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Abstract
Work on implicit utilitarian voting advocates the design of
preference aggregation methods that maximize utilitarian so-
cial welfare with respect to latent utility functions, based only
on observed rankings of the alternatives. This approach has
been successfully deployed in order to help people choose a
single alternative or a subset of alternatives, but it has previ-
ously been unclear how to apply the same approach to the de-
sign of social welfare functions, where the desired output is a
ranking. We propose to address this problem by assuming that
voters’ utilities for rankings are induced by unknown weights
and unknown utility functions, which, moreover, have a com-
binatorial (subadditive) structure. Despite the extreme lack of
information about voters’ preferences, we show that it is pos-
sible to choose rankings such that the worst-case gap between
their social welfare and that of the optimal ranking, called dis-
tortion, is no larger (up to polylogarithmic factors) than the
distortion associated with much simpler problems. Through
experiments, we identify practical methods that achieve near-
optimal social welfare on average.

1 Introduction
Classical social choice theory typically approaches the

problem of preference aggregation from an axiomatic view-
point, that is, researchers formulate attractive properties, and
ask whether there are methods that satisfy them. By contrast,
research in computational social choice (Brandt et al. 2016)
is often guided by optimization, in that researchers specify
quantitative measures of the desirability of different alterna-
tives, and construct methods that optimize them.

One such approach is known as implicit utilitarian vot-
ing (Procaccia and Rosenschein 2006; Boutilier et al. 2015;
Caragiannis et al. 2017). In a nutshell, the idea is that each
voter i has a utility function ui that assigns a value to each
alternative. However, these utility functions are implicit, in
the sense they cannot be communicated by the voters (be-
cause they are unknown or difficult to pin down). Instead,
voters report rankings of the alternatives that are consistent
with the underlying utility functions, that is, each voter sorts
the alternatives in non-increasing order of utility. The goal
is to choose an alternative a that maximizes (utilitarian) so-
cial welfare — the sum of utilities

∑
i ui(a) — using the

reported rankings as a proxy for the latent utility functions.
From that viewpoint, the best method is the one that mini-

mizes a measure called distortion, defined by Procaccia and

Rosenschein (2006) as the ratio between the social welfare
of the best alternative, and the social welfare of the alterna-
tive selected by the method, in the worst case over all utility
functions that are consistent with the observed rankings. Put
another way, this is the approximation ratio to the welfare-
maximizing solution, and the need for approximation stems
from lack of information about the true utilities.

In recent years, implicit utilitarian voting has emerged as
a practical approach for helping groups of people make joint
decisions. In particular, optimal social choice functions and
social choice correspondences, based on the implementation
of Caragiannis et al. (2017), are deployed on the not-for-
profit website RoboVote.org for the case where the desired
output is a single alternative or a subset of winning alterna-
tives, respectively.

However, RoboVote also has a third output type, a rank-
ing of the alternatives, and for this case the website currently
does not take the same approach — instead it uses the well-
known Kemeny rule (Davenport and Kalagnanam 2004;
Conitzer, Davenport, and Kalagnanam 2006). Indeed, it is
unclear how to even view the problem of designing a so-
cial welfare function, which returns a ranking, through the
lens of implicit utilitarian voting — if a voter has a util-
ity for each alternative, what is his utility for a ranking
of the alternatives? One could assume that a voter i has a
weight wi,j for each position j, so his utility for the ranking
(a1, a2, . . . , am) would be

∑m
j=1 wi,jui(aj); but any partic-

ular choice of weights would be ad hoc.

1.1 Our Approach and Results
The insight underlying our approach is that the worst-case

perspective also extends to the choice of weights. That is,
when we measure the social welfare of an output ranking
given reported input rankings, we consider the worst case
over both utility functions and weights.

Of course, this is a very conservative approach, and one
might worry that it would lead to massive distortion. But
our main theoretical result is that the distortion of optimal
social welfare functions is asymptotically identical to that of
optimal social choice functions (where there are no weights
whatsoever), up to a polylogarithmic factor — in both cases
it is Θ̃(

√
m), where m is the number of alternatives.

In fact, we establish a significantly stronger result, as we
allow voters to have combinatorial utility functions over



subsets of alternatives, and we measure the utility of a voter
for a ranking as the weighted sum of his utilities for prefixes
of that ranking; the foregoing distortion bound holds when
the utility functions are monotonic and subadditive. We find
it striking that it is possible to formulate the problem in such
generality with no tangible increase in distortion.

