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Thus, if the unit value ay = 1 is accepted by (7), the result (12) holds trivially.
Suppose now that the unit step length is not accepted. Then the choice o = 67 does
not satisfy the decrease condition (7) for some j > 0. Using (10) and the definition
of dj, we obtain

a? Ly
—ga?’lldkll?’ < fla + adi) — f(zi) < agy di, + ?dl-chQf(xk)dk + —a3\|d I3
a? Ly
< *d;IVQf(fEk)dk + fff’lld 1?
L
= ——||dk||3 5l

where the last line follows from (13). Therefore, we have

14 =0 >
(14) “ “ Lyp+n’

which holds only if 7 < j. by definition of j.. Thus, the line search must terminate
with (7) being satisfied for some value j, < j. + 1. Because the line search did not
stop with step length #7+ ! we must have

3 , 30

ot > = Ik > .
~ Ly +n ~ Ly +n

As a result, the decrease satisfied by the step aidy = 67+d}, is such that

f(z) = f(zg + agdy) > 93Jk||d I > n_ 219° |:|dgv2f<xk)dk|:|3

~ 6 (L +n)? lldx|I?
This inequality, together with the analysis for the case in which oy = 1, establishes
the desired result. ]
The second result concerns use of the step dr, = —gx/|lgx||'/? in the case in which

the curvature of the function along the gradient direction is small.

LEMMA 2. Let Assumptions 1 and 2 hold. Then, if at the kth iteration of Algo-
rithm 1 the search direction is dy = —gi/||gx||*/?, the backtracking line search termi-
nates with step length ay = 6%, with ji < j, + 1, where

(15) jg = [loge (min{g,,/LH1+n}min{ 2 ,1})L,

and the resulting step length oy, is such that

(16) J(@x) = flan+axdy) = cqmin{eiez®, e/},
where
n o[ 03 12503
Cq :=— — ININ .
976 "(Lyg +n)3/2 21

Proof. Recall that the choice dj, = —gi/||gx|*/? is adopted only when [|gx|| > €,
and |Ry| < eg. If the unit step length aj = 1 is accepted, we have

J) = flan+di) 2 Zldl® = Zlhonl®? = 3,
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satisfying (16). Otherwise, it means that there exists j > 0 for which the decrease
condition (7) is not satisfied using the step size §7. For such j, we have from (10) that

— 26V el < far — & llgnll 2 g) — Fa)

) 2%} Ly o
—07)|gx||3/* + 75% llgrll + ?‘9?””%“3/2

IN

) 927 Ly o
—07)|gi|[** + 5 CH llgrll + ?93”\91@”3/2’

IN

which leads to
5 6% 1. Ly+mn
(A7) 0< | =20l gl + Ten llgell | + |~ =0 lgi /% + =2L0% | gy >3
6 2 6 6
Therefore, at least one of the two terms between brackets must be nonnegative. If
5 6%
— =07 gul*? + e llgrll = 0,
6 2
we have 67 > 2| gy, [|'/2e;*. On the other hand, if

—*Wllg 12 +

S g 1 2 0

then 67 >

. 1
(18a) 0 > min{|9k1/2 r \/LHH]}
5 [ 1 .
(18b) mln{3 }mln{||gk||1/26H ,1}
) .
(18c) {vaH+n}mm%?%Hﬂ}

Since j > jg contradicts (18c), the line search terminates with (7) being satisfied for
some value ji < j,+ 1. Since (7) did not hold for o = 67+ =1, we have from (18b) that

. .5 1 .
G > (9111111{37 LH+77}mm{“gk”1/2€H 71}

I 1 rp Putting the two bounds together, we have that

The decrease obtained by the step length «j, = 6% thus satisfies

flaw) = flar + arde) = 293j’”’||dk||3
3

1
g{emin{g, LH+77H min{Hng?’/Qe;f,l}Hng3/2

Y

3
[ 1
(19) Z g |:0mln{g, [,I_I-i—n}:| min{ESGHB, 3/2}
Thus (16) is also satisfied in the case of ay < 1, completing the proof. O
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Lemma 2 describes the reduction that can be achieved along the negative gradient
direction when the curvature of the function in this direction is modest. When this
curvature is significantly positive (or when this curvature is slightly positive but the
gradient is small), we compute the minimum Hessian eigenvalue (Step 2) and consider
other options for the search direction.

Our next result concerns the decrease that can be guaranteed by the Newton step,
when it is computed.

LEMMA 3. Let Assumptions 1 and 2 hold. Suppose that the Newton direction
di, = dy; is used at the kth iteration of Algorithm 1. Then the backtracking line search
terminates with step length ay, = 69, with j, < j, + 1, where

(20) Jn = [logg ( LH?)+77\;%>

and we have

)
+

(21) Flax) — flap + apdy) > c,min {||Vf(xk + andy) P2, ei,} ,

where

o (2] [15]
"6 Ly "Ly +n '

Proof. Note first that the Newton direction dj, = d} is computed only when
V2f(xy)) = eI, so we have

(22) ldill < 1IV2f (@)~ lllgrll < Ug/err-

Suppose first that the step length «p = 1 satisfies the decrease condition (7).
Then from (5) and (10), we have

195+ axde)ll = IV e+ de) — V5 (ee) + V7 )]
= |95 e+ dy) — V$ o) — V2 Fon)del| < Sl

We thus have the following bound on the decrease obtained with the unitary Newton
step:

3/2
(2 flan) = o) = 7| IV s s dP,

Suppose now that the unit step length does not allow for a sufficient decrease as
measured by (7). Then this condition must fail for ag = 67 for some j > 0. For this
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value, we have from (10) that
GOVl < fla + 00 di) — f(ar)

< 0 gi di + ?d{VQf(ﬂck)dk + %ng“dk||3

<o (9; - 1) diNV? f(ar)dr + L?Ha?’jndkn3

< -2V (), + E0Y
(24 <~ il + E gy
where we used V2 f () = ex [ for the final inequality. This relation holds in particular
for 7 = 0, in which case it gives

