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Abstract
In classic fair division problems such as cake cut-
ting and rent division, envy-freeness requires that
each individual (weakly) prefer his allocation to
anyone else’s. On a conceptual level, we argue
that envy-freeness also provides a compelling no-
tion of fairness for classification tasks, especially
when individuals have heterogeneous preferences.
Our technical focus is the generalizability of envy-
free classification, i.e., understanding whether a
classifier that is envy free on a sample would be
almost envy free with respect to the underlying
distribution with high probability. Our main re-
sult establishes that a small sample is sufficient
to achieve such guarantees, when the classifier in
question is a mixture of deterministic classifiers
that belong to a family of low Natarajan dimen-
sion.

1. Introduction
The study of fairness in machine learning is driven by an
abundance of examples where learning algorithms were per-
ceived as discriminating against protected groups (Sweeney,
2013; Datta et al., 2015). Addressing this problem requires
a conceptual — perhaps even philosophical — understand-
ing of what fairness means in this context. In other words,
the million dollar question is (arguably1) this: What are the
formal constraints that fairness imposes on learning algo-
rithms?

In this paper, we propose a new measure of algorithmic
fairness. It draws on an extensive body of work on rigorous
approaches to fairness, which — modulo one possible ex-
ception (see Section 1.2) — has not been tapped by machine
learning researchers: the literature on fair division (Brams
& Taylor, 1996; Moulin, 2003). The most prominent notion
is that of envy-freeness (Foley, 1967; Varian, 1974), which,
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1Recent work takes a somewhat different view (Kilbertus et al.,
2017).

in the context of the allocation of goods, requires that the
utility of each individual for his allocation be at least as high
as his utility for the allocation of any other individual; this is
the gold standard of fairness for problems such as cake cut-
ting (Robertson & Webb, 1998; Procaccia, 2013) and rent
division (Su, 1999; Gal et al., 2017). In the classification
setting, envy-freeness would simply mean that the utility
of each individual for his distribution over outcomes is at
least as high as his utility for the distribution over outcomes
assigned to any other individual.

It is important to say upfront that envy-freeness is not suit-
able for several widely-studied problems where there are
only two possible outcomes, one of which is ‘good’ and the
other ‘bad’; examples include predicting whether an individ-
ual would default on a loan, and whether an offender would
recidivate. In these degenerate cases, envy-freeness would
require that the classifier assign each and every individual
the exact same probability of obtaining the ‘good’ outcome,
which, clearly, is not a reasonable constraint.

By contrast, we are interested in situations where there is a
diverse set of possible outcomes, and individuals have di-
verse preferences for those outcomes. For example, consider
a system responsible for displaying credit card advertise-
ments to individuals. There are many credit cards with
different eligibility requirements, annual rates, and reward
programs. An individual’s utility for seeing a card’s ad-
vertisement will depend on his eligibility, his benefit from
the rewards programs, and potentially other factors. It may
well be the case that an envy-free advertisement assignment
shows Bob advertisements for a card with worse annual
rates than those shown to Alice; this outcome is not unfair if
Bob is genuinely more interested in the card offered to him.
Such rich utility functions are also evident in the context
of job advertisements (Datta et al., 2015): people generally
want higher paying jobs, but would presumably have higher
utility for seeing advertisements for jobs that better fit their
qualifications and interests.

A second appealing property of envy-freeness is that its
fairness guarantee binds at the level of individuals. Fair-
ness notions can be coarsely characterized as being either
individual notions, or group notions, depending on whether
they provide guarantees to specific individuals, or only on
average to a protected subgroup. The majority of work on
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fairness in machine learning focuses on group fairness (Lu-
ong et al., 2011; Dwork et al., 2012; Zemel et al., 2013;
Hardt et al., 2016; Joseph et al., 2016; Zafar et al., 2017).

There is, however, one well-known example of individual
fairness: the influential fair classification model of Dwork
et al. (2012). The model involves a set of individuals and
a set of outcomes. The centerpiece of the model is a simi-
larity metric on the space of individuals; it is specific to the
classification task at hand, and ideally captures the ethical
ground truth about relevant attributes. For example, a man
and a woman who are similar in every other way should be
considered similar for the purpose of credit card offerings,
but perhaps not for lingerie advertisements. Assuming such
a metric is available, fairness can be naturally formalized as
a Lipschitz constraint, which requires that individuals who
are close according to the similarity metric be mapped to
distributions over outcomes that are close according to some
standard metric (such as total variation).

As attractive as this model is, it has one clear weakness from
a practical viewpoint: the availability of a similarity metric.
Dwork et al. (2012) are well aware of this issue; they write
that justifying this assumption is “one of the most challeng-
ing aspects” of their approach. They add that “in reality the
metric used will most likely only be society’s current best
approximation to the truth.” But, despite recent progress
on automating ethical decisions in certain domains (Nooth-
igattu et al., 2018; Freedman et al., 2018), the task-specific
nature of the similarity metric makes even a credible ap-
proximation thereof seem unrealistic. In particular, if one
wanted to learn a similarity metric, it is unclear what type
of examples a relevant dataset would consist of.

In place of a metric, envy-freeness requires access to indi-
viduals’ utility functions, but — by contrast — we do not
view this assumption as a barrier to implementation. In-
deed, there are a variety of techniques for learning utility
functions (Chajewska et al., 2001; Nielsen & Jensen, 2004;
Balcan et al., 2012). Moreover, in our running example of
advertising, one can use standard measures like expected
click-through rate (CTR) as a good proxy for utility.

It is worth noting that the classification setting is different
from classic fair division problems in that the “goods” (out-
comes) are non-excludable. In fact, one envy-free solution
simply assigns each individual to his favorite outcome. But
this solution may be severely suboptimal according to an-
other (standard) component of our setting, the loss function,
which, in the examples above, might represent the expected
revenue from showing an ad to an individual. Typically the
loss function is not perfectly aligned with individual utilities,
and, therefore, it may be possible to achieve smaller loss
than the naı̈ve solution without violating the envy-freeness
constraint.

In summary, we view envy-freeness as a compelling, well-
established, and, importantly, practicable notion of indi-
vidual fairness for classification tasks with a diverse set of
outcomes when individuals have heterogeneous preferences.
Our goal is to understand its learning-theoretic properties.

