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COMPLEXITY ANALYSIS OF SECOND-ORDER LINE-SEARCH
ALGORITHMS FOR SMOOTH NONCONVEX OPTIMIZATION∗
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Abstract. There has been much recent interest in finding unconstrained local minima of smooth
functions, due in part to the prevalence of such problems in machine learning and robust statistics. A
particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods
that make use of regularization and trust regions have been analyzed from such a perspective. More
recent proposals, based chiefly on first-order methodology, have also been shown to enjoy optimal
iteration complexity rates, while providing additional guarantees on computational cost. In this
paper, we present an algorithm with favorable complexity properties that differs in two significant
ways from other recently proposed methods. First, it is based on line searches only: Each step
involves computation of a search direction, followed by a backtracking line search along that direction.
Second, its analysis is rather straightforward, relying for the most part on the standard technique for
demonstrating sufficient decrease in the objective from backtracking. In the latter part of the paper,
we consider inexact computation of the search directions, using iterative methods in linear algebra:
the conjugate gradient and Lanczos methods. We derive modified convergence and complexity results
for these more practical methods.

Key words. smooth nonconvex unconstrained optimization, line-search methods, second-order
methods, second-order necessary conditions, iteration complexity

AMS subject classifications. 49M05, 49M15, 90C06, 90C60

DOI. 10.1137/17M1134329

1. Introduction. We consider the unconstrained optimization problem

(1) min f(x),

where f : Rn → R is a twice Lipschitz continuously differentiable function that is
generally nonconvex. Some algorithms for this problem seek points that nearly satisfy
the second-order necessary conditions for optimality, which are that ∇f(x∗) = 0 and
∇2f(x∗) � 0. These iterative schemes terminate at an iterate xk for which

(2) ‖∇f(xk)‖ ≤ εg and λmin(∇2f(xk)) ≥ −εH ,

where εg, εH ∈ (0, 1) are (typically small) prescribed tolerances. Numerous algorithms
have been proposed in recent years for finding points that satisfy (2), each with a
complexity guarantee, which is an upper bound on an index k that satisfies (2), in
terms of εg, εH , and other quantities. We summarize below the main results.
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COMPLEXITY OF SECOND-ORDER LINE-SEARCH ALGORITHMS 1449

Classical second-order convergent trust-region schemes [10] can be shown to sat-
isfy (2) after at most O(max{ε−2g ε−1H , ε−3H }) iterations [9]. Cubic regularization meth-
ods in their basic form [6] have better complexity bounds than trust-region schemes,
requiring at most O(max{ε−2g , ε−3H }) iterations. The difference can be explained by the
restriction enforced by the trust-region constraint on the norm of the steps. Recent
work has shown that it is possible to improve the bound for trust-region algorithms us-
ing specific definitions of the trust-region radius [13]. The best-known iteration bound
for a second-order algorithm (that is, an algorithm relying on the use of second-order

derivatives and Newton-type steps) is O(max{ε−3/2g , ε−3H }). This bound was estab-
lished originally (under the form of a global convergence rate) in [17] by considering
cubic regularization of Newton’s method. The same result is achieved by the adaptive
cubic regularization framework under suitable assumptions on the computed step [9].
Recent proposals have shown that the same bound can be attained by algorithms
other than cubic regularization. A modified trust-region method [11], a variable-
norm trust-region scheme [16], and a quadratic regularization algorithm with cubic
descent condition [2] all achieve the same bound.

When εg = εH = ε for some ε ∈ (0, 1), all the bounds mentioned above reduce to
O(ε−3). It has been established that this order is sharp for the class of second-order
methods [9] and it can be proved for a wide range of algorithms that make use of
second-order derivative information; see [12]. Setting εH = ε1/2 and εg = ε for some
ε > 0 yields bounds varying between O(ε−3) and O(ε−3/2), the latter being again
optimal within the class of second-order algorithms [8].

A new trend in complexity analyses has emerged recently that focuses on mea-
suring not just the number of iterations to achieve (2) but also the computational
cost of the iterations. Two independent proposals, respectively based on adapting
accelerated gradient to the nonconvex setting [4] and approximately solving the cu-
bic subproblem [1], require O(log( 1

ε )ε−7/4) operations (with high probability, showing
only dependency on ε) to find a point xk that satisfies

(3) ‖∇f(xk)‖ ≤ ε and λmin(∇2f(xk)) ≥ −
√
LHε,

with LH being a Lipschitz constant of the Hessian. The difference factor of ε−1/4

by comparison with the complexities of the previous paragraph is due to the cost
of computing a negative eigenvalue of ∇2f(xk) and/or the cost of solving the linear
system. A later proposal [3] focuses on solving cubic subproblems via gradient de-
scent, together with an inexact eigenvalue computation: It satisfies (3) in at most
O(log( 1

ε )ε−2) with high probability. Another technique [14] requires only gradient
computations, with noise being added to some iterates. It reaches with high probabil-
ity a point satisfying (3) in at most O(log4( 1

ε )ε−2) iterations. Up to the logarithmic
factor, this bound is characteristic of gradient-type methods, but classical work estab-
lishes only first-order guarantees [5]. Although this setting is not explicitly addressed
in the cited papers, it appears that to reach an iterate satisfying (2) with εg = εH = ε,
the methods studied in [1, 4] would require O(log( 1

ε )ε−7/2) iterations, while the meth-

ods described in [3] and [14] could require O(log( 1
ε )ε−3) and O(log4( 1

ε )ε−3) iterations,
respectively. Although these bounds look worse than those of classical nonlinear op-
timization schemes, they are more informative in that they not only account for the
number of outer iterations of the algorithm, but also for the cost of performing each
outer iteration (often measured in terms of the number of inner iterations, each of
which has similar cost). We note, however, that unlike the classical complexity re-
sults, the newer procedures make use of randomization, so the bounds typically hold
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1450 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

only with high probability.
Our goal in this paper is to describe an algorithm that achieves optimal complex-

ity, whether measured by the number of iterations required to satisfy the condition (2)
or by an estimate of the number of fundamental operations required (gradient eval-
uations or Hessian-vector multiplications). Each iteration of our algorithm takes the
form of a step calculation followed by a backtracking line search. (To our knowledge,
ours is the first line-search algorithm that is endowed with a second-order complexity
analysis.) The “reference” version of our algorithm is presented in section 2, along
with its complexity analysis. In this version, we assume that two key operations—
solution of the linear equations to obtain Newton-like steps and calculation of the most
negative eigenvalue of a Hessian—are performed exactly. In section 3, we refine our
study by introducing inexactness into these operations and adjusting the complexity
bounds appropriately. Finally, we discuss the established results and their practical
connections in section 4.

Throughout the paper, ‖·‖ denotes the Euclidean norm, unless otherwise indicated
by a subscript. A vector v will be called a unit vector if ‖v‖ = 1.

2. A line-search algorithm based on exact step computations. We now
describe an algorithm based on exact computation of search directions, in particular,
the Newton-like search directions and the eigenvector that corresponds to the most
negative eigenvalue of the Hessian.

2.1. Outline. We use a standard line-search framework [18, Chapter 3]. Starting
from an initial iterate x0, we apply an iterative scheme of the form xk+1 = xk +
αkdk, where dk is a chosen search direction and αk is a step length computed by a
backtracking line-search procedure.

Algorithm 1 defines our method. Each iteration begins by evaluating the gradi-
ent, together with the curvature of the function along the gradient direction. This
information determines whether the negative gradient direction is a suitable choice
for search direction dk, and if so, what scaling should be applied to it. If not, we com-
pute the minimum eigenvalue of the Hessian. The corresponding eigenvector is used
as the search direction whenever the eigenvalue is sufficiently negative. Otherwise,
we compute a Newton-like search direction, adding a regularization term if needed to
ensure sufficient positive definiteness of the coefficient matrix. There are a total of
five possible choices for the search direction dk (including two different scalings of the
negative gradient). Table 1 summarizes the various steps that can be performed and
the conditions under which those steps are chosen.

Table 1
Steps and associated decrease lemmas for Algorithm 1.

Context Direction Decrease

‖gk‖ = 0 - λk < −εH vk Lemma 1

Rk < −εH Rkgk/‖gk‖ Lemma 1

‖gk‖ > εg Rk ∈ [−εH , εH ] −gk/‖gk‖1/2 Lemma 2

‖gk‖ ≤ εg Rk ∈ [−εH , εH ] λk < −εH vk Lemma 1

‖gk‖ ≤ εg Rk ∈ [−εH , εH ] λk ∈ [−εH , εH ] drk Lemma 4

‖gk‖ > εg Rk > εH λk < −εH vk Lemma 1

‖gk‖ > εg Rk > εH λk ∈ [−εH , εH ] drk Lemma 4

‖gk‖ > εg Rk > εH λk > εH dnk Lemma 3

Once a search direction has been selected, a backtracking line search is applied
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COMPLEXITY OF SECOND-ORDER LINE-SEARCH ALGORITHMS 1451

with an initial choice of 1. A sufficient condition related to the cube of the step norm
must be satisfied; see (7). Such a condition has been instrumental in the complexity
analysis of recently proposed Newton-type methods achieving the best known iteration
complexity rates [2, 11].