Tl < L g+ S P

leading to the following lower bound on the norm of the Newton step:

3
25 dp|| > ———e€n.
(25) il = 7" en

More generally, for any integer j such that the decrease condition is not satisfied, we
have from (24) that

. 3 B
(26) Y e B L

For any j > j,, the last inequality is violated since

3 €H 3 1/2 i 3 1/2
07 < i < = € H < € di||~1/2,
NTara g, VEnta™ Jo VN Iw g 14

where we used (22) for the final inequality. This proves that the condition (7) will be
satisfied by some j; < j,+1. Since o = §7*~! does not fulfill the decrease requirement,

it follows from (26) that
o7 > 0,/ —> 7|12,
- Ly +n

By substituting this lower bound into the sufficient decrease condition, and then using
(25), we obtain

flan) = f(@r + andy) = f(xr) — fan + 070 dy)

> 3679 |d
3/2
17,3 3 3/2 _3/2 3
- d d
o e I A U Y
i)
=6 |Lg+n]
where the final inequality is from (25). We obtain the required result by combining
this inequality with the bound (23) for the case in which ay = 1. d
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Our last intermediate result addresses the case of a regularized Newton step.

LEMMA 4. Let Assumptions 1 and 2 hold. Suppose that di, = dj, at the kth iter-
ation of Algorithm 1. Then the backtracking line search terminates with step length
o = 0% with ji < j. + 1, where

(27) o= {log ( 6 E%H
ro. 0 LH + n Uq +a
and we have
(28)  f(on) — flan+ardy) = comin {|Vf (e + andi)ll® 5y éhr )
where
. 1 { 66 r
Cr = — 1l )
6 14++/1+Lyg/2 Ly +n

Proof. Note first that the regularized Newton step is taken only when V2 f(xy) =
—eg . Thus the minimum eigenvalue of the coefficient matrix in (6) is A\ +2€ex > €g,
and we have

lgell — _ llgwll _ Uy
+2cg T ey T €y

29 dil| <
(29) sl < 5

Suppose first that the unit step is accepted. Then the gradient norm at the new
point satisfies

IVf (@ + de)ll = IV f(zr + di) = Vf(ze) + Vf(2)l
= ||Vf(xr + di) = Vf(zr) — V2 f(zr)de — 2emdy]|

L
2 |2 + 2en ],

A

and therefore
Ly 9
5 Ndell” + 2enlldel| = IV f(2r + di)l] = 0.

By treating the left-hand side as a quadratic in ||dg|| and applying Lemma 17 with
a=2,b=2Ly, and t = ||V f(zy, + dy)|| /€%, we obtain from this bound that

—2ey + \/46%1 + 2LH||Vf(Zk —+ dk)”

>
e -
=24 A+ 20|V (s + di)ll /el .
- T H
—24+v4+2L .
> 2V i (19 o+ ) 1) e
2Ly .
- \vJ d ;
TazT 4+2LH)mm(H flxp +di)|l/em,em)
1 .
(30) = ———————min(|Vf(zr +di)||/en, en) -

14++/1+4+Lyg/2
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Therefore, if the unit step is accepted, we have

flar) — fzp + di)

3
(31) > Jdull® = 3 ] min (|[V £ (2, + di) P, ) -

1
14+ 1+ Lu/2)

If the unit step does not yield a sufﬁcient decrease, there must be a value j > 0
such that (7) is not satisfied for o = 6’. For such j, and using again (10), we have

DG € flae+0d) — Fla)
) 627 L ;
< Ogfdi + i VP fag)di + 6% dy |
} 93 , Li .
— @i <1 _ 2) g di, — 0% ||dy|)* + ?He&”dkus
2 2 LH 33 3
< —eg 07| di|” + ?0 lldr]”.

Thus, for any j > 0 for which sufficient decrease is not obtained, one has

(32) 6 >

-1
~ Lg+n H '

x| di
Meanwhile, we have from the definition of j,. that

. 6 2 6 6
gir < i el < — enldn]
LH+77Ug LH+77 Ug LH+’I7

using the upper bound (29). By comparing this bound with (32), we deduce that the
backtracking line-search procedure terminates with ji < j. + 1, where ji > 1 by our
earlier assumption. Thus, since (32) is satisfied for j = ji — 1, we have

- 60
Ik > d *17
> ]

and therefore

3

i N p34k 3 n 60 3

— ] k > 1Pk > L .
f(xr) — f(on + 075 dy) > &0 dell” > 5 |:LH+77] €1

By combining this bound with (31), obtained for the unit-step case, we obtain the
result. ]

By combining the estimates of function decrease proved in the lemmas above, we
bound the number of iterations needed by Algorithm 1 to satisfy the approximate
second-order optimality conditions (8).

THEOREM 5. Let Assumptions 1 and 2 hold. Then Algorithm 1 reaches an iterate
that satisfies (8) in at most

(33) C max {e;ge%, 6;3/2,61_{3}

iterations, where

(34) C:=c Y(f(x0) = fiow), ¢:=min {cg, v, Cnycr}.
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Proof. Suppose [ is an iteration at which the conditions for termination are not
satisfied. We consider in turn the various types of steps that could have been taken at
iteration [ and obtain a lower bound on the amount of decrease obtained from each.
Table 1 is helpful in working through the various cases. We consider two main cases,
and several subcases.

Case 1: \; < —eg. From Table 1, we see that in this case, the search direction is
either a scaling of —gj or the most-negative-curvature direction vi. When R; < —ep,

we have d; = ”I;—Z’H g1, and Lemma 1 indicates the following bound on function decrease:
f@) = flzi) > ceely.

When R; € [—ex, ] and || gi|| > €4, we have d; = —g;/||g:]|*/?. Thus, using Lemma 2,

we have

flxr) — flzig1) > ¢ min{egel}?’,egm}.