1.1. Our Results

The challenge is that the space of individuals is potentially
huge, yet we seek to provide universal envy-freeness guar-
antees. To this end, we are given a sample consisting of
individuals drawn from an unknown distribution. We are
interested in learning algorithms that minimize loss, subject
to satisfying the envy-freeness constraint, on the sample.
Our primary technical question is that of generalizability,
that is, given a classifier that is envy free on a sample, is
it approximately envy free on the underlying distribution?
Surprisingly, Dwork et al. (2012) do not study generalizabil-
ity in their model, and we are aware of only one subsequent
paper that takes a learning-theoretic viewpoint on individual
fairness and gives theoretical guarantees (see Section 1.2).

In Section 3, we do not constrain the classifier. Therefore,
we need some strategy to extend a classifier that is defined
on a sample; assigning an individual the same outcome as
his nearest neighbor in the sample is a popular choice. How-
ever, we show that any strategy for extending a classifier
from a sample, on which it is envy free, to the entire set of
individuals is unlikely to be approximately envy free on the
distribution, unless the sample is exponentially large.

For this reason, in Section 4, we focus on structured fam-
ilies of classifiers. On a high level, our goal is to relate
the combinatorial richness of the family to generalization
guarantees. One obstacle is that standard notions of dimen-
sion do not extend to the analysis of randomized classifiers,
whose range is distributions over outcomes (equivalently,
real vectors). We circumvent this obstacle by considering
mixtures of deterministic classifiers that belong to a family
of bounded Natarajan dimension (an extension of the well-
known VC dimension to multi-class classification). Our
main theoretical result asserts that, under this assumption,
envy-freeness on a sample does generalize to the underlying
distribution, even if the sample is relatively small (its size
grows almost linearly in the Natarajan dimension).

Finally, in Section 5, we design and implement an algorithm
that learns (almost) envy-free mixtures of linear one-vs-all
classifiers. We present empirical results that validate our
computational approach, and indicate good generalization
properties even when the sample size is small.

1.2. Related Work

Conceptually, our work is most closely related to work by
Zafar et al. (2017). They are interested in group notions of
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fairness, and advocate preference-based notions instead of
parity-based notions. In particular, they assume that each
group has a utility function for classifiers, and define the
preferred treatment property, which requires that the utility
of each group for its own classifier be at least its utility
for the classifier assigned to any other group. Their model
and results focus on the case of binary classification where
there is a desirable outcome and an undesirable outcome, so
the utility of a group for a classifier is simply the fraction
of its members that are mapped to the desirable outcome.
Although, at first glance, this notion seems similar to envy-
freeness, it is actually fundamentally different.2 Our paper
is also completely different from that of Zafar et al. in terms
of technical results; theirs are purely empirical in nature,
and focus on the increase in accuracy obtained when parity-
based notions of fairness are replaced with preference-based
ones.

Concurrent work by Rothblum & Yona (2018) provides gen-
eralization guarantees for the metric notion of individual
fairness introduced by Dwork et al. (2012), or, more pre-
cisely, for an approximate version thereof. There are two
main differences compared to our work: first, we propose
envy-freeness as an alternative notion of fairness that cir-
cumvents the need for a similarity metric. Second, they
focus on randomized binary classification, which amounts
to learning a real-valued function, and so are able to make
use of standard Rademacher complexity results to show gen-
eralization. By contrast, standard tools do not directly apply
in our setting. It is worth noting that several other papers
provide generalization guarantees for notions of group fair-
ness, but these are more distantly related to our work (Zemel
et al., 2013; Woodworth et al., 2017; Donini et al., 2018;
Kearns et al., 2018; Hébert-Johnson et al., 2018).

2. The Model
We assume that there is a space X of individuals, a finite
space Y of outcomes, and a utility function u : X × Y →
[0, 1] encoding the preferences of each individual for the
outcomes in Y . In the advertising example, individuals are
users, outcomes are advertisements, and the utility func-
tion reflects the benefit an individual derives from being
shown a particular advertisement. For any distribution
p ∈ ∆(Y) (where ∆(Y) is the set of distributions over
Y) we let u(x, p) = Ey∼p[u(x, y)] denote individual x’s
expected utility for an outcome sampled from p. We refer
to a function h : X → ∆(Y) as a classifier, even though it

2On a philosophical level, the fair division literature deals
exclusively with individual notions of fairness. In fact, even in
group-based extensions of envy-freeness (Manurangsi & Suksom-
pong, 2017) the allocation is shared by groups, but individuals
must not be envious. We subscribe to the view that group-oriented
notions (such as statistical parity) are objectionable, because the
outcome can be patently unfair to individuals.

can return a distribution over outcomes.

2.1. Envy-Freeness

Roughly speaking, a classifier h : X → ∆(Y) is envy free
if no individual prefers the outcome distribution of someone
else over his own.
Definition 1. A classifier h : X → ∆(Y) is envy free (EF)
on a set S of individuals if u(x, h(x)) ≥ u(x, h(x′)) for
all x, x′ ∈ S. Similarly, h is (α, β)-EF with respect to a
distribution P on X if

Pr
x,x′∼P

(
u(x, h(x)) < u(x, h(x′))− β

)
≤ α.

Finally, h is (α, β)-pairwise EF on a set of pairs of individ-
uals S = {(xi, x′i)}ni=1 if

1

n

n∑
i=1

I{u(xi, h(xi)) < u(xi, h(x′i))− β} ≤ α.

Any classifier that is EF on a sample S of individuals is also
(α, β)-pairwise EF on any pairing of the individuals in S, for
any α ≥ 0 and β ≥ 0. The weaker pairwise EF condition is
all that is required for our generalization guarantees to hold.

2.2. Optimization and Learning

Our formal learning problem can be stated as follows. Given
sample access to an unknown distribution P over individuals
X and their utility functions, and a known loss function
` : X × Y → [0, 1], find a classifier h : X → ∆(Y)
that is (α, β)-EF with respect to P minimizing expected
loss Ex∼P [`(x, h(x))], where for x ∈ X and p ∈ ∆(Y),
`(x, p) = Ey∼p[`(x, y)].

We follow the empirical risk minimization (ERM) learning
approach, i.e., we collect a sample of individuals drawn
i.i.d from P and find an EF classifier with low loss on
the sample. Formally, given a sample of individuals S =
{x1, . . . , xn} and their utility functions uxi(·) = u(xi, ·),
we are interested in a classifier h : S → ∆(Y) that mini-
mizes

∑n
i=1 `(xi, h(xi)) among all classifiers that are EF

on S.

