
Fairly Allocating Many Goods with Few Queries

Hoon Oh
Computer Science Department

Carnegie Mellon University

Ariel D. Procaccia
Computer Science Department

Carnegie Mellon University

Warut Suksompong
Department of Computer Science

Stanford University

Abstract

We investigate the query complexity of the fair allocation of
indivisible goods. For two agents with arbitrary monotonic
valuations, we design an algorithm that computes an alloca-
tion satisfying envy-freeness up to one good (EF1), a relax-
ation of envy-freeness, using a logarithmic number of queries.
We show that the logarithmic query complexity bound also
holds for three agents with additive valuations. These results
suggest that it is possible to fairly allocate goods in practice
even when the number of goods is extremely large. By con-
trast, we prove that computing an allocation satisfying envy-
freeness and another of its relaxations, envy-freeness up to
any good (EFX), requires a linear number of queries even
when there are only two agents with identical additive valua-
tions.

1 Introduction
Fair division is the study of how to allocate resources among
interested agents in such a way that all agents find the result-
ing allocation to be fair (Brams and Taylor, 1996; Moulin,
2003). One of the field’s paradigmatic applications is the
allocation of indivisible goods; this task typically arises in
inheritance cases, when, say, an art or jewelry collection is
divided between several heirs. Indeed, dividing goods is one
of five applications offered by Spliddit (Goldman and Pro-
caccia, 2014), a not-for-profit fair division website; since its
launch in November 2014, the website has served more than
130,000 users, and, in particular, has solved thousands of
goods-division instances submitted by users.

While Steinhaus (1948) was the first to study fairness
from a mathematical point of view, the history of fair divi-
sion actually goes back much further: A simple fair division
mechanism called the cut-and-choose protocol is mentioned
in the Book of Genesis. After a dispute between Abraham
and Lot, Abraham suggests that the two go their separate
ways. He divides the land into two parts that—here we are
perhaps using artistic license—he likes equally, and lets Lot
choose the part that he prefers. The cut-and-choose protocol
ensures that the resulting allocation satisfy an important fair-
ness property called envy-freeness—each of Abraham and
Lot finds his part to be worth at least as much as the other
person’s part. Even though envy-freeness can always be sat-
isfied when the allocated resources are divisible (Stromquist,
1980), this is not the case when we deal with indivisible re-

sources. With two agents and a single indivisible good, we
already see that one of the agents will not receive the good
and envy the other agent.

Consequently, various relaxations of envy-freeness have
been considered, the most prominent one being envy-
freeness up to one good (EF1). This means that some agent
may envy another agent under the given allocation, but that
envy can be eliminated by removing a single good from
the latter agent’s bundle. Lipton et al. (2004) showed that
EF1 can be guaranteed even when the agents have arbitrary
monotonic valuations. They achieved this by using an algo-
rithm that we will refer to as the envy cycle elimination algo-
rithm, which runs in time O(n3m), where n is the number
of agents and m the number of goods.

Given that an EF1 allocation always exists and can be
found efficiently at this level of generality, a natural question
to ask is how much we need to know about the agents’ valu-
ations to compute such an allocation. This issue is crucial for
combinatorial valuations, since merely writing down a com-
plete valuation might already take exponential time. But the
question is equally important for additive valuations; while
expressing such a valuation only takes linear time, this may
already be prohibitive if the number of goods is very large.
In fact, the goods application on Spliddit elicits additive val-
uations and computes an EF1 allocation (Caragiannis et al.,
2016); the largest instance that was encountered involved ten
siblings and roughly 1400 goods. In this case, the siblings
actually prepared a spreadsheet with their value for each of
the goods!

1.1 Our Results
We allow algorithms to elicit the valuations of agents via
a standard interface, value queries, which ask an agent for
her value for a given subset of goods. The complexity of
algorithms is measured in terms of the worst-case number
of queries they require.

In Section 3 we consider the case of two agents. We
show that it is possible to compute an EF1 allocation for
agents with arbitrary monotonic valuations using a logarith-
mic number of queries (Theorem 3.1). This is asymptotically
tight, even for two agents with identical and very simple
binary valuations (Proposition 3.2). We then turn to envy-
freeness and establish that determining whether an envy-free
allocation exists takes an exponential number of queries for

Fairness notion Monotonic valuations Additive valuations

EF ≥
(
m
m/2

)
(Prop. 3.3) Θ(m) (Thm. 3.4)

EFX Ω
(

1
m

(
m

(m−1)/2
))

(Plaut and Roughgarden, 2018) Θ(m) (Thm. 3.5)

EF1 Θ(logm) (Thm. 3.1, Prop. 3.2) Θ(logm) (Thm. 3.1, Prop. 3.2)

Table 1: Query complexity in the setting with two agents. All lower bounds hold even when the two agents have identical
valuations.

agents with identical monotonic valuations (Proposition 3.3)
and a linear number of queries for agents with identical ad-
ditive valuations (Theorem 3.4); our latter bound is also ex-
actly tight. We end our investigation of the two-agent case by
considering another relaxation of envy-freeness called envy-
freeness up to any good (EFX), a stronger notion than EF1.
We show that computing an EFX allocation already takes
a linear number of queries for agents with identical addi-
tive valuations (Theorem 3.5). This complements a recent
result of Plaut and Roughgarden (2018), who showed that
while an EFX allocation always exists for two agents with
arbitrary monotonic valuations, computing one such alloca-
tion already requires an exponential number of queries in
the worst case, even when the valuations of the agents are
identical. Taken together, these results suggest that, when
the number of goods is large, EF1 is the ‘right’ notion of
fairness, whereas EFX is too demanding. The results of Sec-
tion 3 are summarized in Table 1.

In Section 4 we address the case of three agents. Our
main result is an algorithm that computes an EF1 alloca-
tion for three agents with additive valuations using a log-
arithmic number of queries (Theorem 4.4). Our algorithm
adapts the Selfridge-Conway procedure, a classical cake-
cutting protocol for computing an envy-free allocation of
a heterogeneous divisible good, to the setting of indivisible
goods. In particular, as a building block we use an algorithm
that, for three agents with identical additive valuations, com-
putes an EF1 allocation satisfying the extra property that any
three predetermined goods belong to three different bundles
(Lemma 4.3).

Finally, in Section 5 we consider the setting where there
can be any number of agents. We show that the envy cycle
elimination algorithm of Lipton et al. (2004) can be imple-
mented using a relatively modest number of queries (Theo-
rem 5.1). To complement this positive result, we conclude by
presenting a lower bound on the number of queries needed
to compute an EF1 allocation (Theorem 5.2).

1.2 Related Work
The paper that is most closely related to ours is the one
mentioned above, by Plaut and Roughgarden (2018). Using
an interesting reduction from the local search problem on a
class of graphs known as Kneser graphs, they show that the
problem of finding an EFX allocation requires an exponen-
tial number of queries, even for two agents with identical
valuations. They also examine when EFX can be achieved

in conjunction with other properties such as Pareto optimal-
ity, and establish the existence of allocations satisfying an
approximate version of EFX for agents with subadditive val-
uations.

A bit further afield, query complexity has long been a
topic of interest in computational fair division, albeit in
the context of cake cutting (Procaccia, 2013). The standard
query model is due to Robertson and Webb (1998), and al-
lows two types of operations: evaluate (which is similar to
our value queries) and cut. In this model, the query complex-
ity of achieving fair cake allocations, under various notions
of fairness, is well studied (Edmonds and Pruhs, 2006; Pro-
caccia, 2009; Deng, Qi, and Saberi, 2012; Kurokawa, Lai,
and Procaccia, 2013; Aziz and Mackenzie, 2016a; Procac-
cia and Wang, 2017).

2 Preliminaries
There is a set G = {g1, g2, . . . , gm} of goods and a set
A = {a1, a2, . . . , an} of agents. A bundle is a subset of G.
Each agent ai has a nonnegative valuation ui(G′) for each
G′ ⊆ G. We sometimes abuse notation and write ui(g) for
ui({g}).