At most one eigenvector computation and one linear system solve are needed per
iteration of Algorithm 1, along with a gradient evaluation and the Hessian-vector
multiplication required to calculate Rk.

The algorithm contains two tests for termination, with the option of switch-
ing to a “Local Phase” instead of terminating at a point that satisfies approximate
second-order conditions. The Local Phase aims for rapid local convergence to a point
satisfying second-order necessary conditions for a local solution; it is detailed in Al-
gorithm 2. Termination (or switch to the Local Phase) occurs at an iteration k at
which an (εg, εH)-approximate second-order critical point is reached, according to the
following definition:

(8) min {‖gk‖, ‖gk+1‖} ≤ εg and λmin(∇2f(xk)) ≥ −εH ,
where gk = ∇f(xk), etc. As we see below, the quantity min{‖gk‖, ‖gk+1‖} arises nat-
urally in the decrease formula we establish for the steps computed by Algorithm 1.
In fact, for the methods we reviewed in the introduction, one observes that the de-
crease formulas obtained for their steps either involve only ‖gk‖ [1, 3, 4, 14, 17], only
‖gk+1‖ [2, 11, 16], or the minimum of the two quantities [7]. The latter case appears
due to the presence of both gradient-type (see Lemma 2) and Newton-type steps (see
Lemmas 3 and 4).

The main convergence results of this section are complexity results on the number
of iterations or function evaluations required to satisfy condition (8) for the first time.
(Algorithm 2 makes provision for reentering the main algorithm if the approximate
second-order conditions are violated at any point. This reentry feature is not covered
by our complexity analysis.)

2.2. Iteration complexity. We now establish a complexity bound for Algo-
rithm 1 in the form of the maximum number of iterations that may occur before the
termination conditions are satisfied for the first time. To this end, we provide guar-
antees on the decrease that can be obtained for each of the possible choices of search
direction.

In the rest of this paper, we make the following assumptions.

Assumption 1. The level set Lf (x0) = {x|f(x) ≤ f(x0)} is a compact set.

Assumption 2. The function f is twice Lipschitz continuously differentiable on an
open neighborhood of Lf (x0), and we denote by Lg and LH the respective Lipschitz
constants for ∇f and ∇2f on this set.

By the continuity of f and its derivatives, Assumption 1 implies that there exist
flow ∈ R, Ug > 0, and UH > 0 such that, for every x ∈ Lf (x0), one has

(9) f(x) ≥ flow, ‖∇f(x)‖ ≤ Ug, ‖∇2f(x)‖ ≤ UH .
We point out that the choice UH = Lg is a valid one for theoretical purposes. However,
UH will serve as an explicit parameter of our inexact method in section 3, so we use
separate notation, to allow UH to be an overestimate of Lg.

An immediate consequence of these assumptions is that, for any x and d such
that Assumption 2 is satisfied at x and x+ d, we have

(10) f(x+ d) ≤ f(x) +∇f(x)T d+
1

2
dT∇2f(x)d+

LH
6
‖d‖3.
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1452 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Algorithm 1 Second-order line-search method

Init. Choose x0 ∈ Rn, θ ∈ (0, 1), η > 0, εg ∈ (0, 1), εH ∈ (0, 1);
for k = 0, 1, 2, . . . do
Step 1. (First Order) Set gk = ∇f(xk);
if ‖gk‖ = 0 then

Go to Step 2;
end if
Compute Rk =

g>k ∇
2f(xk)gk
‖gk‖2 ;

if Rk < −εH then
Set dk = Rk

‖gk‖gk and go to Step LS;

else if Rk ∈ [−εH , εH ] and ‖gk‖ > εg then
Set dk = − gk

‖gk‖1/2
and go to Step LS;

else
Go to Step 2;

end if
Step 2. (Second Order) Compute an eigenpair (vk, λk) ∈ Rn × R, where

λk = λmin(∇2f(xk)) and vk is such that

(4) ∇2f(xk)vk = λkvk, v>k gk ≤ 0, ‖vk‖ = [−λk]+;

if ‖gk‖ ≤ εg and λk ≥ −εH then
Terminate (or go to Local Phase);

else if λk < −εH then
(Negative Curvature) Set dk = vk;

else if λk > εH then
(Newton) Set dk = dnk , where

(5) ∇2f(xk)dnk = −gk;

else
(Regularized Newton) Set dk = drk, where

(6)
(
∇2f(xk) + 2εHI

)
drk = −gk;

end if
Go to Step LS;
Step LS. (Line Search) Compute a step length αk = θjk , where jk is the

smallest nonnegative integer such that

(7) f(xk + αkdk) < f(xk)− η

6
α3
k‖dk‖3

holds, and set xk+1 = xk + αkdk.
if dk = dnk or dk = drk and ‖∇f(xk+1)‖ ≤ εg then
Terminate (or go to Local Phase);

end if
end for
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Algorithm 2 Local Phase

loop
Set gk = ∇f(xk);
if ‖gk‖ > εg then

Return to Algorithm 1;
end if
Compute λk and vk as in (4);
if λk < −εH then

Return to Algorithm 1;
else if λk ∈ (−εH , 0] then

Set dk = drk from (6);
else

Set dk = dnk from (5);
end if
Perform backtracking line search as in Step LS of Algorithm 1 to obtain xk+1;
k ← k + 1;

end loop

The following four technical lemmas derive bounds on the decrease obtained from
each type of step. The proofs are rather similar to each other, and follow the usual
template for backtracking line-search methods.

We begin with negative curvature directions, showing that our choices for initial
scaling yield a decrease proportional to the cube of the (negative) curvature in that
direction.

Lemma 1. Under Assumption 2, suppose that the search direction for the kth
iteration of Algorithm 1 is chosen either as dk = Rk

‖gk‖gk with Rk < −εH in Step 1

or dk = vk in Step 2. Then the backtracking line search terminates with step length
αk = θjk with jk ≤ je + 1, where

(11) je :=

[
logθ

(
3

LH + η

)]
+

,

and the decrease in the function value resulting from the chosen step length satisfies

(12) f(xk)− f(xk + αk dk) ≥ ce

[
|d>k ∇2f(xk)dk|

‖dk‖2

]3
with

ce :=
η

6
min

{
1,

27θ3

(LH + η)3

}
.

Proof. For the direction dk = Rkgk/‖gk‖, we have

dTk∇2f(xk)dk = R2
k

gTk∇2f(xk)gk
‖gk‖2

= R3
k = −‖dk‖3.

For the other choice dk = vk, we have dTk∇2f(xk)dk = λ3k = −‖dk‖3, so that in both
cases we have

(13) dTk∇2f(xk)dk = −‖dk‖3 and
|dTk∇2f(xk)dk|
‖dk‖2

= ‖dk‖.
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Thus, if the unit value αk = 1 is accepted by (7), the result (12) holds trivially.
Suppose now that the unit step length is not accepted. Then the choice α = θj does
not satisfy the decrease condition (7) for some j ≥ 0. Using (10) and the definition
of dk, we obtain

−η
6
α3‖dk‖3 ≤ f(xk + αdk)− f(xk) ≤ αg>k dk +

α2

2
d>k ∇2f(xk)dk +

LH
6
α3‖dk‖3

≤ α2

2
d>k ∇2f(xk)dk +

LH
6
α3‖dk‖3

= −α
2

2
‖dk‖3 +

LH
6
α3‖dk‖3,

where the last line follows from (13). Therefore, we have

(14) α = θj ≥ 3

LH + η
,

which holds only if j ≤ je by definition of je. Thus, the line search must terminate
with (7) being satisfied for some value jk ≤ je + 1. Because the line search did not
stop with step length θjk−1, we must have

θjk−1 ≥ 3

LH + η
⇒ θjk ≥ 3θ

LH + η
.

As a result, the decrease satisfied by the step αkdk = θjkdk is such that

f(xk)− f(xk + αkdk) ≥ η

6
θ3jk‖dk‖3 ≥

η

6

27θ3

(LH + η)3

[
|d>k ∇2f(xk)dk|

‖dk‖2

]3
.

This inequality, together with the analysis for the case in which αk = 1, establishes
the desired result.

The second result concerns use of the step dk = −gk/‖gk‖1/2 in the case in which
the curvature of the function along the gradient direction is small.

Lemma 2. Let Assumptions 1 and 2 hold. Then, if at the kth iteration of Algo-
rithm 1 the search direction is dk = −gk/‖gk‖1/2, the backtracking line search termi-
nates with step length αk = θjk , with jk ≤ jg + 1, where

(15) jg :=

[
logθ

(
min

{
5

3
,

√
1

LH + η

}
min

{
ε1/2g ε−1H , 1

})]
+

,

and the resulting step length αk is such that

(16) f(xk)− f(xk + αkdk) ≥ cg min
{
ε3gε
−3
H , ε3/2g

}
,

where

cg :=
η

6
min

{
1,

θ3

(LH + η)3/2
,

125θ3

27

}
.