For the remaining cases in which “||g;|| < ¢, and R; € [—ep,en]” and “||g/]] > €, and
R; > €p,” the search direction is necessarily v;. We have from Lemma 1 that

] V2 f(a)di] ]
|dy V= f (1) lq = col NP > coéd,.

o) = flo) = o BTG

Case 2: \; > —e€mq, ||gi|| > €g, and ||gi+1]| > €g4. In this case, we have three

possible choices for the search direction. The first one is d; = —g;/||g:|'/?, in which
case we have from Lemma 2 that

flz1) — f(z141) > cgmin {eiel_f’, 62/2} .
The second possible choice is the Newton direction d; = d'. Using Lemma 3, we

obtain
f(@1) = f(z141) > cpmin {62/2,6:}[} .

The third choice is the regularized Newton direction d; = dj, for which Lemma 4
yields

1) — f(z141) = crmin q||gi4+1 eI}‘,eH > cpminq€ €, €.
f@) = f@im) > lgesr e, ey} 2 oY

By putting all these bounds together, we obtain the following lower bound on the
decrease in f on iteration I:

(35) J@) = flai) = emin { e, /2 e},

where ¢ is defined in (34). Consequently, summing across all iterations up to k yields

k—1
F@0) = fiow 2 > f(21) = f(wi11) > kemin {6361—13,63/275;},
=0

which implies that & is bounded above by (33). Therefore, there must exist a finite
index k. such that (8) is satisfied. For this index, the bound (33) applies, hence the
result. |

We now look further into the various components of the bound established in
Theorem 5.
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Dependencies on the tolerances (eq, €rr). The result (33) makes explicit the varia-
tion of the bound with respect to the two tolerances. As this result differs from those
in the literature, we follow two usual approaches to ease the comparison with other
methods.

Letting €, = € and ey = +/€ for some € € (0, 1) allows us to equate all components
of the maximum term in (33); indeed,

e;ge% _ €;3/2 _ 6;13 — 32
and therefore our bound is O(¢~%/2). On the other hand, the choice ¢, = ey = ¢,
which puts first- and second-order requirement on an equal footing, leads to a bound in
O(e=3). Both match the optimal bounds known for second-order globally convergent
methods in terms of iteration count.

Dependencies on problem-algorithmic constants. Although our main goal is to
analyze dependencies with respect to the tolerances, our bounds can also reflect de-
pendencies on problem-dependent quantities, namely, the initial function value dis-
crepancy f(xo) — fiow and the Lipschitz constants L, and Ly. It can be seen from
the lemmas of this subsection that

ce = O(LG?), cg=0L;"), =07, ¢ =0L5).

As a result, the iteration complexity of our method is in

o ((f(ﬂ?o) — fiow)L}; max {eg_gez}}, g2, 6_3}) .

2.3. Evaluation/inner iteration complexity. We now discuss the function
evaluation complexity of Algorithm 1, which counts the number of function calls
required by the algorithm before its termination conditions are satisfied. We need to
refine the iteration complexity analysis of section 2.2 to take into account the function
evaluations associated with the backtracking line-search process.

THEOREM 6. Suppose that Assumptions 1 and 2 hold. The number of function
evaluations required by Algorithm 1 prior to reaching a point that satisfies (8) is at
most

(36) [1 + K + log, (min{e%[, 6;/26;11})] C max {6;36%, 69_3/2, e;s} )

where

K :=

5 1 3 6
lo min y o ) )
g9< {LH+77 3" (L +m'2"\ (L + Uy (Lu +n)Uq }) N

and C is defined as in Theorem 5.

Proof. Theorem 5 gives a bound on the number of iterations. By Lemmas 1-4, a
bound on the corresponding number of function evaluations is

(1 max (e, G g i }) Cinax {2y, 6 ¥/2, e}

Using the definitions of j¢, jg, jn, and j, from Lemmas 1, 2, 3, and 4, respectively,
and the fact that e;,em € (0,1) yields the result. |

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/11/18 to 128.104.153.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1462 CLEMENT W. ROYER AND STEPHEN J. WRIGHT

With our specific choices of €, and ey mentioned in the previous section, the
evaluation complexity bounds are O(log(2)e~*/2) and O(log(2)e™?), respectively. We
can also derive a bound that includes dependencies on problem constants; for instance,
the bound corresponding to €, = e = € is

@ <log (M) (f(z0) — flow)L;Ige_?’) .

2.4. Local convergence. In the previous sections, we have derived global com-
plexity guarantees for Algorithm 1. We now aim to show rapid local convergence for
the variant of the algorithm that invokes the Local Phase, Algorithm 2, rather than
terminating as soon as the conditions (8) are satisfied. We note that local conver-
gence results like the one we prove here have in the past gone hand in hand with
global convergence results in smooth nonconvex optimization (see, for example, [18]).
More recently, several works in the optimization literature have established rapid local
convergence alongside global complexity guarantees [2, 6, 11].

For this section, we will make the following additional assumption.

Assumption 3. The sequence of iterates generated by Algorithm 1 in conjunction
with Algorithm 2 converges to a local minimizer, that is, a point * at which V f(z*) =
0 and V2f(z*) = 0.

Under this assumption, the following result is immediate.

LEMMA 7. Under Assumptions 1, 2 and 3, there exists kg € N such that, for every
k > ko, we have for p:= % min(1, Apin (V2 f(2*))) > 0 that

(37) ul = V2f(xy) < Uyl
and

. 3t
(39) ol < min { 22— e,

Note that the conditions on kg in Lemma 7 are such that the combined strategy of
Algorithms 1 and 2 will have entered the Local Phase (Algorithm 2) before iteration
ko, and will stay in this phase at all subsequent iterations.

We now establish a local quadratic convergence result.