A valuation is said to be monotonic if ui(G1) ≤ ui(G2)
for any i and any G1 ⊆ G2 ⊆ G. It is said to be additive
if ui(G′) =

∑
g∈G′ ui(g) for any G′ ⊆ G, and binary if

it is additive and ui(g) = 0 or 1 for each g ∈ G. While
additivity is significantly more restrictive than monotonic-
ity, many papers in fair division assume that agents’ valu-
ations are additive (Amanatidis et al., 2015; Bouveret and
Lemaı̂tre, 2016; Caragiannis et al., 2016; Kurokawa, Pro-
caccia, and Wang, 2018). This assumption is also made by
Spliddit’s app for dividing goods (Caragiannis et al., 2016),
as, in practice, additive valuations hit a sweet spot between
expressiveness and ease of elicitation. We assume through-
out the paper that agents have monotonic valuations1 and
that, without loss of generality, ui(∅) = 0 for all i.

An allocation is a partition of G into n bundles
(G1, G2, . . . , Gn), where bundle i is allocated to agent i. If
the goods lie on a line, for each good g we denote by Lg and
Rg the set of goods to the left and right of g, respectively. A
contiguous allocation is an allocation in which every bundle
forms a contiguous block on the line.

1Without this assumption, neither of the relaxations of envy-
freeness that we consider can always be satisfied even when there
are two agents.

We now define the fairness notions that we consider.

Definition 2.1. An allocation (G1, G2, . . . , Gn) is said to
be

• envy-free if ui(Gi) ≥ ui(Gj) for any i, j.
• envy-free up to any good (EFX) if for any i, j and any

good g ∈ Gj , ui(Gi) ≥ ui(Gj\{g}).
• envy-free up to one good (EF1) if for any i, j such that
ui(Gi) < ui(Gj), there exists a good g ∈ Gj such that
ui(Gi) ≥ ui(Gj\{g}).2

It is easy to see that envy-freeness is stronger than EFX,
which is in turn stronger than EF1. Envy-freeness is a classi-
cal and well-studied fairness notion that goes back to Foley
(1967). By contrast, its two relaxations are relatively new:
EF1 was introduced by Budish (2011) and a related property
was studied by Lipton et al. (2004), while EFX was only pro-
posed recently by Caragiannis et al. (2016). Interestingly, it
is not known whether an EFX allocation always exists, even
for three agents with additive valuations (Caragiannis et al.,
2016; Plaut and Roughgarden, 2018).

We will consider algorithms that compute fair allocations
according to these fairness notions. In order to discover the
agents’ valuations, an algorithm is allowed to issue value
queries. In each query, the algorithm chooses an agent ai
and a subset G′ ⊆ G, and finds out the value of ui(G′). We
assume that the algorithm is deterministic, and allow it to
be adaptive, i.e., the algorithm can determine its next query
based on its past queries and the corresponding answers.

3 Two Agents
In this section, we consider the setting with two agents. We
organize our results based on fairness notion: EF1, envy-
freeness, and EFX.

3.1 EF1
We begin by describing an algorithm that computes an EF1
allocation for two agents with arbitrary monotonic valua-
tions. The algorithm is similar to the cut-and-choose proto-
col for cake cutting: the first agent partitions the goods into
two bundles with the property that she would be satisfied
with either bundle, and the second agent chooses the bundle
that she prefers. In order to minimize the number of queries,
we arrange the goods on a line and use binary search to de-
termine the cut point of the first agent.

Algorithm 1 (for two agents with monotonic valua-
tions)

Step 1: Arrange the goods on a line in arbi-
trary order. Find the rightmost good g such that
u1(Lg) ≤ u1(Rg ∪ {g}).

Step 2: If u1(Lg) ≤ u1(Rg), consider the partition
(Lg ∪ {g}, Rg); else, consider the partition (Lg, Rg ∪

2The clause “such that ui(Gi) < ui(Gj)” is necessary for the
case where Gj = ∅.

{g}). Give a2 the bundle from the partition that she
prefers, and a1 the remaining bundle.

We claim that the algorithm computes an EF1 allocation
using a logarithmic number of queries.
Theorem 3.1. For two agents with arbitrary monotonic val-
uations, Algorithm 1 computes an EF1 allocation. Moreover,
the algorithm can be implemented to use O(logm) queries
in the worst case.

Proof. We first show that the algorithm computes an EF1
allocation. Since a2 gets the bundle that she prefers, she does
not envy a1.

To reason about a1’s envy, assume first that u1(Lg) ≤
u1(Rg). It holds that u1(Lg∪{g}) ≥ u1(Rg): This is clearly
true if g is the rightmost good on the line, and otherwise it
follows from the definition of g that u1(Rg) < u1(Lg∪{g}).
Therefore, if a1 receives Lg ∪ {g}, she is not envious at all.
And if she receives Rg , it holds that

u1(Rg) ≥ u1(Lg) = u1((Lg ∪ {g}) \ {g}),
so EF1 is satisfied.

The second case is where u1(Lg) > u1(Rg). If a1 gets
Rg ∪ {g} then she is not envious, since, by the definition of
g, u1(Rg ∪{g}) ≥ u1(Lg). If she gets Lg instead, then EF1
holds, because

u1(Lg) > u1(Rg) = u1((Rg ∪ {g}) \ {g}).
Next, we show that the algorithm can be implemented to

use O(logm) queries. By monotonicity, Step 1 can be done
by binary search using O(logm) queries. In Step 2, we use
two queries to compare u1(Lg) and u1(Rg), and two more
queries to compare a2’s valuation for the two bundles in the
partition. Hence the total number of queries is O(logm).

The following proposition shows that the boundO(logm)
in Theorem 3.1 is tight.
Proposition 3.2. Any deterministic algorithm that computes
an EF1 allocation for two agents with identical binary val-
uations uses Ω(logm) queries in the worst case, even when
each agent values only two goods.

Since Proposition 3.2 will later be generalized by Theo-
rem 5.2, we do not present its proof here.

3.2 Envy-freeness
Next, we turn our attention to envy-freeness. Unlike the case
of EF1, allocations that satisfy envy-freeness are not guar-
anteed to exist. We show that for two agents with identical
monotonic valuations, even an algorithm that only decides
whether an envy-free allocation exists already needs to make
an exponential number of queries in the worst case. A simi-
lar argument holds for algorithms that compute an envy-free
allocation whenever one exists.
Proposition 3.3. Assume that m is even. Any deterministic
algorithm that determines whether an envy-free allocation
exists for two agents with identical monotonic valuations
uses at least

(
m
m/2

)
queries in the worst case.

The proof of Proposition 3.3, and all other omitted proofs,
can be found in Appendix A.

Even though an algorithm that decides whether an envy-
free allocation exists needs to make an exponential number
of queries for agents with monotonic valuations, when we
restrict our attention to agents with additive valuations, the
exponential lower bound no longer holds since the algorithm
can query the value of both agents for every good and find
out the full valuations. Nevertheless, it is still conceivable
that there are algorithms that do asymptotically better, e.g.,
use a logarithmic number of queries. We show that this is
not the case: a linear number of queries is necessary, even
when the two agents have identical valuations. In fact, we
leverage linear-algebraic techniques to establish that at least
m queries are needed in this case. This bound is tight for two
identical agents since the algorithm can find out the common
valuation by querying the value of each of the m goods.

Theorem 3.4. Assume that m is even. Any deterministic al-
gorithm that decides whether an envy-free allocation exists
for two agents with identical additive valuations uses at least
m queries in the worst case.

Proof. For ease of notation, let xi = u(gi) for i =
1, 2, . . . ,m, where u is the common valuation. Note that an
envy-free allocation exists if and only if the goods can be
partitioned into two sets of equal value. Consider an algo-
rithm that always uses at most m− 1 queries. Assume with-
out loss of generality that the algorithm always uses exactly
m − 1 queries; whenever it uses fewer than m − 1 queries,
we add arbitrary queries for the algorithm. The idea is that
for each query, if the queried subset has size s, we will give
an answer close to s in such a way that after all queries, it
is still possible that there exists an envy-free allocation, but
also that there does not exist one. This will allow us to obtain
the desired conclusion.