Recall that we consider randomized classifiers that can as-
sign a distribution over outcomes to each of the individuals.
However, one might wonder whether the EF classifier that
minimizes loss on a sample happens to always be determin-
istic. Or, at least, the optimal deterministic classifier on the
sample might incur a loss that is very close to that of the
optimal randomized classifier. If this were true, we could
restrict ourselves to classifiers of the form h : X → Y ,
which would be much easier to analyze. Unfortunately, it
turns out that this is not the case. In fact, there could be an
arbitrary (multiplicative) gap between the optimal random-
ized EF classifier and the optimal deterministic EF classifier.
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The intuition behind this is as follows. A deterministic clas-
sifier that has very low loss on the sample, but is not EF,
would be completely discarded in the deterministic setting.
On the other hand, a randomized classifier could take this
loss-minimizing deterministic classifier and mix it with a
classifier with high “negative envy”, so that the mixture ends
up being EF and at the same time has low loss. This is made
concrete in Example 1 in the appendix.

3. Arbitrary Classifiers
An important (and typical) aspect of our learning problem
is that the classifier h needs to provide an outcome distri-
bution for every individual, not just those in the sample.
For example, if h chooses advertisements for visitors of a
website, the classifier should still apply when a new visi-
tor arrives. Moreover, when we use the classifier for new
individuals, it must continue to be EF. In this section, we
consider two-stage approaches that first choose outcome dis-
tributions for the individuals in the sample, and then extend
those decisions to the rest of X .

In more detail, we are given a sample S = {x1, . . . , xn}
of individuals and a classifier h : S → ∆(Y) assigning
outcome distributions to each individual. Our goal is to
extend these assignments to a classifier h : X → ∆(Y) that
can be applied to new individuals as well. For example, h
could be the loss-minimizing EF classifier on the sample S.

For this section, we assume that X is equipped with a
distance metric d. Moreover, we assume in this section
that the utility function u is L-Lipschitz on X . That
is, for every y ∈ Y and for all x, x′ ∈ X , we have
|u(x, y)− u(x′, y)| ≤ L · d(x, x′).

Under the foregoing assumptions, one natural way to extend
the classifier on the sample to all of X is to assign new
individuals the same outcome distribution as their nearest
neighbor in the sample. Formally, for a set S ⊂ X and
any individual x ∈ X , let NNS(x) ∈ arg minx′∈Sd(x, x′)
denote the nearest neighbor of x in S with respect to the
metric d (breaking ties arbitrarily). The following simple
result (whose proof is relegated to Appendix B) establishes
that this approach preserves envy-freeness in cases where
the sample is exponentially large.
Theorem 1. Let d be a metric on X , P be a distribution
on X , and u be an L-Lipschitz utility function. Let S be
a set of individuals such that there exists X̂ ⊂ X with
P (X̂ ) ≥ 1 − α and supx∈X̂ (d(x,NNS(x)) ≤ β/(2L).
Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is
(α, β)-EF on P .

The conditions of Theorem 1 require that the set of indi-
viduals S is a β/(2L)-net for at least a (1 − α)-fraction
of the mass of P on X . In several natural situations, an

exponentially large sample guarantees that this occurs with
high probability. For example, if X is a subset of Rq,
d(x, x′) = ‖x− x′‖2, and X has diameter at most D, then
for any distribution P on X , if S is an i.i.d. sample of size
O( 1

α (
LD
√
q

β )q(q log
LD
√
q

β + log 1
δ )), it will satisfy the con-

ditions of Theorem 1 with probability at least 1 − δ. This
sampling result is folklore, but, for the sake of completeness,
we prove it in Lemma 5 of Appendix B.

However, the exponential upper bound given by the near-
est neighbor strategy is as far as we can go in terms of
generalizing envy-freeness from a sample (without further
assumptions). Specifically, our next result establishes that
any algorithm — even randomized — for extending clas-
sifiers from the sample to the entire space X requires an
exponentially large sample of individuals to ensure envy-
freeness on the distribution P . The proof of Theorem 2 can
be found in Appendix B.

Theorem 2. There exists a space of individuals X ⊂ Rq,
and a distribution P over X such that, for every randomized
algorithmA that extends classifiers on a sample to X , there
exists an L-Lipschitz utility function u such that, when a
sample of individuals S of size n = 4q/2 is drawn from
P without replacement, there exists an EF classifier on S
for which, with probability at least 1− 2 exp(−4q/100)−
exp(−4q/200) jointly over the randomness of A and S, its
extension by A is not (α, β)-EF with respect to P for any
α < 1/25 and β < L/8.

We remark that a similar result would hold even if we sam-
pled S with replacement; we sample here without replace-
ment purely for ease of exposition.

4. Low-Complexity Families of Classifiers
In this section we show that (despite Theorem 2) general-
ization for envy-freeness is possible using much smaller
samples of individuals, as long as we restrict ourselves to
classifiers from a family of relatively low complexity.

In more detail, two classic complexity measures are the
VC-dimension (Vapnik & Chervonenkis, 1971) for binary
classifiers, and the Natarajan dimension (Natarajan, 1989)
for multi-class classifiers. However, to the best of our knowl-
edge, there is no suitable dimension directly applicable to
functions ranging over distributions, which in our case can
be seen as |Y|-dimensional real vectors. One possibility
would be to restrict ourselves to deterministic classifiers
of the type h : X → Y . However, we have seen in Sec-
tion 2 that envy-freeness is a very strong constraint on de-
terministic classifiers. Instead, we will consider a family
H consisting of randomized mixtures of deterministic clas-
sifiers belonging to a family G ⊂ {g : X → Y} of low
Natarajan dimension. This allows us to adapt Natarajan-
dimension-based generalization results to our setting while
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still working with randomized classifiers.

4.1. Natarajan Dimension Primer

Before presenting our main result, we briefly summarize
the definition and relevant properties of the Natarajan di-
mension. For more details, we refer the reader to (Shalev-
Shwartz & Ben-David, 2014).

We say that a family G multi-class shatters a set of points
x1, . . . , xn if there exist labels y1, . . . yn and y′1, . . . , y

′
n

such that for every i ∈ [n] we have yi 6= y′i, and for any
subset C ⊂ [n] there exists g ∈ G such that g(xi) = yi if
i ∈ C and g(xi) = y′i otherwise. The Natarajan dimension
of a family G is the cardinality of the largest set of points
that can be multi-class shattered by G.