THEOREM 8. Suppose that Assumptions 1, 2, and 3 are satisfied, and let u and
ko be as defined in Lemma 7. Then, for every k > ko, the method always takes the
Newton direction with a unit step length and we have

Ly 3
(39) lgrrall < ﬁllgkll2 < 2llgwll-

Proof. Let k > ko, so that we are in the Local Phase (Algorithm 2) at iteration
k. By Lemma 7, the Hessian at V2 f(z},) is positive definite, with smallest eigenvalue
bounded below by p > 0. Thus Algorithm 2 computes the Newton direction dy = d}
and we have

ldill < llgell/ps  gi di < —pllgrl®
We thus have

1 L
flar +di) — flzr) < gl di + 5dZV2f(:ck)dk + THHdkH3
1

L L

T H 3 14 2 H 3
= —g, dp + —||d < —= + —||dg|°.
29k k 6 H k” > 2”919” 6 || k”
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Thus if the sufficient decrease condition f(xy +dy) — f(xx) < —¢||di||? is not satisfied
for the unit step, we must have

Ly +n 3o M 2
ZHT a3 > B
a2 B gl
which by the bound ||dg|| < ||gx|l/1 can be true only if
L+ llgell® o 1y o 3y
—_ > = & > ,

which contradicts (38). Thus the unit Newton step is taken and we have
lgrsll = IV f(xr + di) | = |V f(2n + di) = V(@) = V2 f(@r)d]|

< = lldklP?

La, s
< —
< 25 loel

LH 3,&4

<77
2u? L +n

gl

< 2 gnll < 2w
S 2,“ gkl > g 9kl
completing the proof. ]

3. A variant with inexact directions. In section 2, we have assumed that
certain linear-algebra operations in Algorithm 1—the linear system solves of (5) and
(6) and the eigenvalue/eigenvector computation of (4)—are performed exactly. In
a large-scale setting, the cost of these operations can be prohibitive, so iterative
techniques that perform these operations inexactly are of interest. In this section, we
describe inexact methods for these key operations and examine their consequences for
the complexity analysis.

3.1. Inexact eigenvector calculation: Randomized Lanczos method.
The problem of finding the minimum eigenvalue of the matrix in (4) and its asso-
ciated eigenvector can be reformulated as one of finding the maximum eigenvalue and
eigenvector of a positive semidefinite matrix. The Lanczos algorithm with a random
starting vector is an appealing option for the latter problem, yielding an e-approximate
eigenvector in O(log(n/d)e~1/?) iterations, with probability at least 1 — ¢ [15]. This
fact has been used in several methods that achieve fast convergence rates [1, 3, 4]. In
order to apply this method to a matrix that is not positive definite, one must make use
of a bound on the Hessian norm. For sake of completeness, we spell out the procedure
in the following lemma.

LEMMA 9. Let H be a symmetric matriz satisfying ||H|| < M for some M > 0.
Suppose that the Lanczos procedure is applied to find the largest eigenvalue of MI — H
starting at a random vector uniformly distributed over the unit sphere. Then, for any
€ >0 and é € (0,1), there is a probability of at least 1 — § that the procedure outputs
a unit vector v such that

(40) v Ho < Apin(H) + €

in at most

n(n/s?
(41) min{n,lg\;g) ]\j}
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iterations.
After at most n iterations, the procedure obtains a unit vector v such thatv' Hv =
Amin (H) with probability 1.

Proof. By definition, the matrix H' = MI—H is a symmetric positive semidefinite
matrix with its spectrum lying in [0, 2M]. Applying the Lanczos procedure to this
matrix from a starting point drawn randomly from the unit sphere yields a unit vector
v such that

3

42 TH >(1f—
() oTHw> (15

) )\max(H/) > (1 - ﬁ) (M - )‘min(H))

in no more than min{n, In(n/§?)/41/e/(2M)} iterations with probability at least 1—4.
(This result is from [15, Theorem 4.2] extended by a continuity argument from the
positive definite case to the positive semidefinite case; see [15, Remark 7.5].) Moreover,
using (42), we have

v Hyo=—v Huv+ M

< — (1= 337) (M = Auin(H)) + M
=M+ AminiH) +E; - ﬁAmm(H) +M
= Amin(H) + g - @)\min(H)
< Amin(H) + 5T mM
= Amin(H) + ¢,
as required. ]

Lemma 9 admits the following variant for the case in which we fix the number of
Lanczos iterations.

LEMMA 10. Let H be a symmetric matriz with |H|| < M. Suppose that q iter-
ations of the Lanczos procedure are applied to find the largest eigenvalue of MI — H
starting at a random vector uniformly distributed over the unit sphere. Then, for any
e > 0, the procedure outputs a unit vector v such that v' Hv < Amin(H) + € with
probability at least

(43) 1—6 = 1—+nexp [—\/ﬁqﬁ]

We point out that the choice 6 = 0 (or, equivalently, ¢ = n) is possible, that
is, after n iterations, the Lanczos procedure started with a random vector uniformly
generated over the unit sphere returns an approximate eigenvector with probability
one [15, Theorem 4.2(a)].

3.2. Inexact Newton and regularized Newton directions: Conjugate
gradient method. Here we describe the use of the conjugate gradient (CG) algo-
rithm to solve the symmetric positive definite linear systems (5) or (6)—the Newton
and regularized Newton equations, respectively. The CG method is the most popu-
lar iterative method for positive definite linear systems due to its rich convergence
theory and strong practical performance. It has also been popular in the context of
nonconvex smooth minimization; see [19]. It requires only matrix-vector operations
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involving the coefficient matrix (often these can be found or approximated without
explicit knowledge of the matrix) together with some vector operations. It does not
require knowledge or estimation of the extreme eigenvalues of the matrix.

We apply CG to a system Hd = —g where there are positive quantities m and M
such that mI < H < M1, so that the condition number s of H is bounded above by
M /m. Standard convergence theory indicates that CG outputs a vector d such that
| Hy + gl < Cllgll (for ¢ € (0,1)) in

o (min {n, K12 log(/i/C)})

iterations, with k being the condition number of H (we obtain the result as a corollary
of Lemma 11 below). We use a different stopping criterion, namely,

1.
(44) 1Hd + gll < 5 ¢ min {[lg[lm|d]l}

for some ¢ € (0,1). This criterion is stronger than the one typically used in truncated
Newton—-Krylov methods in that we require the residual norm to be bounded by a
multiple of the norm of the approximate direction, as well as being bounded by a
specified fraction of the initial residual norm. The extra criterion resembles the so-
called s-condition arising in cubic regularization techniques, where the approximate
minimizer s of the cubic model my is required to satisfy

(45) IVm(se)ll < O (Il ) -

This property provides a lower bound on |||/, which is instrumental in obtaining the
optimal complexity order of O(eq 8/ %) for first-order convergence [7]. Our condition
replaces ||sk||? by m||dg||, but serves a similar purpose.