For i = 1, 2, . . . ,m − 1, let vi be a vector of length m
where the jth component is 1 if good gj is included in the ith
query, and 0 otherwise. Therefore the ith query asks for the
value vi · x =

∑m
j=1 vi,jxj . Furthermore, let W be the set

of all vectors of length m all of whose components are ±1,
and let W ′ ⊂ W be the set of vectors with an equal number
of −1 and 1. Note that an envy-free allocation exists exactly
when w · x = 0 for some w ∈W .

When we receive the ith query, if vi ∈
span(v1,v2, . . . ,vi−1), our answer is already deter-
mined by previous answers. Assume therefore that
vi 6∈ span(v1,v2, . . . ,vi−1) for all i. For each w ∈W such
that w ∈ span(v1,v2, . . . ,vi)\span(v1,v2, . . . ,vi−1),
there exists a unique answer that would force w · x = 0. We
avoid all such (finite number of) answers. After query num-
ber m−1 we have a subspace V = span(v1,v2, . . . ,vm−1)
of dimension m − 1 such that we know the value v · x if
and only if v is in the subspace.

Next, letW ′ = span(W ′). Clearly, all vectors inW ′ are
orthogonal to the vector (1, 1, . . . , 1). We claim that W ′ in
fact has dimension m− 1, and therefore consists of all vec-
tors orthogonal to (1, 1, . . . , 1). To see this, take two distinct
vectors in W ′ that differ only in the first and ith component
for i = 2, 3, . . . ,m. The difference vector, which consists of

a 1 in the first position, a −1 in the ith position, and 0 else-
where belongs to W ′. No nontrivial linear combination of
these vectors can produce the all-zero vector, meaning that
W ′ indeed has dimension m − 1. Now, since any vector vi
is not orthogonal to (1, 1, . . . , 1), we have V 6= W ′, and so
there exists w′ ∈W ′ such that w′ 6∈ V . (If this were not the
case, we would have W ′ ⊆ V , and then the two subspaces
would be equal because they are of the same dimension.)
Since V is of dimensionm−1 and w′ 6∈ V , setting the value
of w′ · x will, in combination with the previous constraints,
uniquely determine x. If we set w′ · x = 0, an envy-free
allocation exists. On the other hand, if we set w′ · x so that
w · x 6= 0 for all w ∈ W , an envy-free allocation does not
exist. This choice of value for w′ ·x is available because for
each w ∈W , only one value of w′ · x forces w · x = 0.

It remains to show that we can give the answers so that
after setting the value of w′ ·x, all components of the unique
solution for x are nonnegative. Let δ > 0 be such that for
any vector z with |zi| < δ for all i = 1, 2, . . . ,m, and any
m ×m invertible matrix M all of whose entries are −1, 0,
or 1, the unique solution y to My = z has |yi| < 1 for all
i. The existence of δ is guaranteed by the fact that the linear
transformation M takes the all-zero vector to itself, by the
continuity of the transformation, and by the fact that there
are a finite number of such matrices M . For each query on a
subset of size k, we give an answer in the range (k−δ, k+δ).
Moreover, we choose the value of w′ · x to be in the range
(−δ, δ).

Write yi = xi− 1 for all i, where x is the unique solution
according to our choices. Our answers to the queries ensure
that the values of vi ·y for i = 1, 2, . . . ,m−1 belong to the
range (−δ, δ), and our choice of w′ ·x ensures that w′ ·y also
belong to the same range. Since all elements of vi and w′

belongs to the set {−1, 0, 1}, by taking M to be the m×m
matrix with v1,v2, . . . ,vm−1 and w′ as its rows, and z to
be a vector of length m with v1 ·y,v2 ·y, . . . ,vm−1 ·y and
w′ ·y as its elements, our definition of δ implies that |yi| < 1
for all i. It follows that xi > 0 for all i, as desired.

For two agents with additive valuations, envy-freeness is
equivalent to another well-known fairness notion called pro-
portionality, which requires that each agent receive at least
half of her value for the whole set of goods. Thus, the lower
bound in Theorem 3.4 also holds for two agents with identi-
cal additive valuations with respect to proportionality.

3.3 EFX
We end this section by considering EFX. For two agents
with monotonic valuations, Plaut and Roughgarden (2018)
showed that an EFX allocation is guaranteed to exist, but
computing it takes an exponential number of queries in the
worst case. If the agents have additive valuations, however,
the algorithm can already find out the full valuations using
only a linear number of queries. Our next result shows that
a linear number of queries is, in fact, needed for computing
an EFX allocation.

Theorem 3.5. Assume that m is odd. Any deterministic al-
gorithm that computes an EFX allocation for two agents

with identical additive valuations uses at least (m − 1)/2
queries in the worst case.

Note that Theorem 3.5 is incomparable with Theorem 3.4,
even though EFX is a relaxation of envy-freeness, because
the former result deals with a search problem (finding an
EFX allocation knowing that one always exists), whereas the
latter deals with a decision problem (deciding whether an EF
allocation exists at all).

4 Three Agents
In this section, we study the setting with three agents who
are endowed with additive valuations. Our main result is
an algorithm that finds an EF1 allocation using O(logm)
queries, but we first need to develop some machinery for the
case where the agents have identical valuations.

4.1 Identical Additive Valuations
While the case of identical additive valuations might seem
trivial at first glance, as we will see, there are already several
interesting statements that we can make about the setting, so
it may be of independent interest. We begin by establishing
some properties of a particular partition of goods on a line
into two contiguous blocks.

Lemma 4.1. Assume that the goods lie on a line. Suppose
that an agent with an additive valuation u chooses the parti-
tion of the goods into two contiguous blocks that minimizes
the difference between the values of the two blocks. (If there
are goods of value 0 next to the cut point, move the cut point
until these goods belong to the block of lower value.) Let L
be the left block and gl the rightmost good of the block. Sim-
ilarly, let R be the right block and gr the leftmost good of
the block. Then:

1. We have that min{u(G)/2, u(L)} ≥ u(R\{gr}) and
min{u(G)/2, u(R)} ≥ u(L\{gl}).

2. The partition can be computed using O(logm) queries in
the worst case.

Next, we present an algorithm that computes a contiguous
EF1 allocation for three agents with identical valuations us-
ing a logarithmic number of queries. Not only will the con-
tiguity condition be useful later in our algorithm for three
agents with arbitrary valuations, but in certain applications
it may also be desirable to produce a contiguous allocation.
For example, if the goods are office space, it is conceiv-
able that each research group wishes to have a consecutive
block of offices in order to facilitate collaboration within the
group. While contiguous fair allocations of indivisible goods
have recently been studied (Bouveret et al., 2017; Suksom-
pong, 2017), to the best of our knowledge even the existence
of a contiguous EF1 allocation for three agents with identical
valuations has not been established before, let alone an algo-
rithm that computes such an allocation using a small number
of queries. Hence our result may be of interest even if one is
not concerned with the number of queries made. In the ap-
pendix, the existence result is generalized to any number of
agents with identical monotonic valuations (Lemma C.2).

Algorithm 2 (for three agents with identical additive
valuations)

Step 1: Assume that the goods lie on a line, and
denote by u the common valuation of the three
agents. Let g1 be the leftmost good such that
u(Lg1 ∪ {g1}) > u(G)/3, and let g2 be the rightmost
good such that u(Rg2 ∪ {g2}) > u(G)/3. (Possibly
g1 = g2.) Assume without loss of generality that
u(Lg1) ≥ u(Rg2).

Step 2: If Lg1 6= ∅, let g3 be the leftmost good such
that u(Lg3 ∪ {g3}) ≥ u(Rg2). Set A = Lg3 ∪ {g3}.
Else, set A = ∅. In both cases, set C = Rg2 and
B = G\(A ∪ C).

Step 3: If u(C) ≥ u(B\{g2}), return the allocation
(A,B,C). Else, set C ′ = Rg2 ∪ {g2}. Partition the re-
maining goods into two contiguous blocks according to
Lemma 4.1; denote byA′ the left block andB′ the right
block. Return the allocation (A′, B′, C ′).

The following lemma establishes the claimed properties
of Algorithm 2.