Our computational results demonstrate that it is practical
to compute deterministic distortion-minimizing rankings for
instances with up to 10 alternatives. This constraint on the
instance size is not unreasonable, as 98.3% of RoboVote in-
stances have 10 or fewer alternatives. For larger instances
we test several heuristics and find that the Borda and Ke-
meny rules typically lead to low distortion and near-optimal
social welfare.

1.2 Related Work
Generally speaking, the implicit utilitarian voting liter-

ature can be partitioned into two complementary strands
of research. One does not constrain the structure of vot-
ers’ utility functions (Procaccia and Rosenschein 2006;
Caragiannis and Procaccia 2011; Boutilier et al. 2015; Cara-
giannis et al. 2017; Benade et al. 2017). The other (which is
more recent) assumes that utility functions are derived from
an underlying metric space, naturally leading to smaller dis-
tortion (Anshelevich, Bhardwaj, and Postl 2015; Anshele-
vich and Postl 2017; Feldman, Fiat, and Golumb 2016;
Goel, Krishnaswamy, and Munagala 2017; Gross, Anshele-
vich, and Xia 2017). Our setup is consistent with the former
line of work.

On a technical level, two of the foregoing papers are most
closely related to ours. The first is by Boutilier et al. (2015),
who study the distortion minimization problem when the
output is a distribution over winning alternatives. They prove
an upper bound of O (

√
m · log∗m) on the distortion of op-

timal social choice functions, and a lower bound of Ω(
√
m).

Their setting coincides with ours when wi,1 = 1 for each
voter i, because in that case social welfare depends only
on the utility of each voter for the top-ranked alternative.
Achieving low distortion is much more difficult in our set-
ting, and, in particular, their lower bound directly carries
over (whereas their upper bound clearly does not).

The second paper, by Benade et al. (2017), studies
distortion-minimizing rules for the participatory budgeting
problem, where each alternative has a cost, and the goal is
to choose a subset of alternatives that satisfies a budget con-
straint. Voters are assumed to have additive utility functions.
Their results are incomparable to ours — their problem is
‘harder’ in that they have to deal with (known) costs and
budget constraints, but ‘easier’ in that they choose a single
subset, whereas we, in a sense, choosem nested subsets (the
m prefixes of our ranking), which are weighted according to
unknown weights. Furthermore, our results hold for richer
(subadditive) combinatorial utility functions.

2 The Model
Our setting involves a set of voters [n] = {1, . . . , n}, and

a set of alternatives [m] = {1, . . . ,m}. We are interested
in the set Sm of rankings, or permutations, over [m]. We

think of a ranking τ ∈ Sm as a function from positions to
alternatives, i.e., τ(j) is the alternative in position j in τ , and
τ−1(j) is the position in which τ places alternative j.

The preferences of each voter i are represented as a
ranking σi ∈ Sm. A preference profile is a vector ~σ =
(σ1, . . . , σn) of the rankings of all voters.

A (randomized) social choice function is a function f :
(Sm)n → ∆([m]), which takes a preference profile as input,
and returns a distribution over winning alternatives. In this
paper we focus on (randomized) social welfare functions,
whose range is instead ∆(Sm), i.e., they also take a prefer-
ence profile as input, but return a distribution over rankings.

A novel component of our model is that we assume that
each voter i ∈ [n] is associated with a combinatorial utility
function ui : 2[m] → R+ and a weight vector wi ∈ Rm+ .
Following previous work (Caragiannis and Procaccia 2011;
Boutilier et al. 2015; Caragiannis et al. 2017; Benade et al.
2017), both are assumed to be normalized, that is, for all
i ∈ [n], ui(∅) = 0 and

∑m
j=1 ui({j}) =

∑m
j=1 wi,j = 1.

Moreover, our results make use of the following properties
of utility functions:
• Monotonicity: ui(S) ≤ ui(T ) for all S ⊆ T ⊆ [m].
• Subadditivity: ui(S) + ui(T ) ≥ ui(S ∪ T ) for all S, T ⊆

[m].
The utility of voter i for a ranking τ ∈ Sm is given by the

weighted sum of his utilities for the prefixes of τ , that is,

ui(τ) =
m∑
j=1

wi,j · ui({τ(1), τ(2), . . . , τ (j)}).

We remark that even additive utility functions are able to
capture the simpler setting discussed in Section 1, which
can be formalized by assigning each voter a utility function
u′i : [m] → R+ and weights such that w′i,j ≥ w′i,j+1 for all
j ∈ [m− 1], and letting u′i(τ) =

∑m
j=1 w

′
i,j · u′i(τ(j)). But

subadditive utility functions can model realistic settings that
are not captured by utility functions that are merely additive.
For example, suppose that we want to rank faculty candi-
dates, and plan to make offers to the top candidates in our
ranking. Then the weight wi,j reflects the perceived prob-
ability that there would be j slots available, and the utility
function ui is naturally subadditive, but not additive, due to
complementarities between candidates: The contribution of
a candidate is typically small if the set of candidates already
contains another candidate working in the exact same area.