The next lemma establishes a bound on the number of CG iterations needed to

reach the desired accuracy.

LEMMA 11. Let Hd = —g be a linear system with H symmetric and mI = H <
M1, where m € (0,1), M > 0, and ||g|| > 0. Then the conjugate gradient algorithm
computes a vector d such that (44) holds for some ¢ € (0,1) in at most

(46) min {m 1VkIn (453/2/4) }

iterations, where k = M /m.

Proof. Let d@ be the iterate obtained at the gth iteration of the conjugate gradi-
ent method applied to Hd = —g, with d(® = 0. The classical bound on the behavior
of the conjugate gradient residual [18, section 5.1] yields

(7 i+ mtg], <2 (VES) 1A gl

where ||z]|g = VT Hz. From this definition and the bounds on the spectrum of H,
we have

49+ H |y = () + H )T H(d@ + H~g)

1
= (Hd@ +g)" H™ (Hd' + g) > [ HAW + g],
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as well as

_ _ 1
IH gl =g"H g < —|gll>.
m
By substituting these bounds into (47), we obtain the following relation:

(48) HHd<Q>+gH<2nl/2<f ) lgll-

VE+1

Thus, as long as our stopping criterion is not satisfied, we have

(19) s¢min {lllmla @} < 2672 (YEZ1) gl

Furthermore, defining 79 = Hd9 + ¢, we have

lg =r@| _ Igl” =267 @ + [r@2 _ gl
M= M - M

14D = | H (=g + r )| =

for all ¢ > 1, where we used the facts that r(®) = ¢ and that in CG the residuals are
orthogonal: (r)Tr) =0 for i # j. Using this bound within (49), we obtain

S mint1,mn ol <20 (YEZL) ) e (€0 < (VECD)

By taking logarithms on both sides, we arrive at

In(C/(92) MR/ 1 (k2
< < ifln ( ) ,

q < —
VE—1 2
1n<\/g+1) In (1+ ﬁ—l) ¢
where the bound In(1+ 1) > ; Ji 73 was used to obtain the last inequality. o

3.3. Complexity analysis based on inexact computations. We present
a variant of our main algorithm, specified as Algorithm 3, in which computation
of approximate eigenvectors and linear system solves are performed inexactly by the
means described above. Algorithm 3 requires two parameters not used in Algorithm 1:
the upper bound Uy on the Hessian norms, defined in (9), and a probability threshold
0. As we expect only to recover inexact global complexity guarantees, the method
does not exploit a local phase.

When Algorithm 3 terminates, condition (8) must hold. At termination, We have
mm(Hng llgk+1]) < €5 and A, > —Ley. With high probability, A} is within ey of

Amin (V2 f(z1)), so we must have )\mm(V f(zr)) > —ep, thus satisfying (8).
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Algorithm 3 Inexact second-order line-search method

Init. Choose 2° € R", 0 € (0,1),¢,0 €[0,1), 7> 0, ¢, € (0,1), e € (0,1), Uy >0
satisfying (9);
for k=0,1,2,... do
Step 1. (First Order) Set g, = V f(zx);
if ||gk|| = 0 then
Go to Step 2;
end if 98 V2 f (@r) gk
Compute Ry = ’“HTHQ;
if Ry < —ey then
Set di, = H?—:Hgk and go to Step LS;
else if Ry € [—epy,en] and ||gx|| > €4 then

Set dy = f”%gﬁ and go to Step LS;
else

Go to Step 2;
end if

Step 2. (Inexact Second Order) Compute an inexact eigenvector vfc such
that (with probability 1 — ¢)

(50) [kl "e < 0. vkl = INKL Ak < Amin (V2 f(20)) + ge,

where X} = [v] TV (i)} /[lo} %
if |lgx|| < €y and A} > —Zey then
Terminate;
else if )\ff < —%EH then
(Negative Curvature) Set dj, = vl
else if A} > %EH then
(Inexact Newton) Use conjugate gradient to calculate d = di", where

(51) IV2 f ()i + gell < 5¢min {lgrll, exmlldi |1} 5

else
(Inexact Regularized Newton) Use conjugate gradient to calculate dj =
di, where

(52) 1(V2f (@) + 2 Dy + gl < 5¢min {llgxll, x|} ;

end if

Go to Step LS;

Step LS. (Line Search) Compute a step length aj = 6% where jj, is the
smallest nonnegative integer such that

(53) flan + ondi) < f(ar) — 2noid||di|?

holds, and set zp 1 = z + agdg;
if d, = di" or d, = di and ||V f(z41)| < €, then
Terminate;
end if
end for
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TABLE 2

Steps and associated decrease lemmas for Algorithm 3.

Context Direction Decrease

llgell=0 | - MNo< - vl Lemma 1

Ry < —eqm Rigr/llgxll Lemma 1

llgrll > eg | Ri € [—€m,en] —gx/ll9x|l*/?  Lemma 2

llgell < e€g | Rk € [—€m,en] Mo < —iey vl Lemma 1
llgrll < eg | Ri € [—em,en] | AL € [—%61—1, %EH] dir Lemma 13
llgkll < €g | Rk € |[—€m, €] AL > %EH din Lemma 12

llgll > €4 | Rk > enm A< —%EH vl Lemma 1
llgrll > €9 | Rk > en A€ [*%EH7 %GH] dir Lemma 13
llgll > €9 | Rk > enm Al > %EH din Lemma 12

Table 2 shows a summary of the possible choices for the search direction. It
shows the same number of cases as Table 1, with the context now determined by
the eigenvalue estimate A}, with one exception. There is an extra row for the case in
which ||gx|| < €y, Rk € [—€m,€n], A > 2ep, because of possible (but low-probability)
failure of the randomized Lanczos process to detect the smallest eigenvalue of V2 f(z)
to the required accuracy. Table 2 mentions two additional lemmas, which respectively
replace Lemmas 3 and 4 in order to take inexactness into account. We state and prove
these results next.