Lemma 4.2. Assume that the goods lie on a line. For three
agents with identical additive valuations, Algorithm 2 com-
putes a contiguous EF1 allocation. Moreover, the algorithm
can be implemented to use O(logm) queries in the worst
case.

A bonus of Algorithm 2 is that in the allocation produced
by the algorithm, if some agent envies another agent, then
the envy can be eliminated by removing not just some ar-
bitrary good from the latter agent’s bundle, but one of the
goods at the end of the latter agent’s block. In fact, we can
also choose this good to be a good next to a cut point; this
nails down a unique good for the agents getting the left or
right block. The property can be deduced from the proof of
Lemma 4.2.

To demonstrate that even the problem of establishing the
existence of a contiguous EF1 allocation in this setting is
not straightforward, we present a very natural approach that,
perhaps surprisingly, does not work. We first pretend that the
goods are divisible and find the two cut points that would di-
vide the goods into three parts of exactly equal value. For
each cut point, if the cut point falls between two (now in-
divisible) goods, we keep it; otherwise we round it either
to the left or to the right. One might be tempted to claim
that at least one of the resulting allocations must be EF1. In-
deed, Lemma 4.1 implies that an analogous approach works
for two agents. However, an example given in Appendix B
shows that the approach does not work for three agents, no
matter how we round the cut points.

Next, we leverage Algorithm 2 to show that for three
agents with identical additive valuations, if we designate
three goods in advance, it is possible to compute an EF1
allocation such that all three designated goods belong to dif-
ferent bundles.

Lemma 4.3. Let g1, g2, g3 be three distinct goods. For three
agents with identical additive valuations, there exists a de-
terministic algorithm that computes an EF1 allocation such
that the three goods belong to three different bundles using
O(logm) queries in the worst case.

Note that for two agents, an analogous statement holds
even when the agents have arbitrary monotonic valuations,
since we can place the two designated goods at different
ends of a line and apply Algorithm 1.

4.2 Arbitrary Additive Valuations
With Algorithm 2 and Lemma 4.3 in hand, we are now ready
to present an algorithm that computes an EF1 allocation for
three agents with arbitrary additive valuations using a log-
arithmic number of queries. The algorithm is based on the
Selfridge-Conway procedure for computing an envy-free al-
location of divisible goods, often modeled as a cake, for
three agents. At a high level, the Selfridge-Conway pro-
cedure operates by letting the first agent divide the cake
into three equal pieces and letting the second agent trim
her favorite piece so that it is equal to her second favorite
piece. Then, the procedure allocates one “main” piece to
each agent, with the third agent choosing first, and allocates
the leftover cake in a carefully designed way.

Like the Selfridge-Conway procedure, our algorithm
starts by letting the first agent divide the goods into three al-
most equal bundles using Algorithm 2, so that no matter how
the bundles are allocated, the agent finds the allocation to be
EF1. It then proceeds by letting the second agent trim her fa-
vorite bundle so that her value for the bundle goes just below
that for her second favorite bundle. However, a difficulty in
our indivisible goods setting is that at this point, the second
agent might find the remaining part of her favorite bundle
to be worth less than her second favorite bundle even if we
remove any good from her second favorite bundle. This is
possible, for instance, if the last good that she removes from
her favorite bundle is of high value, and her second favorite
bundle only consists of goods of low value. We will need
to fix this problem by finding “large” goods in the leftover
bundle that help us recover the EF1 guarantee; this is done in
Step 3 of the algorithm. While identifying these large goods
can be done easily if we can make queries for the value of
every good in the leftover bundle, we would not achieve the
logarithmic bound if the leftover piece contained more than
a logarithmic number of goods.

Algorithm 3 (for three agents with additive valuations)

Step 1: Compute an EF1 allocation (A,B,C) for
three identical agents with valuation u1. If a2 and
a3 have different favorite bundles among A,B,C,
give them their favorite bundles, and give the re-
maining bundle to a1. Else, assume without loss
of generality that u2(A) > u2(B) ≥ u2(C) and
u3(A) > max{u3(B), u3(C)}.

Step 2: Let a2 divide A into A′ and T

such that u2(A′) ≤ u2(B) and there ex-
ists g ∈ T with u2(A′ ∪ {g}) > u2(B). If
u3(A′) ≥ max{u3(B), u3(C)}, give A′ to a3, B
to a2, and C to a1. Compute an EF1 allocation
(T1, T2, T3) of the goods in T for three identical agents
with valuation u2. Let a3 choose her favorite bundle
followed by a1, and let a2 take the remaining bundle.
Else, we have u3(A′) < max{u3(B), u3(C)}.

Step 3: Define d = u2(B) − u2(A′) ≥ 0. Call a good
g large if g ∈ T and u2(g) ≥ d, where we update
A′, T , and d during the course of the step. Let a2 find
up to three large goods. The first large good is the
good g ∈ T such that u2(A′ ∪ {g}) > u2(B). To find
further large goods, let E ⊆ T be such that u2(E) ≥ d,
u2(E\{g}) < d for some g ∈ E, and E does not con-
tain any identified large good. If such a set E (and good
g) exists, remove the goods in E\{g} from T and add
them to A′, and decrease d by u2(E\{g}). (For the first
large good, take E = {g}.) Then g is a new large good.
If u3(A′) ≥ max{u3(B), u3(C)} with the updated
set A′, allocate the goods according to Step 2. So we
may still assume that u3(A′) < max{u3(B), u3(C)}.
On the other hand, if no such set E exists, remove all
goods except the (up to two) identified large goods
from T and add them to A′, and decrease d by a2’s
value for these goods.

Step 4: Compute an EF1 allocation (T1, T2, T3) of the
goods in T for three identical agents with valuation u3
in such a way that all identified large goods belong to
different bundles.

Step 5: Let S3 be a3’s preferred bundle between B and
C, and let S1 be the other bundle. Give S2 := A′ to a2,
S3 to a3, and S1 to a1.

Step 6: If there is an identified large good in each of
T1, T2, and T3, give a2 her favorite bundle Ti if we
were to remove the identified large good from each of
these bundles. Let a1 choose her preferred bundle from
the remaining two bundles (without removing the large
goods), and give a3 the remaining bundle. Else, give the
first identified large good to a2 and the second identified
large good (if exists) to a1.

The following theorem, which we view as our main re-
sult, establishes the claimed properties of Algorithm 3 by
leveraging the machinery developed above.

Theorem 4.4. For three agents with additive valuations, Al-
gorithm 3 computes an EF1 allocation. Moreover, the algo-
rithm can be implemented to use O(logm) queries in the
worst case.

5 Any Number of Agents
In this section, we consider the general setting where there
can be any number of agents. We state and discuss some

results here, and relegate several results that require stronger
assumptions to Appendix C.

Our starting point is the envy cycle elimination algorithm
of Lipton et al. (2004), which computes an EF1 allocation
for agents with arbitrary monotonic valuations. The algo-
rithm works by allocating one good at a time in arbitrary
order. It also maintains an envy graph, which has the agents
as its vertices, and a directed edge from ai to aj if ai envies
aj with respect to the current (partial) allocation. At each
step, the next good is allocated to an agent with no incoming
edge, and any cycle that arises as a result is eliminated by
giving aj’s bundle to ai for any edge from ai to aj in the
cycle. This allows the algorithm to maintain the invariant
that the envy graph has no cycles and therefore has an agent
with no incoming edge before each allocation of a good. The
envy cycle elimination algorithm runs in timeO(n3m) in the
worst case. We refer to the paper of Lipton et al. (2004) for
the proof of correctness and detailed analysis of this algo-
rithm.

Our main positive result for this section is the observa-
tion that the envy cycle elimination algorithm can be imple-
mented using a relatively modest number of (value) queries.

Theorem 5.1. For any number of agents with arbitrary
monotonic valuations, the envy cycle elimination algorithm
can be implemented to compute an EF1 allocation using:

1. O(nm) queries in the worst case.
2. O(n3k logm) queries in the worst case, if the valuation

of each agent takes at most k (possibly unknown) values
across all subsets of goods.