For example, suppose we have a feature map Ψ : X ×
Y → Rq that maps each individual-outcome pair to a q-
dimensional feature vector, and consider the family of func-
tions that can be written as g(x) = arg maxy∈Yw

>Ψ(x, y)
for weight vectors w ∈ Rq. This family has Natarajan
dimension at most q.

For a set S ⊂ X of points, we let G
∣∣
S

denote the restriction
of G to S, which is any subset of G of minimal size such that
for every g ∈ G there exists g′ ∈ G

∣∣
S

such that g(x) = g′(x)

for all x ∈ S. The size of G
∣∣
S

is the number of different
labelings of the sample S achievable by functions in G. The
following Lemma is the analogue of Sauer’s lemma for
binary classification.

Lemma 1 (Natarajan). For a family G of Natarajan dimen-
sion d and any subset S ⊂ X , we have

∣∣G∣∣
S

∣∣ ≤ |S|d|Y|2d.

Classes of low Natarajan dimension also enjoy the following
uniform convergence guarantee.

Lemma 2. Let G have Natarajan dimension d and fix a
loss function ` : G × X → [0, 1]. For any distribution
P over X , if S is an i.i.d. sample drawn from P of size
O( 1

ε2 (d log |Y|+log 1
δ )), then with probability at least 1−δ

we have supg∈G
∣∣Ex∼P [`(g, x)]− 1

n

∑
x∈S `(g, x)

∣∣ ≤ ε.
4.2. Main Result

We consider the family of classifiers that can be expressed as
a randomized mixture ofm deterministic classifiers selected
from a family G ⊂ {g : X → Y}. Our generalization
guarantees will depend on the complexity of the family
G, measured in terms of its Natarajan dimension, and the
number m of functions we are mixing. More formally, let
~g = (g1, . . . , gm) ∈ Gm be a vector of m functions in G
and η ∈ ∆m be a distribution over [m], where ∆m = {p ∈
Rm : pi ≥ 0,

∑
i pi = 1} is them-dimensional probability

simplex. Then consider the function h~g,η : X → ∆(Y)
with assignment probabilities given by Pr(h~g,η(x) = y) =∑m

i=1 I{gi(x) = y}ηi. Intuitively, for a given individual x,

h~g,η chooses one of the gi randomly with probability ηi,
and outputs gi(x). Let

H(G,m) = {h~g,η : X → ∆(Y) : ~g ∈ Gm, η ∈ ∆m}

be the family of classifiers that can be written this way. Our
main technical result shows that envy-freeness generalizes
for this class.

Theorem 3. Suppose G is a family of deterministic classi-
fiers of Natarajan dimension d, and let H = H(G,m) for
m ∈ N. For any distribution P over X , γ > 0, and δ > 0,
if S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs drawn from
P of size

n ≥ O
(

1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1− δ, every classifier h ∈ H
that is (α, β)-pairwise-EF on S is also (α+7γ, β+4γ)-EF
on P .

Theorem 3 is only effective insofar as families of classifiers
of low Natarajan dimension are useful. And, indeed, several
prominent families have low Natarajan dimension (Daniely
et al., 2012), including one vs. all (which is a special case
of the example given in Section 4.1), multiclass SVM, tree-
based classifiers, and error correcting output codes.

We now turn to the theorem’s proof, which consists of two
steps. First, we show that envy-freeness generalizes for
finite classes. Second, we show that H(G,m) can be ap-
proximated by a finite subset. The proofs of both lemmas
are relegated to Appendix C.

Lemma 3. Let H ⊂ {h : X → ∆(Y)} be a finite family
of classifiers. For any γ > 0, δ > 0, and β ≥ 0 if S =
{(xi, x′i)}ni=1 is an i.i.d. sample of pairs from P of size
n ≥ 1

2γ2 ln |H|δ , then with probability at least 1− δ, every
h ∈ H that is (α, β)-pairwise-EF on S (for any α) is also
(α+ γ, β)-EF on P .

Next, we show that H(G,m) can be covered by a finite
subset. Since each classifier in H is determined by the
choice of m functions from G and mixing weights η ∈ ∆m,
we will construct finite covers of G and ∆m. Our covers Ĝ
and ∆̂m will guarantee that for every g ∈ G, there exists ĝ ∈
Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. Similarly, for
any mixing weights η ∈ ∆m, there exists η̂ ∈ ∆m such that
‖η− η̂‖1 ≤ γ. If h ∈ H(G,m) is the mixture of g1, . . . , gm
with weights η, we let ĥ be the mixture of ĝ1, . . . , ĝm with
weights η̂. This approximation has two sources of error:
first, for a random individual x ∼ P , there is probability
up to γ that at least one gi(x) will disagree with ĝi(x),
in which case h and ĥ may assign completely different
outcome distributions. Second, even in the high-probability
event that gi(x) = ĝi(x) for all i ∈ [m], the mixing weights
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are not identical, resulting in a small perturbation of the
outcome distribution assigned to x.

Lemma 4. Let G be a family of deterministic classifiers
with Natarajan dimension d, and let H = H(G,m) for
some m ∈ N. For any γ > 0, there exists a subset Ĥ ⊂ H
of sizeO

( (dm|Y|2 log(m|Y|/γ))dm
γ(d+1)m

)
such that for every h ∈ H

there exists ĥ ∈ H satisfying:

1. Prx∼P (‖h(x)− ĥ(x)‖1 > γ) ≤ γ.

2. If S is an i.i.d. sample of individuals of size
O(m

2

γ2 (d log |Y|+ log 1
δ )) then w.p. ≥ 1− δ, we have

‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-fraction of x ∈ S.

Combining the generalization guarantee for finite families
given in Lemma 3 with the finite approximation given in
Lemma 4, we are able to show that envy-freeness also gen-
eralizes forH(G,m).