LEMMA 12. Let Assumptions 1 and 2 hold. Suppose that an inexact Newton direc-
tion dy = di* is computed at the kth iteration of Algorithm 3. Then, with probability
at least 1 — §, the backtracking line search terminates with step length oy, = 67%, with
jk S jinr + 1; where

[ 5 (1-0
inr = | =1
Y o= 0 (535 70 )
and we have
(55) flar) = f(oe + ardy) > cinmin {||V f(zr + andi)|Per’, €5 }

where

4

C+ /2 +8Ly

Proof. We observe first that when the Newton step is computed in Algorithm 3
we have from (40) that

* 1302101
’{ Ly +n ]

Cin = — ININn
in -

367}1 < )\z S Amin (VQf(xk)) + €7H = Ami]ﬂ (VQf(xk)) 2 €H,

with probability 1 —4. Suppose first that the step length ay = 1 satisfies the decrease
condition (53). Then, defining

(56) ri, == V2 f(zr)di + gk
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and using the inexactness criterion for the inexact Newton step dji, we find that the
gradient at the next point x + dj satisfies

IV f(@r +di)ll = IV f(zr + di) = V(zr) + Vf(z)ll
= HVf o+ di) — V() = V2 f(r)di + 7|
¢

IIdkzll2 + Il < flldeIQ + Senlldill

I /\

We obtain a lower bound on ||dg| by taking the root of the above quadratic and
applying Lemma 17 with a = ey /2, b = 2Lge%, and t = ||V f(zy + di)||/e% to
obtain

~Sen +/ S+ 2LullV S (@ + dy)

[ Ly
e+ JC 1 2L,
. 3€H + LEH T ebnCy min (||V f(zx + di)|l /€3, 1)
_ _g+\/<+—8H n(|Vf(xk +di)l/en en)
- _ n([|Vf(zk +di)ll/ems en) -

¢+ \/42 +8Ly

Therefore, taking the inexact Newton step with a unit step length guarantees
3

fxr) — flog +dg) > *HdkH g min (|V f(zx + di) €5, €3 |

4
(++/C?+8Ly

so the inequality (55) is satisfied in the case of a unit step oy = 1.

To complete the proof, consider the case in which the unit step length does not
lead to sufficient decrease. In that case, for any value j > 0 such that (53) is not
satisfied, we have

—%93j||dk||3 < flag +07dy) — f(y)
) 027 L )
< g dy + - d{ VP fag)di + — 6% |
j 2 T 0% 1 s L s, 3
<O (V- f(ar)dp + 7)) di + - &V f(@e)dy, + ?9 Nl

6 . Li o
= —¢ (1 - 2) Al V2 f () dy + 07 dy vy + ?Hf)gjﬂdk”?’

67 , Ly o

< = renlldill® + 07l delllrell + =5-6% i |
67 Ly a:

< =5 (U= Qenlldi]]® + =6 |di]I*

Thus, for any j > 0 for which sufficient decrease is not obtained, we have

(58) 0% > 3

1— di|| 7t
> LH+77( Qeml|di|
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In particular, since (58) holds for j = 0, we have

3

99 di|l >
(59) laill = =

(1 — C)€H.
By the definitions of dj; and of r; in (56), we also have the upper bound on its norm

1

— VIl gll” + [I7&|1?
€H
\/1+§2/4|

|gk||
€H

< V1 +§2/4U

> P 9

N

il = || V2 F(e) ™" (g — i) || < NV2SF ()™M lge — rill <

IN

using again the fact that g and r are orthogonal (by the properties of the CG
algorithm), as well as the criterion (51) and the bound (9).
Meanwhile, for any j > jinr, we have

. . 3 €2 3 €x
923 < 92]7,7” < 1— H < 1—0)e
S Tan' C)Ugs/1+<2/4_LH+7]( C)’“’Ug\/1+§2/4
3
< 1-— di|| =t
< LU= Qenlds]

As a result, (58) is violated for j > jinr, which means that the line search must
terminate with a step length oy = 67 satisfying (53), with 1 < jx < jinr + 1. Since
the index j = jir — 1 > 0 satisfies (58), we have

. 302 1/2 1
60 9x > 1= O)exl?|dy || Y2,
(60) *\/LH+77( Qeg” [ldll

and from the sufficient decrease condition we have

. . 302 3/2 )
_ Jk > Lp3ik 3> 1 1— 3/2 3/2
o) = flont ) > Bl = T | Z20—a- 0| dpa
3
n [ 30° 3
> — 1-—
=5 |:LH+7]( C):| €H>

where the second inequality follows from (60) and the third inequality follows from
(59) (using the fact that # € (0,1)). Hence, the claim (55) is satisfied in the case of
nonunit step length «y too, and the proof is complete. 0

LEMMA 13. Let Assumptions 1 and 2 hold. Suppose that an inexact reqularized
Newton direction dy, = di" is computed at the kth iteration of Algorithm 3. Then,
with probability at least 1 — &, the backtracking line search terminates with step length
ag = 07%, with jx < jinr + 1, where jin, is defined as in (54), and we have

(61) flar) = fle + ardy) > cipmin{||[Vf (2 + arde) Pei’, €}

where

’ [392<1—<>r
’ Ly +n

s
Cir := — min

4
6 4+ C++/(4+¢)?+8Ly
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Proof. The inexact regularized Newton step is computed only when —%e o <A <
3em, so from (40) with e = Zepy, we have
(62) Amin(V2f(zk)) + 25 > N, — Sem + 2 > epy,

with probability at least 1 — §. Suppose first that the step length oy = 1 satisfies the
decrease condition (53). Then, defining ry = (V2 f(zx) + 2ex1)dy + gk, we have that