We assume that each voter reports a ranking that is con-
sistent with his utility function, which, in our general for-
mulation with combinatorial utilities, we take to mean that
voter i reports σi only if

ui({σi(1)}) ≥ ui({σi(2)}) ≥ · · · ≥ ui({σi(m)}).
We denote this notion of consistency by ui . σi, and, when
σi is consistent with ui for all i ∈ [n], ~u . ~σ.

Our goal is to optimize (utilitarian) social welfare, that
is, the sum of utilities voters have for the output ranking.
Formally,

sw(τ) ,
n∑
i=1

ui(τ).



However, since we only observe the given preference pro-
file, we cannot directly optimize social welfare. To measure
how far a social welfare function is from maximizing this
objective, we adapt the concept of distortion (Procaccia and
Rosenschein 2006). Formally, the distortion of a social wel-
fare function f on a preference profile ~σ is

dist(f, ~σ) , max
~u: ~u.~σ

max
~w

maxτ∈Sm sw(τ)

Eµ∼f(~σ)[sw(µ)]
.

In words, distortion measures the ratio between the so-
cial welfare of the welfare-maximizing ranking, and the ex-
pected social welfare of the distribution over rankings pro-
duced by f , in the worst case over all possible weights
~w = (wi,j)i∈[n],j∈[m], and all possible utility profiles that
are consistent with the given preference profile. Finally, the
distortion of f is the worst case distortion over all possible
preference profiles: dist(f) , max~σ dist(f, ~σ).

3 Distortion Bound
In this section we establish a tight (up to polylogarith-

mic factors) bound on the distortion of optimal social wel-
fare functions. As noted under related work, Boutilier et
al. (2015) prove a lower bound of Ω(

√
m) on the distor-

tion of optimal social choice functions, which carries over
to our setting. Therefore, to show that optimal social welfare
functions have distortion Θ̃(

√
m), it is sufficient to prove the

following theorem, which is our main result.

Theorem 3.1. Under the monotonicity and subadditivity as-
sumptions, there exists a randomized social welfare function
with distortion O

(√
m ln3/2m

)
.

The construction of our social welfare function relies on
the harmonic scoring function (Boutilier et al. 2015), de-
fined as follows. Recall that σ−1i (j) denotes the position of
alternative j in the ranking of voter i. The harmonic score of
alternative j is score(j) ,

∑n
i=1 1/σ−1i (j).

We will make use of the following two properties of the
harmonic scoring function.

Lemma 3.2. For any m ≥ 2,
∑m
j=1 score(j) ≤ 3n lnm.

Proof of Lemma 3.2. By definition,
m∑
j=1

score(j) =

m∑
j=1

n∑
i=1

1/σ−1i (j) =

n∑
i=1

m∑
j=1

1/j

≤ n(lnm+ 1) ≤ 3n lnm.

Lemma 3.3. Under the subadditivity assumption, for any
S ⊆ [m] it holds that

∑n
i=1 ui(S) ≤

∑
j∈S score(j).

Proof of Lemma 3.3. For any voter i ∈ [n] and alternative
a ∈ [m],

1 =
m∑
j=1

ui(σi(j)) ≥
σ−1
i (a)∑
j=1

ui(σi(j)) ≥ σ−1i (a) · ui({a}).

Thus, ui({a}) ≤ 1/σ−1i (a). Moreover, by the subadditiv-
ity of ui, ui(S) ≤

∑
j∈S ui({j}). It follows that

n∑
i=1

ui(S) ≤
n∑
i=1

∑
j∈S

ui({j}) ≤
∑
j∈S

n∑
i=1

1/σ−1i (j)

=
∑
j∈S

score(j).

We require one other lemma that is quite technical. De-
note by T k←− S the experiment of drawing a subset T of
size k from S uniformly at random.
Lemma 3.4. Suppose A ⊆ B ∩ C and k ≤ |B| ≤ |C|.
Function g : 2A → R+ satisfies the monotonicity and sub-
additivity conditions. Then

|B| · E
T

k←−B
[g(T ∩A)] ≤ 4|C| · E

T
k←−C

[g(T ∩A)].