Theorem 5.1 illustrates a sharp contrast between EF1 and
the stronger fairness notions of envy-freeness and EFX. For
the latter two notions, computing a fair allocation requires
an exponential number of queries in the worst case, even
in the most restricted setting of two agents with identical
valuations. On the other hand, for EF1 we can get away
with onlyO(nm) queries even in the most general setting of
any number of agents with arbitrary monotonic valuations.
Moreover, if n and k are small compared to m, the bound of
Item 2 of the theorem can be better than that of Item 1. In
particular, if n and k are constant, the implementation only
requiresO(logm) queries. The case of k = 2 corresponds to
the setting where each agent either approves or disapproves
each subset of goods.3 A small value of k may occur in set-
tings where the mechanism designer gives a predefined set
of preferences that the agents can express on each subset
of goods, e.g., ‘very interested’, ‘somewhat interested’, and
‘not interested’.

To complement this positive result, we conclude by giv-
ing a lower bound (which, sadly, does not match the upper
bound) on the number of queries needed to compute an EF1
allocation.

Theorem 5.2. Let m ≥ nα for some constant α > 1. Any
deterministic algorithm that computes an EF1 allocation for
n agents with binary valuations uses Ω(n logm) queries in
the worst case.

3This is not to be confused with what we call binary valuations
in this paper, for which k can be as large as m.

Proof. Assume first that n is even, say n = 2k, and that
each agent has value 1 for two goods and 0 for the remaining
goods. Suppose further that for i = 1, 2, . . . , k, agents a2i−1
and a2i have identical valuations; we abuse notation and de-
note this valuation by ui. Note that if both of the goods val-
ued by some agent are allocated to a single agent, the result-
ing allocation cannot be EF1.

Initially, for each i = 1, 2, . . . , k, let Gi be the whole set
of goods. As long as |Gi| > 2, we answer the query of the
algorithm on the value of ui(H) for a subset H of goods
as follows. If |Gi ∩ H| ≥ |Gi|/2, answer 2 and replace Gi
by Gi ∩H; else, answer 0 and replace Gi by Gi\H . While
|Gi| > n, the only information that the algorithm has is that
both valued goods are contained in Gi. This information is
not sufficient to return an allocation such that the two val-
ued goods are guaranteed to be in different bundles, so the
algorithm must keep making queries until |Gi| ≤ n for ev-
ery i. Since initially |Gi| = m and the size of Gi decreases
by no more than half with each query, the algorithm uses at
least k log(m/n) queries in the worst case. The conclusion
follows from the observation that log(m/n) ≥ α−1

α · logm.
If n is odd, we can assume that the last agent has value 0

for all goods and deduce the same asymptotic bound using
the remaining n− 1 agents.

Since the assumption of Theorem 5.2 holds for any con-
stant n if m is large enough, and when n = 2 the two agents
considered in the proof have identical valuations and each
agent values only two goods, this theorem implies Proposi-
tion 3.2.

6 Discussion
From a technical viewpoint, the main take-home message of
our work is this: Envy-free cake cutting protocols, designed
for divisible goods, can be adapted to yield EF1 allocations
of indivisible goods using a logarithmic number of queries.
On a high level, the idea is to arrange the goods on a line,
and approximately implement cut operations using binary
search. We do this to obtain Theorem 3.1, by adapting the
cut-and-choose protocol, and Theorem 4.4, by building on
the classic Selfridge-Conway protocol.

However, making sure the approximation errors do not
add up in a way that violates EF1 already becomes nontriv-
ial when there are three agents, as illustrated by Algorithm 3
and Theorem 4.4. Extending the approach even to four
agents with arbitrary additive valuations, therefore, seems
very challenging. A related difficulty is that the known envy-
free cake cutting protocols for four or more agents are quite
involved (Brams and Taylor, 1995; Aziz and Mackenzie,
2016a,b; Amanatidis et al., 2018).

Another intriguing question is whether the logarithmic
upper bound on the complexity of EF1 extends to three
agents with monotonic valuations. Such valuations cannot
be handled by the Selfridge-Conway procedure, which is
designed for the cake cutting setting where additivity is as-
sumed. Of course, it is possible that, in fact, there is super-
logarithmic lower bound on the query complexity in this
case.

References
Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi, A.

2015. Approximation algorithms for computing max-
imin share allocations. In Proceedings of the 42nd Inter-
national Colloquium on Automata, Languages and Pro-
gramming (ICALP), 39–51.

Amanatidis, G.; Christodoulou, G.; Fearnley, J.; Markakis,
E.; Psomas, C.-A.; and Vakaliou, E. 2018. An improved
envy-free cake cutting protocol for four agents. In Pro-
ceedings of the 11th International Symposium on Algo-
rithmic Game Theory (SAGT). Forthcoming.

Aziz, H., and Mackenzie, S. 2016a. A discrete and bounded
envy-free cake cutting protocol for any number of agents.
In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS), 416–427.

Aziz, H., and Mackenzie, S. 2016b. A discrete and bounded
envy-free cake cutting protocol for four agents. In Pro-
ceedings of the 48th Annual ACM Symposium on Theory
of Computing (STOC), 454–464.

Bouveret, S., and Lemaı̂tre, M. 2016. Characterizing con-
flicts in fair division of indivisible goods using a scale
of criteria. Autonomous Agents and Multi-Agent Systems
30(2):259–290.

Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and
Peters, D. 2017. Fair division of a graph. In Proceedings
of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), 135–141.

Brams, S. J., and Taylor, A. D. 1995. An envy-free cake
division protocol. The American Mathematical Monthly
102(1):9–18.

Brams, S. J., and Taylor, A. D. 1996. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge Univer-
sity Press.

Budish, E. 2011. The combinatorial assignment prob-
lem: Approximate competitive equilibrium from equal in-
comes. Journal of Political Economy 119(6):1061–1103.

Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2016. The unreasonable fairness
of maximum Nash welfare. In Proceedings of the 17th
ACM Conference on Economics and Computation (EC),
305–322.

Deng, X.; Qi, Q.; and Saberi, A. 2012. Algorithmic so-
lutions for envy-free cake cutting. Operations Research
60(6):1461–1476.

Edmonds, J., and Pruhs, K. 2006. Cake cutting really is
not a piece of cake. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
271–278.

Foley, D. 1967. Resource allocation and the public sector.
Yale Economics Essays 7:45–98.

Goldman, J., and Procaccia, A. D. 2014. Spliddit: Un-
leashing fair division algorithms. SIGecom Exchanges
13(2):41–46.

Kurokawa, D.; Lai, J. K.; and Procaccia, A. D. 2013. How
to cut a cake before the party ends. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI),
555–561.

Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018.
Fair enough: Guaranteeing approximate maximin shares.
Journal of the ACM 64(2): article 8.

Lipton, R. J.; Markakis, E.; Mossel, E.; and Saberi, A. 2004.
On approximately fair allocations of indivisible goods. In
Proceedings of the 6th ACM Conference on Economics
and Computation (EC), 125–131.

Moulin, H. 2003. Fair Division and Collective Welfare. MIT
Press.

Plaut, B., and Roughgarden, T. 2018. Almost envy-freeness
with general valuations. In Proceedings of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2584–2603.

Procaccia, A. D., and Wang, J. 2017. A lower bound for
equitable cake cutting. In Proceedings of the 18th ACM
Conference on Economics and Computation (EC), 479–
495.

Procaccia, A. D. 2009. Thou shalt covet thy neighbor’s cake.
In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), 239–244.

Procaccia, A. D. 2013. Cake cutting: Not just child’s play.
Communications of the ACM 56(7):78–87.

Robertson, J. M., and Webb, W. A. 1998. Cake Cutting
Algorithms: Be Fair If You Can. A. K. Peters.

Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16:101–104.

Stromquist, W. 1980. How to cut a cake fairly. American
Mathematical Monthly 87(8):640–644.

Suksompong, W. 2017. Fairly allocating contiguous blocks
of indivisible items. In Proceedings of the 10th Interna-
tional Symposium on Algorithmic Game Theory (SAGT),
333–344.