Proof of Theorem 3. Let Ĥ be the finite approximation to
H constructed in Lemma 4. If the sample is of size |S| =
O( 1

γ2 (dm log(dm|Y| log |Y|/γ) + log 1
δ )), we can apply

Lemma 3 to this finite family, which implies that for any
β′ ≥ 0, with probability at least 1−δ/2 every ĥ ∈ Ĥ that is
(α′, β′)-pairwise-EF on S (for any α′) is also (α′ + γ, β′)-
EF on P . We apply this lemma with β′ = β+2γ. Moreover,
from Lemma 4, we know that if |S| = O(m

2

γ2 (d log |Y| +
log 1

δ )), then with probability at least 1− δ/2, for every h ∈
H, there exists ĥ ∈ Ĥ satisfying ‖h(x)−ĥ(x)‖1 ≤ γ for all
but a 2γ-fraction of the individuals in S. This implies that on
all but at most a 4γ-fraction of the pairs in S, h and ĥ satisfy
this inequality for both individuals in the pair. Assume
these high probability events occur. Finally, from Item 1
of the lemma we have that Prx1,x2∼P (maxi=1,2 ‖h(xi)−
ĥ(xi)‖1 > γ) ≤ 2γ.

Now let h ∈ H be any classifier that is (α, β)-
pairwise-EF on S. Since the utilities are in [0, 1] and
maxx=xi,x′i

‖h(x) − ĥ(x)‖1 ≤ γ for all but a 4γ-fraction
of the pairs in S, we know that ĥ is (α + 4γ, β + 2γ)-
pairwise-EF on S. Applying the envy-freeness generaliza-
tion guarantee (Lemma 3) for Ĥ, it follows that ĥ is also
(α+ 5γ, β + 2γ)-EF on P . Finally, using the fact that

Pr
x1,x2∼P

(
max
i=1,2

‖h(xi)− ĥ(xi)‖1 > γ

)
≤ 2γ,

it follows that h is (α+ 7γ, β + 4γ)-EF on P .

It is worth noting that the (exponentially large) approxima-
tion Ĥ is only used in the generalization analysis; impor-
tantly, an ERM algorithm need not construct it.

5. Implementation and Empirical Validation
So far we have not directly addressed the problem of com-
puting the loss-minimizing envy-free classifier from a given
family on a given sample of individuals. We now turn to
this problem. Our goal is not to provide an end-all solution,
but rather to provide evidence that computation will not be
a long-term obstacle to implementing our approach.

In more detail, our computational problem is to find the
loss-minimizing classifier h from a given family of random-
ized classifiers H that is envy free on a given a sample of
individuals S = {x1, . . . , xn}. For this classifier h to gen-
eralize to the distribution P , Theorem 3 suggests that the
classH to use is of the formH(G,m), where G is a class of
deterministic classifiers of low Natarajan dimension.

In this section, we let G to be the class of linear one-vs-all
classifiers. In particular, denoting X ⊂ Rq, each g ∈ G
is parameterized by ~w = (w1, w2, . . . , w|Y|) ∈ R|Y|×q,
where

g(x) = argmax
y∈Y

(
w>y x

)
.

This class G has a Natarajan dimension of at most q|Y|. The
optimization problem to solve in this case is

min
h∈H(G,m)

n∑
i=1

L(xi, h(xi))

s.t. u(xi, h(xi)) ≥ u(xi, h(xj)) ∀(i, j) ∈ [n]2

Rewriting this in terms of the mixture components and
weights, the exact optimization problem to solve is

min
~g∈Gm,η∈∆m

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi))

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj)) ∀(i, j) ∈ [n]2.

(1)

In (1), we impose one EF constraint for every pair of in-
dividuals, rather than just the n/2 pairs in some matching
among the individuals. We expect this to produce classifiers
with lower envy in practice.

5.1. Algorithm

Observe that optimization problem (1) is highly non-convex
and non-differentiable as formulated, because of the argmax
computed in each of the gk(xi). Another challenge is the
combinatorial nature of the problem, as we need to find
m functions from G along with their mixing weights. In
designing an algorithm, therefore, we employ several tricks
of the trade to achieve tractability.

Learning the mixture components. We first assume pre-
defined mixing weights η̃, and iteratively learn mixture
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components based on them. Specifically, let g1, g2, . . . gk−1
denote the classifiers learned so far. To compute the next
component gk, we solve the optimization problem (1) with
these components already in place (and assuming no future
ones). This induces the following optimization problem.

min
gk∈G

n∑
i=1

L(xi, gk(xi))

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi))

≥ USF (k−1)
ij + η̃ku(xi, gk(xj)) ∀(i, j) ∈ [n]2, (2)

where USF (k−1)
ij denotes the expected utility i has for j’s

assignments so far, i.e.,

USF
(k−1)
ij =

k−1∑
c=1

η̃cu(xi, gc(xj)).

Solving the optimization problem (2) is still non-trivial be-
cause it remains non-convex and non-differentiable. To
resolve this, we relax the constraints,3 and obtain the fol-
lowing convex problem.

min
~w∈R|Y|×q

n∑
i=1

max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
+ λ

∑
i 6=j

max

(
USF

(k−1)
ij + η̃kmax

y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
−USF (k−1)

ii + η̃kmax
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
, 0

)
,

(3)

where yi = argminy∈YL(xi, y), si = argminy∈Yu(xi, y),
bi = argmaxy∈Y u(xi, y), and λ is a parameter which de-
fines the trade-off between loss and envy-freeness. The
rationale behind this relaxation (3) is explained in more de-
tail in Appendix D. On a very high-level, it is inspired by
multi-class SVMs.

Learning the mixing weights. Once the mixture compo-
nents ~g are learned (with respect to the predefined mixing
weights η̃), we perform an additional round of optimization
to learn the optimal weights η for them. This can be done
via the following linear program

min
η∈∆m,ξ∈Rn×n

≥0

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj))− ξij ∀(i, j).

(4)

5.2. Methodology

To validate our approach, we have implemented our algo-
rithm. However, we cannot rely on standard datasets, as we

3This may lead to solutions that are not exactly EF on the
sample. Nonetheless, Theorem 3 still guarantees that there should
not be much additional envy on the testing data.

need access to both the features and the utility functions of
individuals. Hence, we rely on synthetic data. All our code
is included as supplementary material. Our experiments are
carried out on a desktop machine with 16GB memory and an
Intel Xeon(R) CPU E5-1603 v3 @ 2.80GHz×4 processor.
To solve convex optimization problems, we use CVXPY
(Diamond & Boyd, 2016; Agrawal et al., 2018).