Proof of Lemma 3.4. Fix set A, integer k, and function g :
2A → R+ that satisfies the monotonicity and subadditivity
conditions. For n ≥ max(k, |A|), define f(n) as

f(n) , n · E
T

k←−Sn

[g(T ∩A)] ,

where Sn is a superset of A with n elements.1 It suffices
to prove that f(n) is approximately non-decreasing in the
sense that for any n1 ≤ n2, f(n1) ≤ 4f(n2).

Define aj , E
T

j←−A[g(T )] for 0 ≤ j ≤ |A|, and let aj =

a|A| for j > |A|. We require the following property, which
we prove in Appendix A.

Lemma 3.5. The sequence (aj)
∞
j=0 is monotonic and sub-

additive, and, moreover, 2ak ≥ a2k for any 1 ≤ k ≤ |A|.

For each j ∈ [|A|], define bj as bj , aj′/j
′, where j′ =

2dlog2 je. Moreover, let b|A|+1 = 0. We show that (bj)
|A|
j=1 is

non-increasing and approximates (aj/j)
|A|
j=1.

By construction,

(bj)
|A|
j=1 =

(a1
1
,
a2
2
,
a4
4
,
a4
4
,
a8
8
, . . .

)
.

Since 2ak ≥ a2k for any k ∈ [|A|] by Lemma 3.5, we have
a1
1
≥ a2

2
≥ a4

4
≥ · · ·

This proves that (bj)
|A|
j=1 is non-increasing.

Let j′ = 2dlog2 je. Since j ≤ j′ ≤ 2j, it follows from the
monotonicity and subadditivity of {aj} (Lemma 3.5) that
aj ≤ aj′ ≤ a2j ≤ 2aj . Therefore,

aj
2j
≤ aj′

j′
≤ 2aj

j
, (1)

i.e., bj approximates aj/j up to a factor of 2.

1Any such set Sn gives the same definition of f(n).



Next, fix n ≥ max(k, |A|). Recall that

f(n) = n · E
T

k←−Sn

[g(T ∩A)] .

For 0 ≤ j ≤ |A|, let Ej denote the event that |T ∩ A| = j.
When conditioning on Ej , T ∩ A is uniformly distributed
among all subsets of size j in A, i.e., E[g(T ∩ A)|Ej ] = aj .
Moreover,

Pr[Ej ] =

(|A|
j

)(
n−|A|
k−j

)(
n
k

) .

By the law of total expectation,

f(n) = n

|A|∑
j=0

Pr[Ej ] · E[g(T ∩A)|Ej ]

= n

|A|∑
j=1

(|A|
j

)(
n−|A|
k−j

)(
n
k

) · aj

= n

|A|∑
j=1

|A|
j

(|A|−1
j−1

)(
n−|A|
k−j

)
n
k

(
n−1
k−1
) · aj

= k|A|
|A|∑
j=1

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1
) · aj

j
,

(2)

where the second equality holds because a0 = g(∅) = 0,
and the third because

(
n
m

)
= n

m

(
n−1
m−1

)
for 1 ≤ m ≤ n.

Let

pn,j =

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1
)

and qn,j =
∑j
l=1 pn,l. Recall that b|A|+1 = 0. Using Equa-

tions (1) and (2), we have

f(n) = k|A|
|A|∑
j=1

pn,j ·
aj
j

≤ 2k|A|
|A|∑
j=1

pn,j · bj

= 2k|A|
|A|∑
j=1

(bj − bj+1) qn,j .

Similarly, we have

f(n) ≥ 1

2
k|A|

|A|∑
j=1

(bj − bj+1) qn,j .

In Appendix B, we prove:

Lemma 3.6. For any j ∈ [|A|], (qn,j)
∞
n=max(k,|A|) is non-

decreasing in n.

This completes the proof of Lemma 3.4, as for any
max(k, |A|) ≤ n1 ≤ n2, we have

f(n1) ≤ 2k|A|
|A|∑
j=1

(bj − bj+1) qn1,j

≤ 2k|A|
|A|∑
j=1

(bj − bj+1) qn2,j

≤ 4f(n2).

We are now ready to prove the theorem.

Proof of Theorem 3.1. We construct a randomized social
welfare function that, given a preference profile ~σ, proceeds
as follows.

• Sort the alternatives into a ranking ν such that
score(ν(1)) ≥ score(ν(2)) ≥ · · · ≥ score(ν(m)).

• Let tmax = dlog2me and α =
√
m lnm. Draw

t uniformly at random from [tmax] and set m′t =
min (b2tαc ,m).
• With probability 1/2, return a uniformly random permu-

tation of [m]. Otherwise, shuffle the first m′t elements of
ν uniformly at random, and return the resulting ordering.