IV £k +de)ll = IV f(zr + di) = Vfak) + V)l
= HVf(JCk + dk) — Vf(xk) — V2f(a:k)dk — 2epdy + T’kH

L

< o lldil* + 2endil| + 1
L 44¢

< S lldl? + == di ]l

Reasoning as in (57), with %C replacing %, we obtain the following lower bound on
lld|l:

(63) el > in (||Vf(zr + di)lleg emr) -

4
m
4+¢++/(4+¢0)2+8Ly
Therefore, taking the unit regularized Newton step guarantees that
Jww) = Fon+di) 2 2l
3

> min (||Vf(zx + di)[*e5’ )

N3

4
4+(+/(4+¢)?*+8Ly

so the result of the theorem holds in the case in which the unit step satisfies the
sufficient decrease condition.

To complete the proof, we consider the case in which aj < 1. In that case, for
any value j > 0 such that (53) is not satisfied, we have from the definition of r, the
bound on 7| in the definition of di’, and (62) that

_g‘g?’jlldk\P < flaw + 07 dr) — f ()

. 927 L )
< 07g) di + 7dzv2f(ﬂfk)dk + ?H@%Hdkﬂg
9%

=7 [VQf(:L‘k)dk + 2egdy — Tk]T di + Td,IV2f(:ck)dk

L )
+ 0% i
. J , .
= (1 - Z) df V2 f(xr) + 2ep1]dy, — 0% egr||di||* + 077 .
L )
+ =09 di]|®

67 . ] Ly o
< —Senlldl® = 0¥ enlldi]|® + 07| llldi]| + =0 di |

0i ) Lo oo
<~ Lenlldell? + 07 sl + 2269 e

67 Ly s
=~ (L= Qenlldul? + =516% ||
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Thus, for any j > 0 for which sufficient decrease is not obtained, one has

(64) 6 > 3

1— de|| L
4,LH+n( Cerr|dil

In particular, setting j = 0 in this expression, we obtain

(65) k|l = (1= Q)en-

Ly +n
The right-hand side of (64) is bounded below, since

ldill = || [V? f(zk) + 2ea 1) (=g + i) || < [V f (k) + 2ea] ] =g + 72l
1
< - gl + (|7l
H
1+ c2/4
< VIR
€H
JIte2/a
(66) < +7C/Ug7
€H

where we used again the orthogonality of g; and ry (from the properties of conjugate
gradient) as well as the condition (52). For any j > jin,, we have

02 < pinr < 3(1-() 6%{ < 3(1-()

T La+nUg/1+¢2/47 La+n

where the last inequality follows from (66). Therefore, (64) is violated for j > jipny,
which means that the line search must terminate with a step length oy = 7%, with
1 < jk < Jinr + 1. The previous index j = ji — 1 satisfies (64), so we have

exrl|dil| 7,

0 > (1 eldul !
~ Ly+n ’

so that

f(@e) = flar + 075 dy)

%

N 34 3
,0 Jk d
Al

[ 362
Ly +n

362 >,
-0 dn

3/2
(1- cﬂ €321 dy |2

1
-6
i
6

where the final inequality follows from (65), using the fact that 6 € (0,1). Thus,
condition(61) also holds in the case in which o < 1, and the proof is complete. O

THEOREM 14. Let Assumptions 1 and 2 hold. Then, Algorithm 3 returns a point
x satisfying (2) in at most

(67) K :=Cmax {e;?’e‘}[, 69_3/2, 6;{3}
iterations, where

é:: f(xO)A_flow’ A

. Ce
P C 1= min gacgacinacir )
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with probability at least 1 — KG&. The constants Ce, Cq, Cin, GNd cir are defined in
Lemmas 1, 2, 12, and 13, respectively.

Proof. For any iteration [ such that x; does not satisfy (8), we must have that
either min(||g|, [|gi411]) > €4 or Amin(V2f(21)) < —€p, where the latter implies that
< —%6 g- Thus, similarly to the proof of Theorem 5, we can consider the following
two cases.

Case 1: )\li < —%EH. From Table 2, we see that the same three choices for d;
as in the exact version are possible. If d; = H};—;” g1, we have exactly as in Lemma 1
that

f@) = flzi) > ceely.

When d; = —g;/||g1]|'/?, we have from Lemma 2 that
(68) Fon) = o) > eqmin { e, é8/2).

The remaining case corresponds to the choice d; = v}. Since

A V2 f(z))d

! ; €n
=\ < -
([ da|? :

77

with probability at least 1 — § in that case, one can use the result of Lemma 1 to
deduce that
i3~ Ce 3
Flan) = flaren) = NP = e,

again with probability at least 1 — 4.

Case 2: A} > —%(—:H, llgill > €4, and ||gi4+1]| > €g. In this situation, we
have three possible choices of search direction d;. If d; = —g;/||gi||*/?, we have again
from Lemma 2 that (68) holds. If the inexact Newton direction is taken, we obtain
by Lemma 12 that

flzr) — f(xg41) > cipmin {626;137 et

Finally, if the search direction is the inexact regularized Newton direction, that is,
d; = dj", we have from Lemma 13 that

fzr) — f(xg41) > ¢ min {6361__137 et

By putting all these bounds together, as in the proof of Theorem 5, we obtain that
the number of iterations before reaching a point satisfying (8) is bounded above by
K defined in the statement of the theorem.