Proof. Recall that the choice dk = −gk/‖gk‖1/2 is adopted only when ‖gk‖ > εg
and |Rk| ≤ εH . If the unit step length αk = 1 is accepted, we have

f(xk)− f(xk + dk) ≥ η

6
‖dk‖3 =

η

6
‖gk‖3/2 ≥

η

6
ε3/2g ,
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satisfying (16). Otherwise, it means that there exists j ≥ 0 for which the decrease
condition (7) is not satisfied using the step size θj . For such j, we have from (10) that

−η
6
θ3j‖gk‖3/2 ≤ f(xk − θj‖gk‖−1/2gk)− f(xk)

≤ −θj‖gk‖3/2 +
θ2j

2
Rk ‖gk‖+

LH
6
θ3j‖gk‖3/2

≤ −θj‖gk‖3/2 +
θ2j

2
εH ‖gk‖+

LH
6
θ3j‖gk‖3/2,

which leads to

(17) 0 ≤
[
−5

6
θj‖gk‖3/2 +

θ2j

2
εH ‖gk‖

]
+

[
−1

6
θj‖gk‖3/2 +

LH + η

6
θ3j‖gk‖3/2

]
.

Therefore, at least one of the two terms between brackets must be nonnegative. If

−5

6
θj‖gk‖3/2 +

θ2j

2
εH ‖gk‖ ≥ 0,

we have θj ≥ 5
3‖gk‖

1/2ε−1H . On the other hand, if

−1

6
θj‖gk‖3/2 +

LH + η

6
θ3j‖gk‖3/2 ≥ 0,

then θj ≥
√

1
LH+η . Putting the two bounds together, we have that

θj ≥ min

{
5

3
‖gk‖1/2ε−1H ,

√
1

LH + η

}
(18a)

≥ min

{
5

3
,

√
1

LH + η

}
min

{
‖gk‖1/2ε−1H , 1

}
(18b)

≥ min

{
5

3
,

√
1

LH + η

}
min

{
ε1/2g ε−1H , 1

}
.(18c)

Since j > jg contradicts (18c), the line search terminates with (7) being satisfied for
some value jk ≤ jg + 1. Since (7) did not hold for α = θjk−1, we have from (18b) that

θjk ≥ θmin

{
5

3
,

√
1

LH + η

}
min

{
‖gk‖1/2ε−1H , 1

}
.

The decrease obtained by the step length αk = θjk thus satisfies

f(xk)− f(xk + αkdk) ≥ η

6
θ3jk‖dk‖3

≥ η

6

[
θmin

{
5

3
,

√
1

LH + η

}]3
min

{
‖gk‖3/2ε−3H , 1

}
‖gk‖3/2

≥ η

6

[
θmin

{
5

3
,

√
1

LH + η

}]3
min

{
ε3gε
−3
H , ε3/2g

}
.(19)

Thus (16) is also satisfied in the case of αk < 1, completing the proof.
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1456 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Lemma 2 describes the reduction that can be achieved along the negative gradient
direction when the curvature of the function in this direction is modest. When this
curvature is significantly positive (or when this curvature is slightly positive but the
gradient is small), we compute the minimum Hessian eigenvalue (Step 2) and consider
other options for the search direction.

Our next result concerns the decrease that can be guaranteed by the Newton step,
when it is computed.

Lemma 3. Let Assumptions 1 and 2 hold. Suppose that the Newton direction
dk = dnk is used at the kth iteration of Algorithm 1. Then the backtracking line search
terminates with step length αk = θjk , with jk ≤ jn + 1, where

(20) jn :=

[
logθ

(√
3

LH + η

εH√
Ug

)]
+

,

and we have

(21) f(xk)− f(xk + αkdk) ≥ cn min
{
‖∇f(xk + αkdk)‖3/2, ε3H

}
,

where

cn :=
η

6
min

{[
2

LH

]3/2
,

[
3θ

LH + η

]3}
.

Proof. Note first that the Newton direction dk = dnk is computed only when
∇2f(xk)) � εHI, so we have

(22) ‖dk‖ ≤ ‖∇2f(xk)−1‖‖gk‖ ≤ Ug/εH .

Suppose first that the step length αk = 1 satisfies the decrease condition (7).
Then from (5) and (10), we have

‖∇f(xk + αkdk)‖ = ‖∇f(xk + dk)−∇f(xk) +∇f(xk)‖

=
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk

∥∥ ≤ LH
2
‖dk‖2.

We thus have the following bound on the decrease obtained with the unitary Newton
step:

(23) f(xk)− f(xk + dk) ≥ η

6

[
2

LH

]3/2
‖∇f(xk + dk)‖3/2.

Suppose now that the unit step length does not allow for a sufficient decrease as
measured by (7). Then this condition must fail for αk = θj for some j ≥ 0. For this
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value, we have from (10) that

−η
6
θ3j‖dk‖3 ≤ f(xk + θj dk)− f(xk)

≤ θjgTk dk +
θ2j

2
dTk∇2f(xk)dk +

LH
6
θ3j‖dk‖3

≤ θj
(
θj

2
− 1

)
dTk∇2f(xk)dk +

LH
6
θ3j‖dk‖3

≤ −θ
j

2
dTk∇2f(xk)dk +

LH
6
θ3j‖dk‖3

≤ −θ
j

2
εH‖dk‖2 +

LH
6
θ3j‖dk‖3,(24)

where we used∇2f(xk) � εHI for the final inequality. This relation holds in particular
for j = 0, in which case it gives

−η
6
‖dk‖3 ≤ −

εH
2
‖dk‖2 +

LH
6
‖dk‖3

leading to the following lower bound on the norm of the Newton step:

(25) ‖dk‖ ≥
3

LH + η
εH .

More generally, for any integer j such that the decrease condition is not satisfied, we
have from (24) that

(26) θj ≥
√

3

LH + η
ε
1/2
H ‖dk‖

−1/2.

For any j > jn, the last inequality is violated since

θj < θjn ≤
√

3

LH + η

εH√
Ug

=

√
3

LH + η
ε
1/2
H

ε
1/2
H√
Ug
≤
√

3

LH + η
ε
1/2
H ‖dk‖

−1/2,

where we used (22) for the final inequality. This proves that the condition (7) will be
satisfied by some jk ≤ jn+1. Since α = θjk−1 does not fulfill the decrease requirement,
it follows from (26) that

θjk ≥ θ

√
3

LH + η
ε
1/2
H ‖dk‖

−1/2.

By substituting this lower bound into the sufficient decrease condition, and then using
(25), we obtain

f(xk)− f(xk + αkdk) = f(xk)− f(xk + θjkdk)

≥ η

6
θ3 jk‖dk‖3

≥ η

6
θ3
[

3

LH + η

]3/2
ε
3/2
H ‖dk‖

−3/2‖dk‖3

≥ η

6
θ3
[

3

LH + η

]3
ε3H ,

where the final inequality is from (25). We obtain the required result by combining
this inequality with the bound (23) for the case in which αk = 1.
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1458 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Our last intermediate result addresses the case of a regularized Newton step.

Lemma 4. Let Assumptions 1 and 2 hold. Suppose that dk = drk at the kth iter-
ation of Algorithm 1. Then the backtracking line search terminates with step length
αk = θjk , with jk ≤ jr + 1, where

(27) jr :=

[
logθ

(
6

LH + η

ε2H
Ug

)]
+

,

and we have

(28) f(xk)− f(xk + αkdk) ≥ cr min
{
‖∇f(xk + αkdk)‖3 ε−3H , ε3H

}
,

where

cr :=
η

6
min


[

1

1 +
√

1 + LH/2

]3
,

[
6θ

LH + η

]3 .

Proof. Note first that the regularized Newton step is taken only when ∇2f(xk) �
−εHI. Thus the minimum eigenvalue of the coefficient matrix in (6) is λk+2εH ≥ εH ,
and we have

(29) ‖dk‖ ≤
‖gk‖

λk + 2εH
≤ ‖gk‖

εH
≤ Ug

εH
.

Suppose first that the unit step is accepted. Then the gradient norm at the new
point satisfies

‖∇f(xk + dk)‖ = ‖∇f(xk + dk)−∇f(xk) +∇f(xk)‖
=
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk − 2εHdk

∥∥
≤ LH

2
‖dk‖2 + 2εH‖dk‖,

and therefore

LH
2
‖dk‖2 + 2εH‖dk‖ − ‖∇f(xk + dk)‖ ≥ 0.