A Omitted Proofs
Proof of Proposition 3.3
Assume that the common valuation u is such that u(G1) <
u(G2) whenever |G1| < |G2|. With this valuation, any
envy-free allocation must give an equal number of goods
to both agents. Since the values of subsets of size m/2 can
be arbitrary, the algorithm must, in the worst case, query all
such subsets in order to determine whether there exists a set
G′ such that u(G′) = u(G\G′). Hence the algorithm needs
to query

(
m
m/2

)
subsets in the worst case.

Proof of Theorem 3.5
Let m = 2k+ 1, and consider an algorithm that always uses
at most k−1 queries. Whenever the algorithm queries a sub-
set of size s, we answer that the subset has value s. Suppose
that upon termination the algorithm outputs the allocation

(G1, G2), where we assume without loss of generality that
|G1| ≤ k. If |G1| < k, then we assign to every good a value
of 1; this is clearly consistent with our answers, but the allo-
cation is not EFX.

Assume, therefore, that |G1| = k. We assign to every
good in G1 a value of 1; this is again consistent with our
answers to queries on subsets of G1. Now, our answers give
rise to at most k − 1 linear constraints on the values of the
goods in G2. Add the constraint that the sum of these k + 1
values is k + 1. The allocation (G1, G2) is EFX if and only
if every good in G2 has value 1. Since all of our constraints
are satisfied when every good has value 1, our set of con-
straints is satisfiable. There are k + 1 variables and at most
k constraints, so if we compute the reduced row-echelon
form of the constraint matrix, we can find a nonempty set
of free variables. The remaining variables (i.e., the leading
variables) can be written as a linear combination of these
free variables. If all free variables are set to 1, all leading
variables must also be 1. Hence, we can perturb one of the
free variables by a small amount so that all of the leading
variables are still nonnegative. This yields a valuation that
is consistent with our answers but according to which the
allocation returned by the algorithm is not EFX.

Proof of Lemma 4.1
1. By symmetry it suffices to prove that

min{u(G)/2, u(L)} ≥ u(R\{gr}). Suppose that
u(L) < u(R\{gr}). We have u(gr) > 0 since otherwise
we would have moved the cut point to the right. Then
u(L ∪ {gr}) > u(L) and u(R\{gr}) > u(L); hence
(L∪{gr}, R\{gr}) is a more equal partition than (L,R),
a contradiction. If u(R\{gr}) > u(G)/2 then we also
have u(R\{gr}) > u(L), and the same argument yields
a contradiction.

2. We use binary search to find the leftmost good g such that
u(Lg ∪ {g}) ≥ u(G)/2. The left block of the partition
will be either Lg or Lg ∪ {g}. Indeed, if the left block is
smaller than Lg then having Lg as the left block yields a
more equal partition, while if it is larger thanLg∪{g} then
having Lg ∪{g} as the left block yields a more equal par-
tition. Moreover, with this choice of partition, any good
of value 0 next to the cut point will already belong to the
block of lower value. The total number of queries required
for the binary search is O(logm).

Proof of Lemma 4.2
We first show that the algorithm computes an EF1 allocation.
We consider two cases.

• Case 1: At the beginning of Step 3, u(C) ≥ u(B\{g2})
(so we return the allocation (A,B,C) from Step 2). We
have u(A) ≥ u(C) ≥ u(B\{g2}), so a1 and a3 do
not envy a2 up to one good. Since u(B) ≥ u(G)/3 ≥
u(A) ≥ u(C), a2 does not envy a1 or a3, and a1 does not
envy a3. Moreover, if Lg1 6= ∅, then by definition of g3
we have u(A\{g3}) ≤ u(C), which means that a3 does
not envy a1 up to one good. If Lg1 = ∅ then A = C = ∅,
and again a3 does not envy a1 up to one good.

• Case 2: At the beginning of Step 3, u(C) < u(B\{g2}).
We also have u(C) ≤ u(A). Since we partition A ∪
(B\{g2}) into two blocks according to Lemma 4.1, both
blocks are also worth at least u(C) = u(C ′\{g2}), mean-
ing that a1 and a2 do not envy a3 up to one good. We
claim that a2 and a3 also do not envy a1 up to one good;
the claim for a1 and a3 towards a2 can be shown simi-
larly. Let g be the rightmost good in A′. (If A′ = ∅, the
claim holds trivially.) It suffices to show that u(B′) ≥
u(A′\{g}) and u(C ′) ≥ u(A′\{g}). By Lemma 4.1, we
have u(B′) ≥ u(A′\{g}) and

u(A′\{g}) ≤ u(A′ ∪B′)/2

=
u(G)− u(C ′)

2
≤ u(G)/3

≤ u(C ′),

Hence the allocation is EF1.

Next, we show that the algorithm can be implemented to
use O(logm) queries. By monotonicity, both finding g1 and
g2 in Step 1 and finding g3 in Step 2 can be done by binary
search using O(logm) queries. By Lemma 4.1, the parti-
tion in Step 3 can be found using O(logm) queries. The
remaining operations of the algorithm only require a con-
stant number of queries. Hence the total number of queries
is O(logm).

Proof of Lemma 4.3
Before we establish the claim, we show an interesting prop-
erty of Algorithm 2.

Lemma A.1. Assume that the goods lie on a line, and let g
be a good such that u(Lg) ≥ u(G)/3 and u(Rg) ≥ u(G)/3.
Then g belongs to the middle bundle in the allocation re-
turned by Algorithm 2.

Proof. By definition of g1 in Algorithm 2, we have that g
is either g1 itself or to the right of g1, so g 6∈ A. Similarly,
g 6∈ C. If the allocation (A,B,C) is returned, g belongs
to the middle bundle B. Otherwise, we must have g 6= g2,
and the algorithm partitions A′ ∪ (B′\{g2}) into two blocks
according to Lemma 4.1. The subset of A′ ∪ (B′\{g2}) to
the left of g has value at least u(G)/3, while the subset to
the right of g together with g has value at most u(G)/3. It
follows that in the resulting partition, g must belong to B′,
which is the middle bundle in the allocation (A′, B′, C ′).

We now proceed to establish the lemma. Denote by u the
common valuation of the agents, and assume without loss of
generality that u(g1) ≥ u(g2) ≥ u(g3). We consider three
cases.

• Case 1: There exists a good g ∈ {g1, g2, g3} such that
u(g) ≥ u(G)/3. Then it must be the case that u(g1) ≥
u(G)/3. Set A = {g1}, arrange the remaining goods
in a line with g2 and g3 at the two ends, and parti-
tion the goods into two contiguous blocks according to

Lemma 4.1. Set B and C to be the two blocks and re-
turn the allocation (A,B,C). Clearly, all three goods be-
long to different bundles. By Lemma 4.1, a2 and a3 do not
envy each other up to one good. As a1 receives only one
good, a2 and a3 do not envy her up to one good. Since
u(A) ≥ u(G)/3, we have u(B ∪ C) ≤ 2u(G)/3. By
Lemma 4.1 again, there is a good in a2’s bundle such that
if we remove it, then the remaining value of a2 is at most
u(B ∪ C)/2 ≤ u(G)/3. This implies that a1 does not
envy a2 up to one good. A similar argument holds for a1
towards a3.

• Case 2: There exists a good g 6∈ {g1, g2, g3} such that
u(g) ≥ u(G)/3. Set A = {g3, g}, arrange the remain-
ing goods in a line with g1 and g2 at the two ends, and
partition the goods into two contiguous blocks according
to Lemma 4.1. Set B and C to be the two blocks and
return the allocation (A,B,C). Clearly, all three goods
belong to different bundles. By Lemma 4.1, a2 and a3
do not envy each other up to one good. Moreover, since
u(g3) ≤ u(g1), u(g2), both agents do not envy a1 when
g is removed from a1’s bundle. A similar argument as in
Case 1 shows that a1 does not envy a2 or a3 up to one
good.