In our experiments, we cannot compute the optimal solution
to the original optimization problem (1), and there are no
existing methods we can use as benchmarks. Hence, we
generate the dataset such that we know the optimal solution
upfront.

Specifically, to generate the whole dataset (both training
and test), we first generate random classifiers ~g? ∈ Gm by
sampling their parameters ~w1, . . . ~wm ∼ N (0, 1)|Y|×q , and
generate η? ∈ ∆m by drawing uniformly random weights
in [0, 1] and normalizing. We use h~g?,η? as the optimal
solution of the dataset we generate. For each individual, we
sample each feature value independently and u.a.r. in [0, 1].
For each individual x and outcome y, we set L(x, y) = 0
if y ∈ {g?k(x) : k ∈ [m]} and otherwise we sample L(x, y)
u.a.r. in [0, 1]. For the utility function u, we need to generate
it such that the randomized classifier h~g?,η? is envy free
on the dataset. For this, we set up a linear program and
compute each of the values u(x, y). Overall, h~g?,η? is envy
free and has zero loss, so it is obviously the optimal solution.
The dataset is split into 75% training data (to measure the
accuracy of our solution to the optimization problem) and
25% test data (to check for generalizability).

For our experiments, we use the following parameters:
|Y| = 10, q = 10, m = 5, and λ = 10.0. We set the
predefined weights to be η̃ =

[
1
2 ,

1
4 , . . . ,

1
2m−1 ,

1
2m−1

]
.4 In

our experiments we vary the number of individuals, and
each result is averaged over 25 runs. On each run, we gen-
erate a new ground-truth classifier h~g∗,η∗ , as well as new
individuals, losses, and utilities.

5.3. Results

Figure 1 shows the time taken to compute the mixture com-
ponents ~g and the optimal weights η, as the number of
individuals in the training data increases. As we will see
shortly, even though the η computation takes a very small
fraction of the time, it can lead to non-negligible gains in
terms of loss and envy.

Figure 2 shows the average loss attained on the training and
test data by the algorithm immediately after computing the
mixture components, and after the round of η optimization.

4The reason for using an exponential decay is so that the sub-
sequent classifiers learned are different from the previous ones.
Using smaller weights might cause consecutive classifiers to be
identical, thereby ‘wasting’ some of the components.
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Figure 1. The algorithm’s running time
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Figure 2. Training and test loss

It also shows the average loss attained (on both the training
and test data) by a random allocation, which serves as a
naı̈ve benchmark for calibration purposes. Recall that the
optimal assignment h~g?,η? has loss 0. For both the training
and testing individuals, optimizing η improves the loss of
the learned classifer. Moreover, our algorithms achieve low
training errors for all dataset sizes, and as the dataset grows
the testing error converges to the training error.

Figure 3 shows the average envy among pairs in the training
data and test data, where, for each pair, negative envy is
replaced with 0, to avoid obfuscating positive envy. The
graph also depicts the average envy attained (on both the
training and test data) by a random allocation. As for the
losses, optimizing η results in lower average envy, and as the
training set grows we see the generalization gap decrease.

In Figure 4 we zoom in on the case of 100 training indi-
viduals, and observe the empirical CDF of envy values. In-
terestingly, the optimal randomized classifier h~g?,η? shows
lower negative envy values compared to other algorithms,
but as expected has no positive envy pairs. Looking at the
positive envy values, we can again see very encouraging
results. In particular, for at least a 0.946 fraction of the
pairs in the train data, we obtain envy of at most 0.05, and
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Figure 3. Training and test envy

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Value of envy

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
ns

 o
f p

ai
rs

train envy after mixture
train envy after eta
test envy after mixture
test envy after eta
envy by optimal
envy by random

Figure 4. CDF of training and test envy for 100 training individuals

this generalizes to the test data, where for at least a 0.939
fraction of the pairs, we obtain envy of at most 0.1.

In summary, these results indicate that the algorithm de-
scribed in Section 5.1 solves the optimization problem (1)
for linear one-vs-all classifiers almost optimally, and that its
output generalizes well even when the training set is small.

6. Conclusion
In this work we propose EF as a suitable fairness notion for
learning tasks with many outcomes over which individuals
have heterogeneous preferences. We provide generalization
guarantees for a rich family of classifiers, showing that if we
find a classifier that is envy-free on a sample of individuals,
it will remain envy-free when we apply it to new individu-
als from the same distribution. This result circumvents an
exponential lower bound on the sample complexity suffered
by any two-stage learning algorithm that first finds an EF
assignment for the sample and then extends it to the entire
space. Finally, we empirically demonstrate that finding low-
envy and low-loss classifiers is computationally tractable.
These results show that envy-freeness is a practical notion
of fairness for machine learning systems.
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A. Appendix for Section 2
Example 1. Let S = {x1, x2} and Y = {y1, y2, y3}. Let
the loss function be such that

`(x1, y1) = 0 `(x1, y2) = 1 `(x1, y3) = 1

`(x2, y1) = 1 `(x2, y2) = 1 `(x2, y3) = 0

And let the utility function be such that

u(x1, y1) = 0 u(x1, y2) = 1 u(x1, y3) =
1

γ

u(x2, y1) = 0 u(x2, y2) = 0 u(x2, y3) = 1

where γ > 1. Now, the only deterministic classifier with a
loss of 0 is h0 such that h0(x1) = y1 and h0(x2) = y3. But,
this is not EF, since u(x1, y1) < u(x1, y3). Furthermore,
every other deterministic classifier has a total loss of at least
1, causing the optimal deterministic EF classifier to have
loss of at least 1.

To show that randomized classifiers can do much better,
consider the randomized classifier h∗ such that h∗(x1) =
(1− 1/γ, 1/γ, 0) and h∗(x2) = (0, 0, 1). This classifier
can be seen as a mixture of the classifier h0 of 0 loss, and
the deterministic classifier he, where he(x1) = y2 and
he(x2) = y3, which has high “negative envy”. One can
observe that this classifier h∗ is EF, and has a loss of just
1/γ. Hence, the loss of the optimal randomized EF classifier
is γ times smaller than the loss of the optimal deterministic
one, for any γ > 1.

B. Appendix for Section 3
Theorem 1. Let d be a metric on X , P be a distribution
on X , and u be an L-Lipschitz utility function. Let S be

a set of individuals such that there exists X̂ ⊂ X with
P (X̂ ) ≥ 1 − α and supx∈X̂ (d(x,NNS(x)) ≤ β/(2L).
Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is
(α, β)-EF on P .