The rest of the proof analyzes the distortion of the fore-
going function. By the monotonicity of utility functions, the
social welfare of every ranking τ ∈ Sm is at least

sw(s) =

n∑
i=1

m∑
j=1

wi,j · ui({τ(1), τ(2), . . . , τ (j)})

≥
n∑
i=1

m∑
j=1

wi,j · ui({τ(1)}) =

n∑
i=1

ui({τ(1)}),

where the last transition follows from
∑m
j=1 wi,j = 1.

When the mechanism returns a random permutation τ ,
τ(1) is uniformly distributed in [m], and thus the expected
social welfare is at least

1

m

m∑
τ(1)=1

n∑
i=1

ui({τ(1)}) =
1

m

n∑
i=1

m∑
j=1

ui({j}) =
n

m
.

On the other hand, consider the case where the mech-
anism randomly shuffles the first m′t elements in ν. Let
mt , min{2t,m}, and Rt , {ν(1), ν(2), . . . , ν(m′t)}. The
resulting expected social welfare is at least

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[ui(T )].

Let SOLt denote the expected social welfare conditioning
on the value of t. Then the above discussion implies that

SOLt ≥
n

2m
+

1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[ui(T )]. (3)

Let µ∗ denote the welfare-maximizing ranking. Let St ,
{µ∗(1), µ∗(2), . . . , µ∗(mt)}, and

OPTt ,
n∑
i=1

mt∑
j=1

wi,j E
T

j←−St

[ui(T )].



In the following, we show that
tmax∑
t=1

OPTt ≥
sw(µ∗)

2
, (4)

and for any t ∈ [tmax],

SOLt ≥
OPTt

12
√
m lnm

. (5)

Inequalities (4) and (5) directly imply that the expected so-
cial welfare obtained by the mechanism is at least

1

tmax

tmax∑
t=1

SOLt ≥
1

dlog2me

tmax∑
t=1

OPTt

12
√
m lnm

≥ sw(µ∗)

O
(√

m ln3/2m
) ,

which concludes the proof.

Proof of Equation (4). Note that for any t ∈ [tmax] and j ∈
[mt/2,mt],

E
T

j←−St

[ui(T )] ≥ E
T

mt/2←−−−St

[ui(T )] ≥ E
T

mt←−−St

[ui(T )] · 1

2

= ui(St) ·
1

2

≥ ui({µ∗(1), µ∗(2), . . . , µ∗(j)}) · 1

2
, (6)

where the first transition follows from the monotonicity of
ui, the second from its subadditivity, the third from |St| =
mt, and the last again from monotonicity. Therefore,
tmax∑
t=1

OPTt ≥
tmax∑
t=1

n∑
i=1

mt∑
j=mt/2

wi,j · E
T

j←−St

[ui(T )]

≥ 1

2

n∑
i=1

tmax∑
t=1

mt∑
j=mt/2

wi,j · ui({µ∗(1), . . . , µ∗(j)})

≥ 1

2

n∑
i=1

m∑
j=1

wi,j · ui({µ∗(1), . . . , µ∗(j)})

=
sw(µ∗)

2
,

where the second inequality follows from Equation (6), and
the third holds because m1/2 = 1 and mtmax = m.

Proof of Equation (5). Let S+
t = St∩Rt and S−t = St \Rt.

The subadditivity of ui implies that for any T ⊆ St,
ui(T ) ≤ ui(T ∩ S+

t ) + ui(T ∩ S−t ). Thus, we can derive
an upper bound on OPTt as follows:

OPTt =

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[ui(T )]

≤
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t ) + ui(T ∩ S−t )
]

=
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]

+
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
. (7)

We establish upper bounds on the two terms on the right
hand side of Equation (7) separately. For the first term, note
that S+

t ⊆ St ∩ Rt and |St| = mt ≤ m′t = |Rt|. For any
i ∈ [n] and j ∈ [mt], applying Lemma 3.4 with g = ui,
k = j, A = S+

t , B = St and C = Rt gives

|St| E
T

j←−St

[
ui(T ∩ S+

t )
]
≤ 4|Rt| E

T
j←−Rt

[
ui(T ∩ S+

t )
]
.

It follows that

E
T

j←−St

[
ui(T ∩ S+

t )
]
≤ 4m′t

mt
E

T
j←−Rt

[
ui(T ∩ S+

t )
]

≤ 4α E
T

j←−Rt

[
ui(T ∩ S+

t )
]
.

Summation over i and j yields
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]

≤ 4α

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[
ui(T ∩ S+

t )
]

≤ 8α · 1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[ui(T )] .