• Case 3: u(g) < u(G)/3 for every good g. Arrange the
goods in a line starting with g1 and g2 at the left and right
ends, respectively. Then, keeping g3 aside, add one good
at a time to the left end (to the right of g1) until the total
value of the goods at the left end exceeds u(G)/3. Since
max(u(g1), u(g2), u(g3)) < u(G)/3, this occurs when
we add some good g 6∈ {g1, g2, g3}. Add g3 to the right
of g. If u(Lg3) ≥ u(G)/3 and u(Lg3∪{g3}) ≤ 2u(G)/3,
add the remaining goods arbitrarily and run Algorithm 2;
Lemma A.1 implies that g3 belongs to the middle bundle
of the resulting allocation. Else, u({g3, g}) ≥ u(G)/3.
Set A = {g3, g} and remove these two goods from the
line. Add the remaining goods arbitrarily to the line, and
partition the goods into two contiguous blocks according
to Lemma 4.1. Set B and C to be the two blocks and
return the allocation (A,B,C). A similar argument as in
Case 2 shows that the resulting allocation is EF1.

Algorithm 2 uses O(logm) queries, and by Lemma 4.1,
partitioning into two contiguous blocks according to the
lemma also uses O(logm) queries. In Case 3, we can find
g by adding all goods except g3 to the line and using binary
search; this takes O(logm) queries. To determine whether
there exists a good g with u(g) > u(G)/3, arrange the goods
in a line, and use binary search to find the leftmost good gl
such that u(Lgl ∪ {gl}) > u(G)/3 and the rightmost good
gr such that u(Rgr ∪ {gr}) > u(G)/3. Such a good g must
be one of gl and gr. This also takes O(logm) queries. The
remaining operations of the algorithm only requires a con-
stant number of queries. Hence the total number of queries
is O(logm).

Proof of Theorem 4.4
We first show that the algorithm computes an EF1 allocation.
We consider three cases. In Cases 2 and 3, assume with-

out loss of generality that T1 is the first bundle picked from
among T1, T2, T3, followed by T2 and then T3.

• Case 1: The algorithm terminates in Step 1. Both a2 and
a3 get their favorite bundles and therefore do not envy any
other agent, while a1 does not envy any other agent up to
one good no matter which bundle she gets.

• Case 2: The algorithm terminates in Step 2 or 3. This
means that u3(A′) ≥ u3(B), u3(C) (either before or af-
ter finding large goods). In this case, the allocation is
(C ∪ T2, B ∪ T3, A′ ∪ T1). Since a3 gets her favorite
bundles A′ and T1, she does not envy any other agent.
Next, a2 gets her favorite bundle B, and the allocation
(T1, T2, T3) of T is computed according to her valuation,
so she does not envy any other agent up to one good. Fur-
thermore, note that a3’s bundle A′ ∪ T1 is a subset of A,
and a1 would not envy a3 up to one good even if a3 were
to get the whole bundle A. Also a1 prefers T2 to T3 and
the allocation (A,B,C) is computed according to her val-
uation, so she does not envy a2 up to one good.

• Case 3: The algorithm terminates in Step 6. Denote by T ′i
the bundle among T1, T2, T3 allocated to agent ai. In this
case, the allocation is (S1 ∪ T ′1, S2 ∪ T ′2, S3 ∪ T ′3). Note
that any identified large good always remains large. Since
S2 ∪ T ′2 ⊆ A and the allocation (A,B,C) is computed
according to a1’s valuation, a1 does not envy a2 up to one
good. Since a1 prefers T ′1 to T ′3, she also does not envy
a3 up to one good. Next, a3 prefers S3 to both S1 and S2,
and the allocation (T1, T2, T3) of T is computed accord-
ing to her valuation, so she does not envy any other agent
up to one good. If there are fewer than three identified
large goods, then T consists of at most two (large) goods.
Since a2 prefers S2 ∪ T ′2 to B and C, and both T ′1 and
T ′3 contain at most one good, a2 does not envy any other
agent up to one good. Else, each T ′i contains an identi-
fied large good; let g be the large good in T ′2. We have
u2(S2 ∪ {g}) ≥ u2(B) ≥ u2(C). Moreover, a2 chooses
her favorite bundle from T1, T2, T3 if we were to remove
the identified large good from each bundle. Therefore she
does not envy any other agent up to one good. Hence the
allocation is EF1.

We now show that the algorithm can be implemented
to use O(logm) queries. Step 1 can be done using Algo-
rithm 2 with O(logm) queries. Step 2 can be done with
O(logm) queries by arranging the goods in A in a line and
using binary search to find the leftmost good g such that
u2(Lg ∪ {g}) > u2(B), and by using Algorithm 2. Finding
a large good in Step 3 can be done similarly using binary
search. Step 4 can be done using Lemma 4.3 with O(logm)
queries, and Steps 5 and 6 can be done using a constant
number of queries. Hence the total number of queries is
O(logm).

Proof of Theorem 5.1
1. Note that in the envy cycle elimination algorithm (Lip-

ton et al., 2004), it suffices to query the value of each
agent for the n bundles in each partial allocation in or-
der to construct the envy graph. Since there are m partial

allocations, this takes O(nm) queries. The cycle elimina-
tion step does not require additional queries because the
bundles remain the same and the algorithm already knows
the value of every agent for every bundle.

2. Fix an ordering of the goods to be allocated, and assume
that we allocate them from left to right. Let ai be an agent
with no incoming edge in the envy graph corresponding
to the current (partial) allocation. Let g be the leftmost
unallocated good such that if we allocate all goods up to
and including g to ai, then the value of some agent for ai’s
bundle increases. We then allocate all of these goods to ai
at once. This is a correct implementation of the algorithm
because before g is allocated, the value of any agent for
any bundle in the partial allocation (and thus also the envy
graph) remains unchanged.
By monotonicity, we can find the good g withO(n logm)
queries using binary search. Since there are n bundles and
the value of each agent for each bundle can change up to
k−1 times, the number of value changes is at most n2(k−
1). Hence the total number of queries is O(n3k logm).

B Omitted Example
Assume that there are 14 goods g1, g2, . . . , g14 lying on a
line in this order. The common valuation u is such that
u(g1) = 8, u(g2) = 10, and u(gi) = 1 for i = 3, 4, . . . , 14.
In other words, the values of the goods on the line are

8, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

in this order, where there are 12 goods of value 1.
In this example, the left cut point falls within g2, while

the right cut point falls between g4 and g5. Assume that
the agents a1, a2, a3 receive the left, middle, and right bun-
dle respectively. If we round the left cut point to the left,
then a1 gets value 8 and envies a3 even after removing
any one good. On the other hand, if we round the left
cut point to the right, then a1 has value 18 and a2 en-
vies her even after removing any good. Note that even if
we add the possibilities of rounding one cut point, ignor-
ing the other cut point, and then dividing the remaining
goods into two parts according to Lemma 4.1, the same ex-
ample still shows that none of these additional possibilities
works. On the other hand, Algorithm 2 returns the allocation
({g1}, {g2, . . . , g6}, {g7, . . . , g14}), which is EF1.

C Additional Results for Any Number of
Agents

First, we consider the class of valuations where a subset of
larger size is always weakly preferred to a subset of smaller
size. In other words, getting a larger bundle cannot make
an agent worse off. This class of valuations applies to set-
tings where all of the goods are roughly equally valuable and
there are only minor differences within each agent’s values
for the goods. While this is a rather restricted class of valu-
ations, the valuation used by Plaut and Roughgarden (2018)
to show that computing an EFX allocation takes an expo-
nential number of queries in the worst case belongs to this
class. The following result says that if we relax the fairness

notion to EF1, then it is possible to compute a fair allocation
using a much smaller number of queries that does not even
depend on the number of goods and is only quadratic in the
number of agents.

Theorem C.1. For any number of agents with monotonic
valuations such that ui(G1) ≤ ui(G2) for all i and all
G1, G2 ⊆ G with |G1| < |G2|, there exists a determinis-
tic algorithm that computes an EF1 allocation using O(n2)
queries in the worst case.

Proof. Let q = bm/nc and r = m − nq. Divide the goods
arbitrarily into n bundles of q goods and r leftover goods.
Order the agents in arbitrary order, and let each of the first
n − r agents choose the bundle for which she has the most
value among the remaining bundles. Then, give each of the
remaining r agents one of the remaining bundles along with
one of the r leftover goods. Since we only need to know the
value of the agents for at most n bundles, the algorithm can
be implemented using O(n2) queries.