By treating the left-hand side as a quadratic in ‖dk‖ and applying Lemma 17 with
a = 2, b = 2LH , and t = ‖∇f(xk + dk)‖/ε2H , we obtain from this bound that

‖dk‖ ≥
−2εH +

√
4ε2H + 2LH‖∇f(xk + dk)‖

LH

=
−2 +

√
4 + 2LH‖∇f(xk + dk)‖/ε2H

LH
εH

≥ −2 +
√

4 + 2LH
LH

min
(
‖∇f(xk + dk)‖/ε2H , 1

)
εH

=
2LH

LH(2 +
√

4 + 2LH)
min (‖∇f(xk + dk)‖/εH , εH)

=
1

1 +
√

1 + LH/2
min (‖∇f(xk + dk)‖/εH , εH) .(30)
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Therefore, if the unit step is accepted, we have

f(xk)− f(xk + dk)

≥ η

6
‖dk‖3 ≥

η

6

[
1

1 +
√

1 + LH/2)

]3
min

(
‖∇f(xk + dk)‖3ε−3H , ε3H

)
.(31)

If the unit step does not yield a sufficient decrease, there must be a value j ≥ 0
such that (7) is not satisfied for α = θj . For such j, and using again (10), we have

−η
6
θ3j‖dk‖3 ≤ f(xk + θjdk)− f(xk)

≤ θjg>k dk +
θ2j

2
d>k ∇2f(xk)dk +

LH
6
θ3j‖dk‖3

= θj
(

1− θj

2

)
g>k dk − εHθ2j‖dk‖2 +

LH
6
θ3j‖dk‖3

≤ −εHθ2j‖dk‖2 +
LH
6
θ3j‖dk‖3.

Thus, for any j ≥ 0 for which sufficient decrease is not obtained, one has

(32) θj ≥ 6

LH + η
εH‖dk‖−1.

Meanwhile, we have from the definition of jr that

θjr ≤ 6

LH + η

ε2H
Ug
≤ 6

LH + η
εH
εH
Ug
≤ 6

LH + η
εH‖dk‖−1,

using the upper bound (29). By comparing this bound with (32), we deduce that the
backtracking line-search procedure terminates with jk ≤ jr + 1, where jk ≥ 1 by our
earlier assumption. Thus, since (32) is satisfied for j = jk − 1, we have

θjk ≥ 6θ

LH + η
εH‖dk‖−1,

and therefore

f(xk)− f(xk + θjkdk) ≥ η

6
θ3jk‖dk‖3 ≥

η

6

[
6θ

LH + η

]3
ε3H .

By combining this bound with (31), obtained for the unit-step case, we obtain the
result.

By combining the estimates of function decrease proved in the lemmas above, we
bound the number of iterations needed by Algorithm 1 to satisfy the approximate
second-order optimality conditions (8).

Theorem 5. Let Assumptions 1 and 2 hold. Then Algorithm 1 reaches an iterate
that satisfies (8) in at most

(33) Cmax
{
ε−3g ε3H , ε

−3/2
g , ε−3H

}
iterations, where

(34) C := c−1(f(x0)− flow), c := min {cg, cv, cn, cr} .
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1460 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Proof. Suppose l is an iteration at which the conditions for termination are not
satisfied. We consider in turn the various types of steps that could have been taken at
iteration l and obtain a lower bound on the amount of decrease obtained from each.
Table 1 is helpful in working through the various cases. We consider two main cases,
and several subcases.

Case 1: λl < −εH . From Table 1, we see that in this case, the search direction is
either a scaling of −gk or the most-negative-curvature direction vk. When Rl < −εH ,
we have dl = Rl

‖gl‖gl, and Lemma 1 indicates the following bound on function decrease:

f(xl)− f(xl+1) ≥ ceε
3
H .

When Rl ∈ [−εH , εH ] and ‖gl‖ > εg, we have dl = −gl/‖gl‖1/2. Thus, using Lemma 2,
we have

f(xl)− f(xl+1) ≥ cg min
{
ε3gε
−3
H , ε3/2g

}
.

For the remaining cases in which “‖gl‖ ≤ εg and Rl ∈ [−εH , εH ]” and “‖gl‖ > εg and
Rl > εH ,” the search direction is necessarily vl. We have from Lemma 1 that

f(xl)− f(xl+1) ≥ ce

[
|d>l ∇2f(xl)dl|
‖dl‖2

]3
= ce|λl|3 ≥ ceε3H .

Case 2: λl ≥ −εH , ‖gl‖ > εg, and ‖gl+1‖ > εg. In this case, we have three
possible choices for the search direction. The first one is dl = −gl/‖gl‖1/2, in which
case we have from Lemma 2 that

f(xl)− f(xl+1) ≥ cg min
{
ε3gε
−3
H , ε3/2g

}
.

The second possible choice is the Newton direction dl = dnl . Using Lemma 3, we
obtain

f(xl)− f(xl+1) ≥ cn min
{
ε3/2g , ε3H

}
.

The third choice is the regularized Newton direction dl = drl , for which Lemma 4
yields

f(xl)− f(xl+1) ≥ cr min
{
‖gl+1‖3ε−3H , ε3H

}
≥ cr min

{
ε3gε
−3
H , ε3H

}
.

By putting all these bounds together, we obtain the following lower bound on the
decrease in f on iteration l:

(35) f(xl)− f(xl+1) ≥ cmin
{
ε3gε
−3
H , ε3/2g , ε3H

}
,

where c is defined in (34). Consequently, summing across all iterations up to k yields

f(x0)− flow ≥
k−1∑
l=0

f(xl)− f(xl+1) ≥ kcmin
{
ε3gε
−3
H , ε3/2g , ε3H

}
,

which implies that k is bounded above by (33). Therefore, there must exist a finite
index kε such that (8) is satisfied. For this index, the bound (33) applies, hence the
result.

We now look further into the various components of the bound established in
Theorem 5.
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Dependencies on the tolerances (εg, εH). The result (33) makes explicit the varia-
tion of the bound with respect to the two tolerances. As this result differs from those
in the literature, we follow two usual approaches to ease the comparison with other
methods.

Letting εg = ε and εH =
√
ε for some ε ∈ (0, 1) allows us to equate all components

of the maximum term in (33); indeed,

ε−3g ε3H = ε−3/2g = ε−3H = ε−3/2,

and therefore our bound is O(ε−3/2). On the other hand, the choice εg = εH = ε,
which puts first- and second-order requirement on an equal footing, leads to a bound in
O(ε−3). Both match the optimal bounds known for second-order globally convergent
methods in terms of iteration count.

Dependencies on problem-algorithmic constants. Although our main goal is to
analyze dependencies with respect to the tolerances, our bounds can also reflect de-
pendencies on problem-dependent quantities, namely, the initial function value dis-
crepancy f(x0) − flow and the Lipschitz constants Lg and LH . It can be seen from
the lemmas of this subsection that

ce = O(L−3H ), cg = O(L
−3/2
H ), cn = O(L−3H ), cr = O(L−3H ).

As a result, the iteration complexity of our method is in

O
(

(f(x0)− flow)L3
H max

{
ε−3g ε3H , ε

−3/2
g , ε−3H

})
.

2.3. Evaluation/inner iteration complexity. We now discuss the function
evaluation complexity of Algorithm 1, which counts the number of function calls
required by the algorithm before its termination conditions are satisfied. We need to
refine the iteration complexity analysis of section 2.2 to take into account the function
evaluations associated with the backtracking line-search process.

Theorem 6. Suppose that Assumptions 1 and 2 hold. The number of function
evaluations required by Algorithm 1 prior to reaching a point that satisfies (8) is at
most

(36)
[
1 +K + logθ

(
min{ε2H , ε1/2g ε−1H }

)]
Cmax

{
ε−3g ε3H , ε

−3/2
g , ε−3H

}
,

where

K :=

[
logθ

(
min

{
3

LH + η
,

5

3
,

1

(LH + η)1/2
,

√
3

(LH + η)Ug
,

6

(LH + η)Ug

})]
+

and C is defined as in Theorem 5.

Proof. Theorem 5 gives a bound on the number of iterations. By Lemmas 1–4, a
bound on the corresponding number of function evaluations is

(1 + max {je, jg, jn, jr}) Cmax
{
ε−3g ε3H , ε

−3/2
g , ε−3H

}
.

Using the definitions of je, jg, jn, and jr from Lemmas 1, 2, 3, and 4, respectively,
and the fact that εg, εH ∈ (0, 1) yields the result.
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With our specific choices of εg and εH mentioned in the previous section, the
evaluation complexity bounds are O(log( 1

ε )ε−3/2) and O(log( 1
ε )ε−3), respectively. We

can also derive a bound that includes dependencies on problem constants; for instance,
the bound corresponding to εg = εH = ε is

O
(

log
(

max{LH ,Ug,UH}
ε

)
(f(x0)− flow)L−3H ε−3

)
.

2.4. Local convergence. In the previous sections, we have derived global com-
plexity guarantees for Algorithm 1. We now aim to show rapid local convergence for
the variant of the algorithm that invokes the Local Phase, Algorithm 2, rather than
terminating as soon as the conditions (8) are satisfied. We note that local conver-
gence results like the one we prove here have in the past gone hand in hand with
global convergence results in smooth nonconvex optimization (see, for example, [18]).
More recently, several works in the optimization literature have established rapid local
convergence alongside global complexity guarantees [2, 6, 11].

For this section, we will make the following additional assumption.

Assumption 3. The sequence of iterates generated by Algorithm 1 in conjunction
with Algorithm 2 converges to a local minimizer, that is, a point x∗ at which∇f(x∗) =
0 and ∇2f(x∗) � 0.

Under this assumption, the following result is immediate.

Lemma 7. Under Assumptions 1, 2 and 3, there exists k0 ∈ N such that, for every
k ≥ k0, we have for µ := 1

2 min(1, λmin(∇2f(x∗))) > 0 that

(37) µI � ∇2f(xk) � UHI

and

(38) ‖gk‖ < min

{
3µ4

LH + η
, εg

}
.