(8)

We next bound the second term on the right hand side of
Equation (7). Note that
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤

n∑
i=1

mt∑
j=1

wi,j · ui(S−t ) ≤
n∑
i=1

ui(S
−
t ) ≤

∑
j∈S−t

score(j).

Here the first step is due to the monotonicity of ui, the sec-
ond step holds since

∑mt

j=1 wi,j ≤
∑m
j=1 wi,j = 1, while

last step applies Lemma 3.3. For each alternative a ∈ S−t , it
follows from Lemma 3.2 that

3n lnm ≥
m∑
j=1

score(j) ≥
m′t∑
j=1

score(ν(j)) ≥ m′t · score(a),

so score(a) ≤ 3n lnm/m′t for any a ∈ S−t . Therefore, we
have

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 3n lnm · |S

−
t |
m′t

.

Recall that m′t = min (b2tαc ,m), and S−t = St \ Rt =
St \ {ν(1), . . . , ν(m′t)}. If m′t = m, we have S−t = ∅ and



|S−t |/m′t = 0. When m′t < m, it holds that m′t = b2tαc ≥
2t−1α and mt = 2t. Thus, |S−t |/m′t ≤ mt/m

′
t ≤ 2/α. In

either case,
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 3n lnm · |S

−
t |
m′t

≤ 3n lnm · 2

α

=
n

2m
· 12α. (9)

Putting everything together, we have that

OPTt ≤
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]

+
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 8α · 1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[ui(T )] + 12α · n
2m

≤ 12α · SOLt = 12
√
m lnm · SOLt,

where the first inequality follows from Equation (7), the sec-
ond from (8) and (9), and the third from (3). This proves
Equation (5) and completes the proof of the theorem.

As is the case in previous work (Boutilier et al. 2015;
Benade et al. 2017; Caragiannis et al. 2017), the social wel-
fare function we analyze relies on randomization and returns
a uniformly random outcome — in our case, a random rank-
ing — with constant probability (note that any constant, even
1/106, will do). It is important to note that this social wel-
fare function should be viewed only as a tool to bound the
distortion of the optimal social welfare function; we do not
propose using it in practice. Instead, we compare the perfor-
mance of the optimal (deterministic) social welfare function
with several common competitors in Section 4.

Finally, we remark that some restriction on the combi-
natorial structure of the valuation functions, beyond mono-
tonicity, is necessary to achieve sublinear distortion. Indeed,
in the following example we construct non-subadditive util-
ity functions such that any social welfare function must have
distortion Ω(m).2

Example 3.7. Consider the following utility function: for
two distinct alternatives a, b ∈ [m],

ua,b(S) =

{
1, {a, b} ⊆ S,
|S|/m, otherwise.

Note that ua,b is monotonic. Moreover, the function is con-
sistent with any ranking of [m], so we can assume that a
voter with utility function ua,b reports the same ranking σ
regardless of a and b.

2Ranking the alternatives uniformly at random achieves distor-
tion O (m). Thus, in such cases we cannot significantly outperform
a random guess.

Let there be a single voter with weight vector
(0, 1, 0, 0, . . .). The utility of a ranking τ is given by
ua,b({τ(1), τ(2)}). In order to achieve a utility of 1 (rather
than 2/m), it is necessary to place a and b in the top two
slots. Any randomized welfare function has two alterna-
tives that, given σ as input, are placed in the first two po-
sitions with probability at most 2/m(m − 1). By choos-
ing these two alternatives to be a and b, we can guarantee
that the function achieves expected social welfare at most

2
m(m−1) · 1 + (1− 2

m(m−1) ) ·
2
m , whereas the optimum is 1.

The ratio is Ω(m).

4 Empirical Results
For our computational experiments we focus on deter-

ministic social welfare functions, and on additive utility
functions — but we generalize the position-weighted model
slightly. Let voter i ∈ [n] have ranking σi consistent with the
utility matrix U i ∈ Rm×m, where U iap is the utility voter
i has for alternative a appearing in position p. As before,
voter i’s preferences impose constraints on U i. Specifically,
higher ranked alternatives have utility at least as large as
lower ranked alternatives, for any specific position, that is,
U iσi(p),j

≥ U iσi(p+1),j for all p ∈ [m − 1], j ∈ [m], and
U ia,p ≥ U ia,p+1 for all a ∈ [m], p ∈ [m − 1]. Utilities are
normalized to have

∑
a∈[m]