We claim that the resulting allocation is EF1. Indeed,
it follows from the assumption on the agents’ valuations
that no agent envies another agent with fewer or the same
number of goods when a good is removed from the latter
agent’s bundle. Moreover, because of the agents’ choices,
each agent ai among the first n−r agents does not envy any
agent aj among the last r agents when the leftover good is
removed from aj’s bundle. This completes the proof.

Next, we consider the setting where the agents have iden-
tical monotonic valuations. It is known that an EFX alloca-
tion always exists in this setting (Plaut and Roughgarden,
2018). The following lemma shows that if we relax the fair-
ness notion to EF1, we can find a fair allocation that is more-
over contiguous. Since contiguity is useful in several situa-
tions (see the remark preceding Algorithm 2), the result may
also be of independent interest.

Lemma C.2. Assume that the goods lie on a line. For any
number of agents with identical monotonic valuations, there
exists a contiguous EF1 allocation.

Proof. Suppose that the goods lie in the order
g1, g2, . . . , gm, and denote by u the common valua-
tion. For any block G′ of consecutive goods with gl and
gr as the leftmost and rightmost goods respectively, let
w(G′) = min{u(G′\{gl}, G′\{gr})}. (If G′ is empty, set
w(G′) = 0.) One can check that w(G1) ≤ w(G2) for any
two blocks G1 ⊆ G2. Let S be the set of values of all
blocks of consecutive goods (including the empty block, of
which we define the value to be 0). For any value x ∈ S
and any k ∈ {1, 2, . . . , n}, define Tk(x) to be the set of
all j ∈ {1, 2, . . . ,m} for which there exists k consecutive
blocks G1, G2, . . . , Gk starting from the leftmost good g1
such that w(Gi) ≤ x ≤ u(Gi) for all 1 ≤ i ≤ k and the
block Gk ends with the good gj . Our goal is to show that
m ∈ Tn(x) for some x ∈ S; this will immediately imply
the desired result.

We claim that for any x and k, Tk(x) forms a (possibly
empty) block of consecutive integers. To prove the claim,
we fix x and induct on k. The base case k = 1 follows from

the observation that both u and w are monotonic. For the
inductive step, assume that Tk(x) = {t, t+ 1, . . . , t+ l} for
some t and l. Then Tk+1(x) consists of all j such that the
block G′ from gi to gj satisfies w(G′) ≤ x ≤ u(G′) for
some i ∈ {t + 1, t + 2, . . . , t + l + 1}. Hence it suffices
to show that if j < m and gj is the rightmost good such
that the inequalities are still satisfied when the block starts
at gi and ends at gj , then the inequalities are still satisfied
when the block starts at gi+1 and ends at gl, for at least one
l ∈ {j, j + 1}. We consider three cases.

• Case 1: j = i. By definition of j, we have u(gi+1) > x.
Therefore the block consisting of only gi+1 satisfies the
inequalities.

• Case 2: j = i + 1. By definition of j, we have
u({gi+1, gi+2}) > x. If u(gi+1) ≤ x, the block starting
at gi+1 and ending at gi+2 satisfies the inequalities; else,
the block consisting of only gi+1 satisfies the inequalities.

• Case 3: j ≥ i + 2. Denote by G′ the (possibly empty)
set {gi+2, gi+3, . . . , gj−1}. By definition of j, we have
u(G′∪{gi, gi+1, gj}) > x, u(G′∪{gi+1, gj , gj+1}) > x,
and min{u(G′ ∪{gi, gi+1}), u(G′ ∪{gi+1, gj})} ≤ x. If
u(G′ ∪ {gi+1, gj}) ≥ x, then since u(G′ ∪ {gi+1}) ≤
min{u(G′ ∪ {gi, gi+1}), u(G′ ∪ {gi+1, gj})} ≤ x, the
block starting at gi+1 and ending at gj satisfies the in-
equalities. Else, we have u(G′ ∪ {gi+1, gj}) < x. It fol-
lows that the block starting at gi+1 and ending at gj+1

satisfies the inequalities.

This concludes the inductive step and hence the claim. It
also follows that if j < m is the largest element of Tk(x),
we can construct k blocks starting at g1 and ending at gj all
of which satisfies the inequalities for x by greedily taking
each block to be the longest block such that the inequalities
are satisfied.

Next, we show that for any x and k, if Tk(x) is nonempty
and does not contain m, then the intersection of Tk(x) and
Tk(y) is nonempty, where y is the smallest element of S
larger than x. (Note that y must exist since Tk(u(G)) is ei-
ther empty or contains m.) We prove by induction on k that
the largest element of Tk(x) also belongs to Tk(y). For the
base case k = 1, suppose that the largest element of T1(x)
is i. This means that u({g1, g2, . . . , gi}) > x. By defini-
tion of y, we have u({g1, g2, . . . , gi}) ≥ y, which implies
that i ∈ T1(y). For the inductive step, assume that the state-
ment holds for k, and that Tk+1(x) is nonempty and does
not contain m. Let j be the largest element of Tk+1(x). By
the remark following the claim, we know that we can greed-
ily construct k+1 blocks starting at g1 and ending at gj each
of which satisfies the inequalities for x. In particular, the kth
block will end at gi, where i is the largest element of Tk(x).
By the inductive hypothesis, i ∈ Tk(y). A similar argument
to the one used in the base case shows that j ∈ Tk+1(y), as
claimed.

Finally, note that Tn(0) is nonempty. If m 6∈ Tn(x) for
all x ∈ S, the previous paragraph implies that Tn(x) is
nonempty for all x. But this is impossible since Tn(u(G))
is either empty or contains m, so it must be that m ∈ Tn(x)
for at least one x, as desired.

Like Lemma 4.2, Lemma C.2 guarantees the existence of
an EF1 allocation with the extra property that if some agent
envies another agent, then the envy can be eliminated by
removing one of the goods at the end of the latter agent’s
block.

We now leverage Lemma C.2 to show that for agents with
identical monotonic valuations, it is possible to compute an
EF1 allocation that is moreover contiguous using a number
of queries that depends only logarithmically on the num-
ber of goods. For this result we assume that the value of
an agent for any subset of goods is an integer that is at most
some value K. This is a realistic assumption for practical
purposes; for instance, Spliddit lets users specify their value
for each good as an integer between 0 and 1000.
Theorem C.3. Assume that the goods lie on a line. For
any number of agents with identical monotonic valuations
such that the value of an agent for any subset of goods
is an integer at most K, there exists a deterministic al-
gorithm that computes a contiguous EF1 allocation using
O(n logm(n logm+ logK)) queries in the worst case.

Proof. Using the notation from the proof of Lemma C.2,
we know that m ∈ Tn(x) for some x ∈ S. Since S ⊆
{0, 1, 2, . . . ,K}, we may take S to be this set. By mono-
tonicity, we can use binary search to find x such that m ∈
Tn(x). For each value of x, we try to construct k blocks that
satisfy the inequality for x greedily in two ways, one by tak-
ing as few goods as possible for each block, and the other
by taking as many goods as possible. If the former construc-
tion does not take all goods by the kth block while the latter
construction does not leave enough goods for the kth block,
we know that this value of x works. The existence of such
x is guaranteed by Lemma C.2. Using binary search allows
us to try O(logK) values of x, and for each value of x we
make O(n logm) queries. Hence the step of finding x takes
O(n logm logK) queries.

Once we have x, it remains to construct the n blocks
G1, G2, . . . , Gn that satisfy the inequalities w(Gi) ≤ x ≤
u(Gi) for all i. If we have constructed j − 1 blocks, we
use binary search to find the jth block such that the remain-
ing blocks can also be constructed to satisfy the inequalities.
Again, we can check whether the remaining blocks can be
constructed by trying to construct the blocks greedily in two
ways; this takes O(n logm) queries. Since we construct n
blocks and we use binary search to determine each block,
the total number of queries in this step is O(n2 log2m).
Combining the queries in the two steps yields the desired
result.

In particular, if n and K are constant, the bound in Theo-
rem C.3 becomes O(log2m).