Proof. Let h : S → ∆(Y) be any EF classifier on S
and h : X → ∆(Y) be the nearest neighbor extension.
Sample x and x′ from P . Then, x belongs to the sub-
set X̂ with probability at least 1 − α. When this oc-
curs, x has a neighbor within distance β/(2L) in the
sample. Using the Lipschitz continuity of u, we have
|u(x, h(x))− u(NNS(x), h(NNS(x)))| ≤ β/2. Similarly,
|u(x, h(x′)) − u(NNS(x), h(NNS(x′)))| ≤ β/2. Finally,
since NNS(x) does not envy NNS(x′) under h, it follows
that x does not envy x′ by more than β under h.

Lemma 5. Suppose X ⊂ Rq, d(x, x′) = ‖x − x′‖2,
and let D = supx,x′∈X d(x, x′) be the diameter of X .
For any distribution P over X , β > 0, α > 0, and
δ > 0 there exists X̂ ⊂ X such that P (X̂ ) ≥ 1 − α
and, if S is an i.i.d. sample drawn from P of size |S| =

O( 1
α (

LD
√
q

β )q(d log
LD
√
q

β + log 1
δ )), then with probability

at least 1− δ, supx∈X̂ d(x,NNS(x)) ≤ β/(2L).

Proof. Let C be the smallest cube containing X . Since the
diameter of X is D, the side-length of C is at most D. Let
s = β/(2L

√
q) be the side-length such that a cube with side-

length s has diameter β/(2L). It takes at mostm = dD/seq
cubes of side-length s to cover C. Let C1, . . . , Cm be such
a covering, where each Ci has side-length s.

Let Ci be any cube in the cover for which P (Ci) > α/m.
The probability that a sample of size n drawn from P does
not contain a sample inCi is at most (1−α/m)n ≤ e−nα/m.
Let I = {i ∈ [m] : P (Ci) ≥ α/m}. By the union bound,
the probability that there exists i ∈ I such that Ci does not
contain a sample is at most me−nα/m. Setting

n =
m

α
ln
m

δ

= O

(
1

α

(
LD
√
q

β

)q(
q log

LD
√
q

β
+ log

1

δ

))
results in this upper bound being δ. For the remainder of the
proof, assume this high probability event occurs.

Now let X̂ =
⋃
i∈I Ci. For each j 6∈ I , we know that

P (Cj) < α/m. Since there at most m such cubes, their
total probability mass is at most α. It follows that P (X̂ ) ≥
1− α. Moreover, every point x ∈ X̂ belongs to one of the
cubes Ci with i ∈ I , which also contains a sample point.
Since the diameter of the cubes in our cover is β/(2L), it
follows that dist(x,NNS(x)) ≤ β/(2L) for every x ∈ X̂ ,
as required.
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Theorem 2. There exists a space of individuals X ⊂ Rq,
and a distribution P over X such that, for every randomized
algorithmA that extends classifiers on a sample to X , there
exists an L-Lipschitz utility function u such that, when a
sample of individuals S of size n = 4q/2 is drawn from
P without replacement, there exists an EF classifier on S
for which, with probability at least 1− 2 exp(−4q/100)−
exp(−4q/200) jointly over the randomness of A and S, its
extension by A is not (α, β)-EF with respect to P for any
α < 1/25 and β < L/8.

Proof. Let the space of individuals be X = [0, 1]q and
the outcomes be Y = {0, 1}. We partition the space X
into cubes of side length s = 1/4. So, the total num-
ber of cubes is m = (1/s)

q
= 4q. Let these cubes be

denoted by c1, c2, . . . cm, and let their centers be denoted
by µ1, µ2, . . . µm. Next, let P be the uniform distribution
over the centers µ1, µ2, . . . µm. For brevity, whenever we
say “utility function” in the rest of the proof, we mean
“L-Lipschitz utility function.”

To prove the theorem, we use Yao’s minimax principle (Yao,
1977). Specifically, consider the following two-player zero
sum game. Player 1 chooses a deterministic algorithm D
that extends classifiers on a sample to X , and player 2
chooses a utility function u on X . For any subset S ⊂
X , define the classifier hu,S : S → Y by assigning each
individual in S to his favorite outcome with respect to the
utility function u, i.e. hu,S(x) = arg maxy∈Yu(x, y) for
each x ∈ S, breaking ties lexicographically. Define the
cost of playing algorithm D against utility function u as
the probability over the sample S (of size m/2 drawn from
P without replacement) that the extension of hu,S by D
is not (α, β)-EF with respect to P for any α < 1/25 and
β < L/8. Yao’s minimax principle implies that for any
randomized algorithm A, its expected cost with respect to
the worst-case utility function u is at least as high as the
expected cost of any distribution over utility functions that
is played against the best deterministic algorithm D (which
is tailored for that distribution). Therefore, we establish the
desired lower bound by choosing a specific distribution over
utility functions, and showing that the best deterministic
algorithm against it has an expected cost of at least 1 −
2 exp(−m/100)− exp(−m/200).

To define this distribution over utility functions, we first
sample outcomes y1, y2, . . . , ym i.i.d. from Bernoulli(1/2).
Then, we associate each cube center µi with the outcome yi,
and refer to this outcome as the favorite of µi. For brevity,
let ¬y denote the outcome other than y, i.e. ¬y = (1− y).
For any x ∈ X , we define the utility function as follows.
Letting cj be the cube that x belongs to,

u(x, yj) = L
[s

2
− ‖x− µj‖∞

]
; u(x,¬yj) = 0. (5)

Figure 5. Illustration of X and an example utility function u for
d = 2. Red shows preference for 1, blue shows preference for 0,
and darker shades correspond to more intense preference. (The
gradients are rectangular to match the L∞ norm, so, strangely
enough, the misleading X pattern is an optical illusion.)

See Figure 5 for an illustration.

We claim that the utility function of Equation (5) is indeed
L-Lipschitz with respect to any Lp norm. This is because
for any cube ci, and for any x, x′ ∈ ci, we have

|u(x, yi)− u(x′, yi)| = L |‖x− µi‖∞ − ‖x′ − µi‖∞|
≤ L‖x− x′‖∞ ≤ L‖x− x′‖p.