Note that the conditions on k0 in Lemma 7 are such that the combined strategy of
Algorithms 1 and 2 will have entered the Local Phase (Algorithm 2) before iteration
k0, and will stay in this phase at all subsequent iterations.

We now establish a local quadratic convergence result.

Theorem 8. Suppose that Assumptions 1, 2, and 3 are satisfied, and let µ and
k0 be as defined in Lemma 7. Then, for every k ≥ k0, the method always takes the
Newton direction with a unit step length and we have

(39) ‖gk+1‖ ≤
LH
2µ2
‖gk‖2 ≤

3

8
‖gk‖.

Proof. Let k ≥ k0, so that we are in the Local Phase (Algorithm 2) at iteration
k. By Lemma 7, the Hessian at ∇2f(xk) is positive definite, with smallest eigenvalue
bounded below by µ > 0. Thus Algorithm 2 computes the Newton direction dk = dnk
and we have

‖dk‖ ≤ ‖gk‖/µ, g>k dk ≤ −µ‖gk‖2.
We thus have

f(xk + dk)− f(xk) ≤ g>k dk +
1

2
d>k ∇2f(xk)dk +

LH
6
‖dk‖3

=
1

2
g>k dk +

LH
6
‖dk‖3 ≤ −

µ

2
‖gk‖2 +

LH
6
‖dk‖3.
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Thus if the sufficient decrease condition f(xk+dk)−f(xk) ≤ −η6‖dk‖
3 is not satisfied

for the unit step, we must have

LH + η

6
‖dk‖3 ≥

µ

2
‖gk‖2,

which by the bound ‖dk‖ ≤ ‖gk‖/µ can be true only if

LH + η

6

‖gk‖3

µ3
≥ µ

2
‖gk‖2 ⇔ ‖gk‖ ≥

3µ4

LH + η
,

which contradicts (38). Thus the unit Newton step is taken and we have

‖gk+1‖ = ‖∇f(xk + dk)‖ =
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk

∥∥
≤ LH

2
‖dk‖2

≤ LH
2µ2
‖gk‖2

<
LH
2µ2

3µ4

LH + η
‖gk‖

≤ 3

2
µ2‖gk‖ ≤

3

8
‖gk‖,

completing the proof.

3. A variant with inexact directions. In section 2, we have assumed that
certain linear-algebra operations in Algorithm 1—the linear system solves of (5) and
(6) and the eigenvalue/eigenvector computation of (4)—are performed exactly. In
a large-scale setting, the cost of these operations can be prohibitive, so iterative
techniques that perform these operations inexactly are of interest. In this section, we
describe inexact methods for these key operations and examine their consequences for
the complexity analysis.

3.1. Inexact eigenvector calculation: Randomized Lanczos method.
The problem of finding the minimum eigenvalue of the matrix in (4) and its asso-
ciated eigenvector can be reformulated as one of finding the maximum eigenvalue and
eigenvector of a positive semidefinite matrix. The Lanczos algorithm with a random
starting vector is an appealing option for the latter problem, yielding an ε-approximate
eigenvector in O(log(n/δ)ε−1/2) iterations, with probability at least 1 − δ [15]. This
fact has been used in several methods that achieve fast convergence rates [1, 3, 4]. In
order to apply this method to a matrix that is not positive definite, one must make use
of a bound on the Hessian norm. For sake of completeness, we spell out the procedure
in the following lemma.

Lemma 9. Let H be a symmetric matrix satisfying ‖H‖ ≤ M for some M > 0.
Suppose that the Lanczos procedure is applied to find the largest eigenvalue of MI−H
starting at a random vector uniformly distributed over the unit sphere. Then, for any
ε > 0 and δ ∈ (0, 1), there is a probability of at least 1− δ that the procedure outputs
a unit vector v such that

(40) v>Hv ≤ λmin(H) + ε

in at most

(41) min

{
n,

ln(n/δ2)

2
√

2

√
M

ε
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1464 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

iterations.
After at most n iterations, the procedure obtains a unit vector v such that v>Hv =

λmin(H) with probability 1.

Proof. By definition, the matrix H ′ = MI−H is a symmetric positive semidefinite
matrix with its spectrum lying in [0, 2M ]. Applying the Lanczos procedure to this
matrix from a starting point drawn randomly from the unit sphere yields a unit vector
v such that

(42) v>H ′v ≥
(

1− ε

2M

)
λmax(H ′) ≥

(
1− ε

2M

)
(M − λmin(H))

in no more than min{n, ln(n/δ2)/4
√
ε/(2M)} iterations with probability at least 1−δ.

(This result is from [15, Theorem 4.2] extended by a continuity argument from the
positive definite case to the positive semidefinite case; see [15, Remark 7.5].) Moreover,
using (42), we have

v>Hv = −v>H ′v +M

≤ −
(

1− ε

2M

)
(M − λmin(H)) +M

= −M + λmin(H) +
ε

2
− ε

2M
λmin(H) +M

= λmin(H) +
ε

2
− ε

2M
λmin(H)

≤ λmin(H) +
ε

2
+

ε

2M
M

= λmin(H) + ε,

as required.

Lemma 9 admits the following variant for the case in which we fix the number of
Lanczos iterations.

Lemma 10. Let H be a symmetric matrix with ‖H‖ ≤ M . Suppose that q iter-
ations of the Lanczos procedure are applied to find the largest eigenvalue of MI −H
starting at a random vector uniformly distributed over the unit sphere. Then, for any
ε > 0, the procedure outputs a unit vector v such that v>Hv ≤ λmin(H) + ε with
probability at least

(43) 1− δ = 1−
√
n exp

[
−
√

2q

√
ε

M

]
.

We point out that the choice δ = 0 (or, equivalently, q = n) is possible, that
is, after n iterations, the Lanczos procedure started with a random vector uniformly
generated over the unit sphere returns an approximate eigenvector with probability
one [15, Theorem 4.2(a)].

3.2. Inexact Newton and regularized Newton directions: Conjugate
gradient method. Here we describe the use of the conjugate gradient (CG) algo-
rithm to solve the symmetric positive definite linear systems (5) or (6)—the Newton
and regularized Newton equations, respectively. The CG method is the most popu-
lar iterative method for positive definite linear systems due to its rich convergence
theory and strong practical performance. It has also been popular in the context of
nonconvex smooth minimization; see [19]. It requires only matrix-vector operations

D
ow

nl
oa

de
d 

09
/1

1/
18

 to
 1

28
.1

04
.1

53
.4

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLEXITY OF SECOND-ORDER LINE-SEARCH ALGORITHMS 1465

involving the coefficient matrix (often these can be found or approximated without
explicit knowledge of the matrix) together with some vector operations. It does not
require knowledge or estimation of the extreme eigenvalues of the matrix.

We apply CG to a system Hd = −g where there are positive quantities m and M
such that mI � H �MI, so that the condition number κ of H is bounded above by
M/m. Standard convergence theory indicates that CG outputs a vector d such that
‖Hy + g‖ ≤ ζ‖g‖ (for ζ ∈ (0, 1)) in

O
(

min
{
n, κ1/2 log(κ/ζ)

})
iterations, with κ being the condition number of H (we obtain the result as a corollary
of Lemma 11 below). We use a different stopping criterion, namely,

(44) ‖Hd+ g‖ ≤ 1

2
ζ min {‖g‖m‖d‖}

for some ζ ∈ (0, 1). This criterion is stronger than the one typically used in truncated
Newton–Krylov methods in that we require the residual norm to be bounded by a
multiple of the norm of the approximate direction, as well as being bounded by a
specified fraction of the initial residual norm. The extra criterion resembles the so-
called s-condition arising in cubic regularization techniques, where the approximate
minimizer sk of the cubic model mk is required to satisfy

(45) ‖∇mk(sk)‖ ≤ O
(
‖sk‖2

)
.

This property provides a lower bound on ‖sk‖, which is instrumental in obtaining the

optimal complexity order of O(ε
−3/2
g ) for first-order convergence [7]. Our condition

replaces ‖sk‖2 by m‖dk‖, but serves a similar purpose.
The next lemma establishes a bound on the number of CG iterations needed to

reach the desired accuracy.

Lemma 11. Let Hd = −g be a linear system with H symmetric and mI � H �
MI, where m ∈ (0, 1), M > 0, and ‖g‖ > 0. Then the conjugate gradient algorithm
computes a vector d such that (44) holds for some ζ ∈ (0, 1) in at most

(46) min
{
n, 12
√
κ ln

(
4κ3/2/ζ

)}
iterations, where κ = M/m.

Proof. Let d(q) be the iterate obtained at the qth iteration of the conjugate gradi-
ent method applied to Hd = −g, with d(0) = 0. The classical bound on the behavior
of the conjugate gradient residual [18, section 5.1] yields

(47)
∥∥∥d(q) +H−1g

∥∥∥
H
≤ 2

(√
κ− 1√
κ+ 1

)q
‖H−1g‖H ,

where ‖x‖H =
√
x>Hx. From this definition and the bounds on the spectrum of H,

we have

‖d(q) +H−1g‖2H = (d(q) +H−1g)TH(d(q) +H−1g)

= (Hd(q) + g)TH−1(Hd(q) + g) ≥ 1

M
‖Hd(q) + g‖2,
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1466 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

as well as

‖H−1g‖2H = gTH−1g ≤ 1

m
‖g‖2.