Recalling that for each of these iterations there is a probability § that the ran-
domized Lanczos iteration in (50) will fail, we bound the probability of failure during
the course of the algorithm by Kd. ]

Note that if § is chosen large enough such that 1 — K§ < 0, Theorem 14 is not
informative. The same remark holds for the corollary below, which makes use of the
results from sections 3.1 and 3.2 to obtain a bound on the total number of Hessian-
vector multiplications and gradient evaluations needed by the procedure (assuming
that these operations cost roughly the same).
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COROLLARY 15. Suppose the assumptions of Theorem 14 hold and let § € (0,1)
be given. Then the total number of gradient evaluations and Hessian-vector multipli-
cations required by Algorithm 3 to reach an iterate satisfying (8) is bounded by

/2 —3/2
{2 + min {n, %(UH +2)1/2¢, % 1In <4(UH+2><“H> } 4
(69)

min {n, (Ung + 2)1/26;11/27111(”2/52) H x K,

with probability 1 — K.

Proof. The proof follows directly from Lemmas 9 and 11, setting M = Uy +2 and
€ = €y /2, noting that for both Newton and regularized Newton steps the condition
number of the respective coefficient matrices can be bounded by (Ugy + 2)/en. d

As in section 2.2, we can particularize this result to a specific choice of tolerances.

COROLLARY 16. Suppose that the assumptions of Theorem 14 hold and let § €
(0,1) be given. Define ¢, = € and ey = /€ for some € € (0,1). Then the number of
gradient evaluations and Hessian-vector products needed in Algorithm 3 to satisfy (8)
is bounded by

. _ 3/2,-3/4
[2+mm{”v\%(UH+2)l/25 /4], (%)}—F
(70)
min {’I’},’ (UH + 2)1/26_1/4M}:| X 66_3/2,

where C' is defined as in Theorem 14, with probability at least 1 — Ce3/26.

This result is meaningful when § < €%/2. In terms of the complexity bound, such
a choice is not prohibitively small because ¢ enters into the bound (70) only inside a
log term.

We can obtain a bound for the case in which § = 0 (that is, almost certainty),
at the cost of taking n Lanczos iterations whenever the smallest eigenvalue is needed
(see Lemma 9). In this case, the bound (70) either becomes O((n + In(e~1))e~7/4)
or (’)(ne_3/ 2), depending on which term dominates in the quantity corresponding to
conjugate gradient iterations.

For very large n and > 0, we can consider that the term involving € is smaller
than n in both minimum expressions in Corollary 16. In this case, the bound is

o (i (i) ™)

This complexity matches other recent findings [1, 4].

In terms of dependencies with respect to problem constants, we can reproduce
the analysis from section 2.2, replacing ¢, and ¢, by ¢;, = O(L;I?’) and ¢; = O(Ll_f’),
respectively. For instance, the bound from the previous paragraph is in

0 <(f(a:o) ~ o) UYL T (W) 67/4) .

We point out that the dependency on Ly of our bound is worse than those of [1, 4]
due to the lack of explicit use of this constant within our algorithm. Still, we believe
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our dependency to match that of other Newton-type methods (although those are not
emphasized in the related literature) and we consider such schemes as being more
amenable to highly nonlinear settings where estimating such a constant would likely
be impractical.

As a final note, we observe that one could also include the number of line-search
iterations into our complexity bound. However, this cost is essentially logarithmic in
1/e, therefore it is dominated by the cost of the linear algebra techniques.

4. Discussion. Among the many algorithmic frameworks that have been pro-
posed for smooth nonconvex optimization with second-order complexity guarantees,
it can be difficult to determine the algorithmic features that affect the complexity
analysis or to understand how the guarantees provided by different algorithms relate
to one another. We have presented a second-order complexity analysis of a frame-
work that is based exclusively on line searches along certain directions. It does not
require solution of cubic-regularized or trust-region subproblems, or minimization of
convexified functions—operations that are needed by other approaches. Our search
directions are of several types—gradient, negative-curvature, Newton, and regular-
ized Newton—and we presented a variant of our method that allows inexact direction
computation using iterative methods. We believe that ours is the first approach of
line-search type to achieve known optimal complexity, among methods that identify
points that satisfy approximate second-order necessary conditions.

In addition to the results of this paper, we observe that it is possible to modify
our algorithms to attain points that satisfy termination conditions of the form (2)
(rather than (8)) by continuing to iterate in the situation in which ||gr+1]] < €4 but
Amin(V2f(zk11)) < —em. Step k + 1 then yields a decrease that is a multiple of €3,
(per Lemma 1), so the overall complexity estimates are preserved, even if step k in
this situation fails to produce a significant decrease in f.

In designing the framework of Algorithms 1 and 3, we have made some choices
to give preference to one direction choice over another and we have also incorporated
several types of steps. Given the recent literature in this area, our proposed scheme
is actually one particular instance of a broader class of methods with similar com-
plexity guarantees but possibly diverse practical performance. An implementation of
our approach would raise several delicate issues, for example, issues associated with
failure of the randomized Lanczos procedure for obtaining an estimate of the smallest
eigenvalue. An incorrect estimate here could lead to the conjugate gradient method
subsequently being applied to an indefinite matrix; a robust implementation would
need to detect and recover from such an occurrence. Additionally, the choice of suit-
able values for the bound on the Hessian norm is likely to be of critical importance.
Addressing these concerns in the aim of developing a practical algorithm with good
complexity guarantees is the subject of ongoing research.

Appendix A. Technical result. We prove a technical result that is used in
several proofs, including that of Lemma 4.

LEMMA 17. For positive scalars a and b, and t > 0, we have

—a++Va?+bt > (—a++Va?+b)min(t, 1).
Proof. For the case in which ¢ > 1, we have

—a+vVaZ+b>—-a+vVat+b=(—a+ Va®+b)min(t1),
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so the result holds in this case. For t € (0,1), we need to show that
—a+Va?+bt > (—a+va®+b)t.

This claim follows from the chain of equivalences

—a+ Va2 +bt>(—a b)t
& Va2 +bt> (—a D)t +a
o a’+ bt > (—a a? 4+ b)*t* 4 2a(—a + Va2 + b)t + a*
&b+ 202 — 2av/a2 + b)t > (—a b)2t2
= (—a+ Va2 +b)?*t> (—a b)2t?
& 1>t
thereby completing the proof. 0
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