∑
p∈[m] U

i
ap = 1. The utility

profile is ~U = (U1, . . . , Un).
Let us represent a ranking τ by a permutation ma-

trix X(τ) ∈ Πm. The social welfare of a ranking τ is∑
i∈[n]〈U i, X(τ)〉, where 〈A,B〉 =

∑
ij AijBij is the

Frobenius inner product. We can now write the mathemat-
ical program that finds the (deterministic) ranking X with
minimum distortion z given an input profile ~σ as

min
z,τ∈Sm

z

z ≥
∑n

i=1〈U
i,X(ρ)〉∑n

i=1〈Ui,X(τ)〉 ∀ ~U . ~σ , ρ ∈ Sm (10)

This formulation has intractably many constraints in
Equation (10). But these constraints may be omitted and
added as needed, by solving the subproblem

min
~U.~σ,ρ∈Sm

z̄ ·
n∑
i=1

〈U i, X(τ̄)〉 −
n∑
i=1

〈U i, X(ρ)〉

where z̄, τ̄ are the current optimal solutions to the master
problem. A violated constraint is found if the objective func-
tion value of the subproblem is strictly less than 0. The pro-
cedure terminates with the optimal z, τ when no violated
constraints are found.

The subproblem is nonconvex even when the integrality
constraints are relaxed, and, therefore, finding violated con-
straints is computationally expensive. Nevertheless, Figure 1
shows that it is currently practical to compute distortion-
minimizing rankings exactly for instances with up to 10 al-
ternatives within a couple of minutes. We expect that this
will be sufficient for the vast majority of instances seen
in practice. Indeed, 98.3% of the instances submitted to
RoboVote (as of January 19, 2018) have 10 or fewer alterna-
tives.
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Figure 1: Runtime (in seconds) for increasing instance size,
on an a machine with an Intel Core i5-4200U CPU and 8 GB
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Figure 2: Average distortion of heuristic and exact methods.

For larger instances, we evaluate the performance of the
following, more scalable, heuristics:

1. Kemeny: Return the ranking that minimizes the total num-
ber of disagreements on pairs of alternatives with the in-
put profile.

2. Borda: Rank alternatives by their Borda scores, defined as∑n
i=1(m− σ−1i (a)).

3. Plurality: Rank alternatives based on the number of times
they are ranked first. Break ties by considering subsequent
positions.

4. Harmonic: Return a ranking according to Theorem 3.1.
5. Iterative: Iteratively find and remove the alternative that

minimizes distortion for the problem of returning a single
alternative with maximum social welfare.
We evaluate these heuristics on instances with n = 10

andm ∈ {3, . . . , 30}. Every alternative a is assigned a qual-
ity ca, and ui({a}) is drawn from a truncated normal distri-
bution around ca. Vector ui = (ui({a}))a∈[m] induces σi.
Weights wi are drawn uniformly at random in [0, 1], and or-
dered. Voter i’s utility matrix U i = wiui is normalized.
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Figure 3: Average social welfare ratio of different heuristics.

Every social welfare function f only has access to ~σ
and is evaluated on two metrics: the distortion of the re-
turned ranking ρ = f(~σ), and the social welfare ratio
maxτ∈Sm sw(τ, ~U)/sw(ρ, ~U). Note that the latter measure
estimates the average case with respect to utility profiles.

The distortion and social welfare ratios of the proposed
heuristics are shown in Figures 2 and 3. Distortion is re-
ported for m ≤ 10, where it is possible to compare to the
optimal distortion, and 100 repetitions; social welfare for
m ≤ 30 and 200 repetitions.

The distortion of Borda, Kemeny and especially Itera-
tive compares well with the optimal distortion. Kemeny and
Borda also lead to very high efficiency, with average social
welfare within 1% of optimal.

5 Discussion
Much like previous papers on implicit utilitarian vot-

ing (Caragiannis et al. 2017; Benade et al. 2017), there is
a certain gap between the theoretical and empirical results,
in the sense that the theoretical distortion bound of The-
orem 3.1 holds for randomized social welfare functions,
whereas the empirical results hold for deterministic func-
tions. The value of theoretical distortion bounds is that they
tell us whether rankings inherently provides useful informa-
tion for optimizing social welfare. The fact that the bound
is essentially no worse than for the case of a single winner
means that the implicit utilitarian voting approach does ex-
tend to the design of social welfare functions.