By substituting these bounds into (47), we obtain the following relation:

(48)
∥∥∥Hd(q) + g

∥∥∥ ≤ 2κ1/2
(√

κ− 1√
κ+ 1

)q
‖g‖.

Thus, as long as our stopping criterion is not satisfied, we have

(49)
1

2
ζ min

{
‖g‖,m‖d(q)‖

}
≤ 2κ1/2

(√
κ− 1√
κ+ 1

)q
‖g‖.

Furthermore, defining r(q) = Hd(q) + g, we have

‖d(q)‖ = ‖H−1(−g + r(q))‖ ≥ ‖g − r
(q)‖

M
≥
√
‖g‖2 − 2gT r(q) + ‖r(q)‖2

M
≥ ‖g‖

M

for all q ≥ 1, where we used the facts that r(0) = g and that in CG the residuals are
orthogonal: (r(i))T r(j) = 0 for i 6= j. Using this bound within (49), we obtain

ζ

2
min{1,m/M}‖g‖ ≤ 2κ1/2

(√
κ− 1√
κ+ 1

)q
‖g‖ ⇔ ζ

4κ3/2
≤
(√

κ− 1√
κ+ 1

)q
.

By taking logarithms on both sides, we arrive at

q ≤ ln(ζ/(4κ3/2))

ln
(√

κ−1√
κ+1

) =
ln(4κ3/2/ζ)

ln
(

1 + 2√
κ−1

) ≤ 1

2

√
κ ln

(
4κ3/2

ζ

)
,

where the bound ln(1 + 1
t ) ≥

1
t+1/2 was used to obtain the last inequality.

3.3. Complexity analysis based on inexact computations. We present
a variant of our main algorithm, specified as Algorithm 3, in which computation
of approximate eigenvectors and linear system solves are performed inexactly by the
means described above. Algorithm 3 requires two parameters not used in Algorithm 1:
the upper bound UH on the Hessian norms, defined in (9), and a probability threshold
δ. As we expect only to recover inexact global complexity guarantees, the method
does not exploit a local phase.

When Algorithm 3 terminates, condition (8) must hold. At termination, we have
min(‖gk‖, ‖gk+1‖) ≤ εg and λik ≥ − 1

2εH . With high probability, λik is within 1
2εH of

λmin(∇2f(xk)), so we must have λmin(∇2f(xk)) ≥ −εH , thus satisfying (8).
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Algorithm 3 Inexact second-order line-search method

Init. Choose x0 ∈ Rn, θ ∈ (0, 1), ζ, δ ∈ [0, 1), η > 0, εg ∈ (0, 1), εH ∈ (0, 1), UH > 0
satisfying (9);
for k = 0, 1, 2, . . . do
Step 1. (First Order) Set gk = ∇f(xk);
if ‖gk‖ = 0 then

Go to Step 2;
end if
Compute Rk =

g>k ∇
2f(xk)gk
‖gk‖2 ;

if Rk < −εH then
Set dk = Rk

‖gk‖gk and go to Step LS;

else if Rk ∈ [−εH , εH ] and ‖gk‖ > εg then
Set dk = − gk

‖gk‖1/2
and go to Step LS;

else
Go to Step 2;

end if
Step 2. (Inexact Second Order) Compute an inexact eigenvector vik such

that (with probability 1 − δ)

(50) [vik]>gk ≤ 0, ‖vik‖ = |λik|, λik ≤ λmin

(
∇2f(xk)

)
+ 1

2εH ,

where λik = [vik]>∇2f(xk)vik/‖vik‖2;
if ‖gk‖ ≤ εg and λik ≥ − 1

2εH then
Terminate;

else if λik < − 1
2εH then

(Negative Curvature) Set dk = vik;
else if λik >

3
2εH then

(Inexact Newton) Use conjugate gradient to calculate dk = dink , where

(51) ‖∇2f(xk)dink + gk‖ ≤ 1
2ζ min

{
‖gk‖, εH‖dink ‖

}
;

else
(Inexact Regularized Newton) Use conjugate gradient to calculate dk =

dirk , where

(52) ‖(∇2f(xk) + 2εHI)dirk + gk‖ ≤ 1
2ζ min

{
‖gk‖, εH‖dirk ‖

}
;

end if
Go to Step LS;
Step LS. (Line Search) Compute a step length αk = θjk , where jk is the

smallest nonnegative integer such that

(53) f(xk + αkdk) < f(xk)− 1
6ηα

3
k‖dk‖3

holds, and set xk+1 = xk + αkdk;
if dk = dink or dk = dirk and ‖∇f(xk+1)‖ ≤ εg then

Terminate;
end if

end forD
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1468 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Table 2
Steps and associated decrease lemmas for Algorithm 3.

Context Direction Decrease

‖gk‖ = 0 - λik < −
εH
2

vik Lemma 1

Rk < −εH Rkgk/‖gk‖ Lemma 1

‖gk‖ > εg Rk ∈ [−εH , εH ] −gk/‖gk‖1/2 Lemma 2

‖gk‖ ≤ εg Rk ∈ [−εH , εH ] λik < −
1
2
εH vik Lemma 1

‖gk‖ ≤ εg Rk ∈ [−εH , εH ] λik ∈ [− 1
2
εH ,

3
2
εH ] dirk Lemma 13

‖gk‖ ≤ εg Rk ∈ [−εH , εH ] λik >
3
2
εH dink Lemma 12

‖gk‖ > εg Rk > εH λik < −
1
2
εH vik Lemma 1

‖gk‖ > εg Rk > εH λik ∈ [− 1
2
εH ,

3
2
εH ] dirk Lemma 13

‖gk‖ > εg Rk > εH λik >
3
2
εH dink Lemma 12

Table 2 shows a summary of the possible choices for the search direction. It
shows the same number of cases as Table 1, with the context now determined by
the eigenvalue estimate λik, with one exception. There is an extra row for the case in
which ‖gk‖ ≤ εg, Rk ∈ [−εH , εH ], λik >

3
2εH , because of possible (but low-probability)

failure of the randomized Lanczos process to detect the smallest eigenvalue of ∇2f(xk)
to the required accuracy. Table 2 mentions two additional lemmas, which respectively
replace Lemmas 3 and 4 in order to take inexactness into account. We state and prove
these results next.

Lemma 12. Let Assumptions 1 and 2 hold. Suppose that an inexact Newton direc-
tion dk = dink is computed at the kth iteration of Algorithm 3. Then, with probability
at least 1− δ, the backtracking line search terminates with step length αk = θjk , with
jk ≤ jinr + 1, where

(54) jinr :=

[
1

2
logθ

(
3

LH + η

(1− ζ)ε2H
Ug
√

1 + ζ2/4

)]
+

,

and we have

(55) f(xk)− f(xk + αkdk) ≥ cin min
{
‖∇f(xk + αkdk)‖3ε−3H , ε3H

}
,

where

cin :=
η

6
min


[

4

ζ +
√
ζ2 + 8LH

]3
,

[
3θ2(1− ζ)

LH + η

]3 .

Proof. We observe first that when the Newton step is computed in Algorithm 3
we have from (40) that

3εH
2

< λik ≤ λmin

(
∇2f(xk)

)
+
εH
2
⇒ λmin

(
∇2f(xk)

)
≥ εH ,

with probability 1− δ. Suppose first that the step length αk = 1 satisfies the decrease
condition (53). Then, defining

(56) rk := ∇2f(xk)dk + gk
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and using the inexactness criterion for the inexact Newton step dk, we find that the
gradient at the next point xk + dk satisfies

‖∇f(xk + dk)‖ = ‖∇f(xk + dk)−∇f(xk) +∇f(xk)‖
=
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk + rk

∥∥
≤ LH

2
‖dk‖2 + ‖rk‖ ≤

LH
2
‖dk‖2 +

ζ

2
εH‖dk‖.

We obtain a lower bound on ‖dk‖ by taking the root of the above quadratic and
applying Lemma 17 with a = ζεH/2, b = 2LHε

2
H , and t = ‖∇f(xk + dk)‖/ε2H to

obtain

‖dk‖ ≥
− ζ2 εH +

√
ζ2

4 ε
2
H + 2LH‖∇f(xk + dk)‖

LH

≥
− ζ2 εH +

√
ζ2

4 ε
2
H + 2LHε2H

LH
min

(
‖∇f(xk + dk)‖/ε2H , 1

)
=
−ζ +

√
ζ2 + 8LH

2LH
min (‖∇f(xk + dk)‖/εH , εH)

=
4

ζ +
√
ζ2 + 8LH

min (‖∇f(xk + dk)‖/εH , εH) .(57)

Therefore, taking the inexact Newton step with a unit step length guarantees

f(xk)− f(xk + dk) ≥ η

6
‖dk‖3 ≥

η

6

[
4

ζ +
√
ζ2 + 8LH

]3
min

(
‖∇f(xk + dk)‖3ε−3H , ε3H

)
,

so the inequality (55) is satisfied in the case of a unit step αk = 1.
To complete the proof, consider the case in which the unit step length does not

lead to sufficient decrease. In that case, for any value j ≥ 0 such that (53) is not
satisfied, we have

−η
6
θ3j‖dk‖3 ≤ f(xk + θjdk)− f(xk)

≤ θjg>k dk +
θ2j

2
d>k ∇2f(xk)dk +

LH
6
θ3j‖dk‖3

≤ θj(−∇2f(xk)dk + rk)>dk +
θ2j

2
d>k ∇2f(xk)dk +

LH
6
θ3j‖dk‖3

= −θj
(

1− θj

2

)
d>k ∇2f(xk)dk + θjd>k rk +

LH
6
θ3j‖dk‖3

≤ −θ
j

2
εH‖dk‖2 + θj‖dk‖‖rk‖+

LH
6
θ3j‖dk‖3

≤ −θ
j

2
(1− ζ)εH‖dk‖2 +

LH
6
θ3j‖dk‖3.

Thus, for any j ≥ 0 for which sufficient decrease is not obtained, we have

(58) θ2j ≥ 3

LH + η
(1− ζ)εH‖dk‖−1.
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In particular, since (58) holds for j = 0, we have

(59) ‖dk‖ ≥
3

LH + η
(1− ζ)εH .

By the definitions of dk and of rk in (56), we also have the upper bound on its norm

‖dk‖ =
∥∥∇2f(xk)−1 (gk − rk)

∥∥ ≤ ‖∇2f(xk)−1‖ ‖gk − rk‖ ≤
1

εH

√
‖gk‖2 + ‖rk‖2

≤
√

1 + ζ2/4

εH
‖gk‖

≤
√

1 + ζ2/4

εH
Ug,

using again the fact that gk and rk are orthogonal (by the properties of the CG
algorithm), as well as the criterion (51) and the bound (9).

Meanwhile, for any j > jinr, we have

θ2j < θ2jinr ≤ 3

LH + η
(1− ζ)

ε2H
Ug
√

1 + ζ2/4
≤ 3

LH + η
(1− ζ)εH

εH

Ug
√

1 + ζ2/4

≤ 3

LH + η
(1− ζ)εH‖dk‖−1.

As a result, (58) is violated for j > jinr, which means that the line search must
terminate with a step length αk = θjk satisfying (53), with 1 ≤ jk ≤ jinr + 1. Since
the index j = jk − 1 ≥ 0 satisfies (58), we have

(60) θjk ≥

√
3θ2

LH + η
(1− ζ)ε

1/2
H ‖dk‖

−1/2,

and from the sufficient decrease condition we have

f(xk)− f(xk + θjkdk) ≥ η

6
θ3jk‖dk‖3 ≥

η

6

[
3θ2

LH + η
(1− ζ)

]3/2
ε
3/2
H ‖dk‖

3/2

≥ η

6

[
3θ2

LH + η
(1− ζ)

]3
ε3H ,

where the second inequality follows from (60) and the third inequality follows from
(59) (using the fact that θ ∈ (0, 1)). Hence, the claim (55) is satisfied in the case of
nonunit step length αk too, and the proof is complete.

Lemma 13. Let Assumptions 1 and 2 hold. Suppose that an inexact regularized
Newton direction dk = dirk is computed at the kth iteration of Algorithm 3. Then,
with probability at least 1− δ, the backtracking line search terminates with step length
αk = θjk , with jk ≤ jinr + 1, where jinr is defined as in (54), and we have

(61) f(xk)− f(xk + αkdk) ≥ cir min
{
‖∇f(xk + αkdk)‖3ε−3H , ε3H

}
,

where

cir :=
η

6
min


[

4

4 + ζ +
√

(4 + ζ)2 + 8LH

]3
,

[
3θ2(1− ζ)

LH + η

]3 .
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Proof. The inexact regularized Newton step is computed only when − 1
2εH ≤ λ

i
k ≤

3
2εH , so from (40) with ε = 1

2εH , we have

(62) λmin(∇2f(xk)) + 2εH ≥ λik − 1
2εH + 2εH ≥ εH ,

with probability at least 1− δ. Suppose first that the step length αk = 1 satisfies the
decrease condition (53). Then, defining rk = (∇2f(xk) + 2εHI)dk + gk, we have that

‖∇f(xk + dk)‖ = ‖∇f(xk + dk)−∇f(xk) +∇f(xk)‖
=
∥∥∇f(xk + dk)−∇f(xk)−∇2f(xk)dk − 2εHdk + rk

∥∥
≤ LH

2
‖dk‖2 + 2εH‖dk‖+ ‖rk‖

≤ LH
2
‖dk‖2 +

4 + ζ

2
εH‖dk‖.

Reasoning as in (57), with 4+ζ
2 replacing ζ

2 , we obtain the following lower bound on
‖dk‖:

(63) ‖dk‖ ≥
4

4 + ζ +
√

(4 + ζ)2 + 8LH
min

(
‖∇f(xk + dk)‖ε−1H , εH

)
.

Therefore, taking the unit regularized Newton step guarantees that

f(xk)− f(xk + dk) ≥ η

6
‖dk‖3

≥ η

6

[
4

4 + ζ +
√

(4 + ζ)2 + 8LH

]3
min

(
‖∇f(xk + dk)‖3ε−3H , ε3H

)
,

so the result of the theorem holds in the case in which the unit step satisfies the
sufficient decrease condition.

To complete the proof, we consider the case in which αk < 1. In that case, for
any value j ≥ 0 such that (53) is not satisfied, we have from the definition of rk, the
bound on ‖rk‖ in the definition of dirk , and (62) that

−η
6
θ3j‖dk‖3 ≤ f(xk + θjdk)− f(xk)

≤ θjg>k dk +
θ2j

2
d>k ∇2f(xk)dk +

LH
6
θ3j‖dk‖3

= −θj
[
∇2f(xk)dk + 2εHdk − rk

]>
dk +

θ2j

2
d>k ∇2f(xk)dk

+
LH
6
θ3j‖dk‖3

= −θj
(

1− θj

2

)
d>k [∇2f(xk) + 2εHI]dk − θ2jεH‖dk‖2 + θjr>k dk

+
LH
6
θ3j‖dk‖3

≤ −θ
j

2
εH‖dk‖2 − θ2jεH‖dk‖2 + θj‖rk‖‖dk‖+

LH
6
θ3j‖dk‖3

≤ −θ
j

2
εH‖dk‖2 + θj

ζ

2
εH‖dk‖2 +

LH
6
θ3j‖dk‖3

= −θ
j

2
(1− ζ)εH‖dk‖2 +

LH
6
θ3j‖dk‖3.
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1472 CLÉMENT W. ROYER AND STEPHEN J. WRIGHT

Thus, for any j ≥ 0 for which sufficient decrease is not obtained, one has

(64) θ2j ≥ 3

LH + η
(1− ζ)εH‖dk‖−1.

In particular, setting j = 0 in this expression, we obtain

(65) ‖dk‖ ≥
3

LH + η
(1− ζ)εH .

The right-hand side of (64) is bounded below, since

‖dk‖ =
∥∥[∇2f(xk) + 2εHI]−1 (−gk + rk)

∥∥ ≤ ‖[∇2f(xk) + 2εH ]−1‖ ‖−gk + rk‖

≤ 1

εH

√
‖gk‖2 + ‖rk‖2

≤
√

1 + ζ2/4

εH
‖gk‖

≤
√

1 + ζ2/4

εH
Ug,(66)

where we used again the orthogonality of gk and rk (from the properties of conjugate
gradient) as well as the condition (52). For any j > jinr, we have

θ2j < θ2jinr ≤ 3(1− ζ)

LH + η

ε2H
Ug
√

1 + ζ2/4
≤ 3(1− ζ)

LH + η
εH‖dk‖−1,

where the last inequality follows from (66). Therefore, (64) is violated for j > jinr,
which means that the line search must terminate with a step length αk = θjk , with
1 ≤ jk ≤ jinr + 1. The previous index j = jk − 1 satisfies (64), so we have

θ2jk ≥ 3θ2

LH + η
(1− ζ)εH‖dk‖−1,

so that

f(xk)− f(xk + θjkdk) ≥ η

6
θ3jk‖dk‖3

≥ η

6

[
3θ2

LH + η
(1− ζ)

]3/2
ε
3/2
H ‖dk‖

3/2

≥ η

6

[
3θ2

LH + η
(1− ζ)

]3
ε3H ,

where the final inequality follows from (65), using the fact that θ ∈ (0, 1). Thus,
condition(61) also holds in the case in which αk < 1, and the proof is complete.

Theorem 14. Let Assumptions 1 and 2 hold. Then, Algorithm 3 returns a point
xk satisfying (2) in at most

(67) K̂ := Ĉmax
{
ε−3g ε3H , ε

−3/2
g , ε−3H

}
iterations, where

Ĉ :=
f(x0)− flow

ĉ
, ĉ := min

{ce
8
, cg, cin, cir

}
,
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with probability at least 1 − K̂δ. The constants ce, cg, cin, and cir are defined in
Lemmas 1, 2, 12, and 13, respectively.