On a practical level, our empirical results suggest that
classic methods like the Kemeny rule (which is currently de-
ployed on RoboVote) and Borda count provide near-optimal
performance from the viewpoint of implicit utilitarian vot-
ing. Alternatively, it is possible to compute the distortion-
minimizing social welfare function if instances are restricted
to at most ten alternatives. Although almost all instances
arising from small-group decisions (of the type made on
RoboVote) are of that size, some high-stakes decisions, such
as ranking applicants for a job or candidates for a PhD pro-
gram, involve a much larger number of alternatives, and mo-
tivate the development of faster algorithms.
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A Proof of Lemma 3.5
Before proving our claim that the sequence (aj)

∞
j=0 is

monotonic and subadditive, with 2ak ≥ a2k for any 1 ≤
k ≤ |A|, we introduce two lemmas that establish some prop-
erties of monotonic and subadditive functions. The follow-
ing lemma states that, given a monotonic utility function de-
fined on set S, when a subset of size k is drawn from S uni-

formly at random, the expected utility of the resulting subset
is non-decreasing in k.
Lemma A.1. Suppose function g : 2S → R+ satis-
fies the monotonicity condition. Define (ak)

|S|
k=0 as ak ,

E
T

k←−S [g(T )]. Then,

a0 ≤ a1 ≤ · · · ≤ a|S|.
Proof of Lemma A.1. Fix integer k between 1 and |S|. Sup-
pose we draw X

k←− S, choose x from X uniformly at ran-
dom, and then let Y = X \ {x}. Note that X and Y are
uniformly (yet not independently) distributed in all subsets
of S of size k and k − 1, respectively. Since Y ⊆ X , the
monotonicity of g implies that g(Y ) ≤ g(X). Taking the
expectation yields ak−1 ≤ ak.

The following lemma states that the sequence (ak)
|S|
k=0 de-

fined as in Lemma A.1 is subadditive, assuming the subad-
ditivity of function g.
Lemma A.2. Suppose function g : 2S → R+ satisfies the
subadditivity condition. Let ak = E

T
k←−S [g(T )]. Then for

any integers n,m ≥ 0 that satisfy n+m ≤ |S|,
an + am ≥ an+m.

Proof of Lemma A.2. Draw X
n←− S and Y

m←− S \ X .
Clearly, X and Y are uniformly distributed among all sub-
sets of S with n elements and m elements, respectively.
Moreover, X ∪ Y is also a uniformly random subset of size
n+m. For each realization of X and Y , it follows from the
subadditivity of g that

g(X) + g(Y ) ≥ g(X ∪ Y ).

Taking the expectation over the randomness in (X,Y ) yields

an + am ≥ an+m.

Proof of Lemma 3.5. Lemma A.1 implies that the finite se-
quence (a0, a1, . . . , a|A|) is non-decreasing. Since aj =
a|A| for any j > |A|, the complete sequence (aj)

∞
j=0 is

also non-decreasing. Moreover, we claim that 2ak ≥ a2k
for any 1 ≤ k ≤ |A|. In fact, if 2k ≤ |A|, the inequality
directly follows from Lemma A.2. If 2k > |A|, by Lemmas
A.1 and A.2,

2ak ≥ ak + a|A|−k ≥ a|A| = a2k.

B Proof of Lemma 3.6
Fix set A, j ∈ [|A|] and k. Recall that

pn,j =

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1
)

and qn,j =
∑j
l=1 pn,l. For every n ≥ max(k, |A|), define

random variable Tn
k−1←−− [n−1], i.e., Tn is a random subset

of size k − 1 drawn from [n− 1]. It can be verified that

pn,j = Pr[|Tn ∩ [|A| − 1]| = j − 1],



and thus,

qn,j = Pr[|Tn ∩ [|A| − 1]| < j].

To show that (qn,j)
∞
n=max(k,|A|) is non-decreasing in n,

we consider the following experiment:

• Draw X
k−1←−− [n].

• Let Y = X if n /∈ X; otherwise, let Y = X \ {n} ∪ {x},
where x is drawn uniformly from [n− 1] \X .

By construction, the marginal distributions of X and Y are
identical to those of Tn+1 and Tn, respectively. Moreover,
as Y is either equal to X , or obtained from X by replacing
n with a smaller element, we have

|X ∩ [|A| − 1]| ≤ |Y ∩ [|A| − 1]|.

Therefore,

I [|X ∩ [|A| − 1]| < j] ≥ I [|Y ∩ [|A| − 1]| < j] ,

where I [·] denotes the indicator function.
Taking the expectation over the randomness in (X,Y )

yields

Pr[|Tn+1 ∩ [|A| − 1]| < j] ≥ Pr[|Tn ∩ [|A| − 1]| < j],

i.e., qn+1,j ≥ qn,j . This proves the monotonicity of (qn,j),
and thus completes the proof of the lemma.