Proof. For any iteration l such that xl does not satisfy (8), we must have that
either min(‖gl‖, ‖gl+1‖) > εg or λmin(∇2f(xl)) < −εH , where the latter implies that
λil < − 1

2εH . Thus, similarly to the proof of Theorem 5, we can consider the following
two cases.

Case 1: λi
l < −

1
2
εH . From Table 2, we see that the same three choices for dl

as in the exact version are possible. If dl = Rl

‖gl‖gl, we have exactly as in Lemma 1

that

f(xl)− f(xl+1) ≥ ceε
3
H .

When dl = −gl/‖gl‖1/2, we have from Lemma 2 that

(68) f(xl)− f(xl+1) ≥ cg min
{
ε3gε
−3
H , ε3/2g

}
.

The remaining case corresponds to the choice dl = vil . Since

d>l ∇2f(xl)dl
‖dl‖2

= λil < −
εH
2
,

with probability at least 1 − δ in that case, one can use the result of Lemma 1 to
deduce that

f(xl)− f(xl+1) ≥ ce|λil|3 ≥
ce
8
ε3H ,

again with probability at least 1 − δ.

Case 2: λi
l ≥ −

1
2
εH , ‖gl‖ > εg, and ‖gl+1‖ > εg. In this situation, we

have three possible choices of search direction dl. If dl = −gl/‖gl‖1/2, we have again
from Lemma 2 that (68) holds. If the inexact Newton direction is taken, we obtain
by Lemma 12 that

f(xk)− f(xk+1) ≥ cin min
{
ε3gε
−3
H , ε3H

}
.

Finally, if the search direction is the inexact regularized Newton direction, that is,
dl = dirl , we have from Lemma 13 that

f(xk)− f(xk+1) ≥ cir min
{
ε3gε
−3
H , ε3H

}
.

By putting all these bounds together, as in the proof of Theorem 5, we obtain that
the number of iterations before reaching a point satisfying (8) is bounded above by
K̂ defined in the statement of the theorem.

Recalling that for each of these iterations there is a probability δ that the ran-
domized Lanczos iteration in (50) will fail, we bound the probability of failure during
the course of the algorithm by K̂δ.

Note that if δ is chosen large enough such that 1 − K̂δ < 0, Theorem 14 is not
informative. The same remark holds for the corollary below, which makes use of the
results from sections 3.1 and 3.2 to obtain a bound on the total number of Hessian-
vector multiplications and gradient evaluations needed by the procedure (assuming
that these operations cost roughly the same).
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Corollary 15. Suppose the assumptions of Theorem 14 hold and let δ ∈ (0, 1)
be given. Then the total number of gradient evaluations and Hessian-vector multipli-
cations required by Algorithm 3 to reach an iterate satisfying (8) is bounded by

(69)

[
2 + min

{
n, 1√

2
(UH + 2)1/2ε

−1/2
H ln

(
4(UH+2)3/2ε

−3/2
H

ζ

)}
+

min
{
n, (UH + 2)1/2ε

−1/2
H

ln(n/δ2)
2

}]
× K̂,

with probability 1− K̂δ.

Proof. The proof follows directly from Lemmas 9 and 11, setting M = UH+2 and
ε = εH/2, noting that for both Newton and regularized Newton steps the condition
number of the respective coefficient matrices can be bounded by (UH + 2)/εH .

As in section 2.2, we can particularize this result to a specific choice of tolerances.

Corollary 16. Suppose that the assumptions of Theorem 14 hold and let δ ∈
(0, 1) be given. Define εg = ε and εH =

√
ε for some ε ∈ (0, 1). Then the number of

gradient evaluations and Hessian-vector products needed in Algorithm 3 to satisfy (8)
is bounded by

(70)

[
2 + min

{
n, 1√

2
(UH + 2)1/2ε−1/4 ln

(
4(UH+2)3/2ε−3/4

ζ

)}
+

min
{
n, (UH + 2)1/2ε−1/4 ln(n/δ2)

2

}]
× Ĉε−3/2,

where Ĉ is defined as in Theorem 14, with probability at least 1− Ĉε−3/2δ.

This result is meaningful when δ � ε3/2. In terms of the complexity bound, such
a choice is not prohibitively small because δ enters into the bound (70) only inside a
log term.

We can obtain a bound for the case in which δ = 0 (that is, almost certainty),
at the cost of taking n Lanczos iterations whenever the smallest eigenvalue is needed
(see Lemma 9). In this case, the bound (70) either becomes O((n + ln(ε−1))ε−7/4)
or O(nε−3/2), depending on which term dominates in the quantity corresponding to
conjugate gradient iterations.

For very large n and δ > 0, we can consider that the term involving ε is smaller
than n in both minimum expressions in Corollary 16. In this case, the bound is

O
(

ln

(
1

min{ε, δ/
√
n}

)
ε−7/4

)
.

This complexity matches other recent findings [1, 4].
In terms of dependencies with respect to problem constants, we can reproduce

the analysis from section 2.2, replacing cn and cr by cin = O(L−3H ) and cir = O(L−3H ),
respectively. For instance, the bound from the previous paragraph is in

O
(

(f(x0)− flow)U
1/2
H L3

H ln

(
UH

min{ε, δ/
√
n}

)
ε−7/4

)
.

We point out that the dependency on LH of our bound is worse than those of [1, 4]
due to the lack of explicit use of this constant within our algorithm. Still, we believe
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our dependency to match that of other Newton-type methods (although those are not
emphasized in the related literature) and we consider such schemes as being more
amenable to highly nonlinear settings where estimating such a constant would likely
be impractical.

As a final note, we observe that one could also include the number of line-search
iterations into our complexity bound. However, this cost is essentially logarithmic in
1/ε, therefore it is dominated by the cost of the linear algebra techniques.

4. Discussion. Among the many algorithmic frameworks that have been pro-
posed for smooth nonconvex optimization with second-order complexity guarantees,
it can be difficult to determine the algorithmic features that affect the complexity
analysis or to understand how the guarantees provided by different algorithms relate
to one another. We have presented a second-order complexity analysis of a frame-
work that is based exclusively on line searches along certain directions. It does not
require solution of cubic-regularized or trust-region subproblems, or minimization of
convexified functions—operations that are needed by other approaches. Our search
directions are of several types—gradient, negative-curvature, Newton, and regular-
ized Newton—and we presented a variant of our method that allows inexact direction
computation using iterative methods. We believe that ours is the first approach of
line-search type to achieve known optimal complexity, among methods that identify
points that satisfy approximate second-order necessary conditions.

In addition to the results of this paper, we observe that it is possible to modify
our algorithms to attain points that satisfy termination conditions of the form (2)
(rather than (8)) by continuing to iterate in the situation in which ‖gk+1‖ ≤ εg but
λmin(∇2f(xk+1)) < −εH . Step k + 1 then yields a decrease that is a multiple of ε3H
(per Lemma 1), so the overall complexity estimates are preserved, even if step k in
this situation fails to produce a significant decrease in f .

In designing the framework of Algorithms 1 and 3, we have made some choices
to give preference to one direction choice over another and we have also incorporated
several types of steps. Given the recent literature in this area, our proposed scheme
is actually one particular instance of a broader class of methods with similar com-
plexity guarantees but possibly diverse practical performance. An implementation of
our approach would raise several delicate issues, for example, issues associated with
failure of the randomized Lanczos procedure for obtaining an estimate of the smallest
eigenvalue. An incorrect estimate here could lead to the conjugate gradient method
subsequently being applied to an indefinite matrix; a robust implementation would
need to detect and recover from such an occurrence. Additionally, the choice of suit-
able values for the bound on the Hessian norm is likely to be of critical importance.
Addressing these concerns in the aim of developing a practical algorithm with good
complexity guarantees is the subject of ongoing research.

Appendix A. Technical result. We prove a technical result that is used in
several proofs, including that of Lemma 4.

Lemma 17. For positive scalars a and b, and t ≥ 0, we have

−a+
√
a2 + bt ≥ (−a+

√
a2 + b) min(t, 1).

Proof. For the case in which t ≥ 1, we have

−a+
√
a2 + bt ≥ −a+

√
a2 + b = (−a+

√
a2 + b) min(t, 1),
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so the result holds in this case. For t ∈ (0, 1), we need to show that

−a+
√
a2 + bt ≥ (−a+

√
a2 + b)t.

This claim follows from the chain of equivalences

−a+
√
a2 + bt ≥ (−a+

√
a2 + b)t

⇔
√
a2 + bt ≥ (−a+

√
a2 + b)t+ a

⇔ a2 + bt ≥ (−a+
√
a2 + b)2t2 + 2a(−a+

√
a2 + b)t+ a2

⇔(b+ 2a2 − 2a
√
a2 + b)t ≥ (−a+

√
a2 + b)2t2

⇔ (−a+
√
a2 + b)2t ≥ (−a+

√
a2 + b)2t2

⇔ 1 ≥ t,

thereby completing the proof.
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