Moreover, for the other outcome, we have u(x,¬yi) =
u(x′,¬yi) = 0. It follows that u is L-Lipschitz within
every cube. At the boundary of the cubes, the utility for any
outcome is 0, and hence u is also continuous throughout X .
Because it is piecewise Lipschitz and continuous, u must be
L-Lipschitz throughout X , with respect to any Lp norm.

Next, let D be an arbitrary deterministic algorithm that ex-
tends classifiers on a sample to X . We draw the sample
S of size m/2 from P without replacement. Consider the
distribution over favorites of individuals in S. Each individ-
ual in S has a favorite that is sampled independently from
Bernoulli(1/2). Hence, by Hoeffding’s inequality, the frac-
tion of individuals in S with a favorite of 0 is between 1

2 − ε
and 1

2 + ε with probability at least 1− 2 exp(−mε2). The
same holds simultaneously for the fraction of individuals
with favorite 1.

Given the sample S and the utility function u on the sample
(defined by the instantiation of their favorites), consider
the classifier hu,S , which maps each individual µi in the
sample S to his favorite yi. This classifier is clearly EF
on the sample. Consider the extension hDu,S of hu,S to the
whole of X as defined by algorithm D. Define two sets Z0

and Z1 by letting Zy = {µj /∈ S | hDu,S(µj) = y}, and
let y∗ denote an outcome that is assigned to at least half
of the out-of-sample centers, i.e., an outcome for which
|Zy∗ | ≥ |Z¬y∗ |. Furthermore, let θ denote the fraction
of out-of-sample centers assigned to y∗. Note that, since
|S| = m/2, the number of out-of-sample centers is also
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exactly m/2. This gives us |Zy∗ | = θm2 , where θ ≥ 1
2 .

Consider the distribution of favorites in Zy∗ (these are in-
dependent from the ones in the sample since Zy∗ is dis-
joint from S). Each individual in this set has a favorite
sampled independently from Bernoulli(1/2). Hence, by
Hoeffding’s inequality, the fraction of individuals in Zy∗
whose favorite is ¬y∗ is at least 1

2 − ε with probability at
least 1 − exp(−m2 ε

2). We conclude that with a probabil-
ity at least 1− 2 exp(−mε2)− exp(−m2 ε

2), the sample S
and favorites (which define the utility function u) are such
that: (i) the fraction of individuals in S whose favorite is
y ∈ {0, 1} is between 1

2 − ε and 1
2 + ε, and (ii) the fraction

of individuals in Zy∗ whose favorite is ¬y∗ is at least 1
2 − ε.

We now show that for such a sample S and utility function u,
hDu,S cannot be (α, β)-EF with respect to P for any α <
1/25 and β < L/8. To this end, sample x and x′ from P .
One scenario where x envies x′ occurs when (i) the favorite
of x is ¬y∗, (ii) x is assigned to y∗, and (iii) x′ is assigned
to ¬y∗. Conditions (i) and (ii) are satisfied when x is in Zy∗
and his favorite is ¬y∗. We know that at least a 1

2−ε fraction
of the individuals in Zy∗ have the favorite ¬y∗. Hence, the
probability that conditions (i) and (ii) are satisfied by x
is at least ( 1

2 − ε)|Zy∗ |
1
m = ( 1

2 − ε)
θ
2 . Condition (iii) is

satisfied when x′ is in S and has favorite ¬y∗ (and hence
assigned ¬y∗), or, if x′ is in Z¬y∗ . We know that at least
a
(
1
2 − ε

)
fraction of the individuals in S have the favorite

¬y∗. Moreover, the size of Z¬y∗ is (1 − θ)m2 . So, the
probability that condition (iii) is satisfied by x′ is at least(

1
2 − ε

)
|S|+ |Z¬y∗ |
m

=
1

2

(
1

2
− ε
)

+
1

2
(1− θ).

Since x and x′ are sampled independently, the probability
that all three conditions are satisfied is at least(

1

2
− ε
)
θ

2
·
[

1

2

(
1

2
− ε
)

+
1

2
(1− θ)

]
.

This expression is a quadratic function in θ, that attains its
minimum at θ = 1 irrespective of the value of ε. Hence,
irrespective of D, this probability is at least

[
1
2

(
1
2 − ε

)]2
.

For concreteness, let us choose ε to be 1/10 (although it
can be set to be much smaller). On doing so, we have
that the three conditions are satisfied with probability at
least 1/25. And when these conditions are satisfied, we
have u(x, hDu,S(x)) = 0 and u(x, hDu,S(x′)) = Ls/2, i.e., x
envies x′ by Ls/2 = L/8. This shows that, when x and
x′ are sampled from P , with probability at least 1/25, x
envies x′ by L/8. We conclude that with probability at
least 1− 2 exp(−m/100)− exp(−m/200) jointly over the
selection of the utility function u and the sample S, the
extension of hu,S by D is not (α, β)-EF with respect to P
for any α < 1/25 and β < L/8.

To convert the joint probability into expected cost in the
game, note that for two discrete, independent random vari-
ables X and Y , and for a Boolean function E(X,Y ), it
holds that

PrX,Y (E(X,Y ) = 1) = EX [PrY (E(X,Y ) = 1)] . (6)

Given sample S and utility function u, let E(u, S) be the
Boolean function that equals 1 if and only if the exten-
sion of hu,S by D is not (α, β)-EF with respect to P
for any α < 1/25 and β < L/8. From Equation (6),
Pru,S(E(u, S) = 1) is equal to Eu [PrS(E(u, S) = 1)].
The latter term is exactly the expected value of the cost,
where the expectation is taken over the randomness of
u. It follows that the expected cost of (any) D with re-
spect to the chosen distribution over utilities is at least
1− 2 exp(−m/100)− exp(−m/200).

C. Appendix for Section 4
Lemma 3. Let H ⊂ {h : X → ∆(Y)} be a finite family
of classifiers. For any γ > 0, δ > 0, and β ≥ 0 if S =
{(xi, x′i)}ni=1 is an i.i.d. sample of pairs from P of size
n ≥ 1

2γ2 ln |H|δ , then with probability at least 1− δ, every
h ∈ H that is (α, β)-pairwise-EF on S (for any α) is also
(α+ γ, β)-EF on P .

Proof. Let f(x, x′, h) = I{u(x, h(x)) < u(x, h(x′))− β}
be the indicator that x is envious of x′ by at least β
under classifier h. Then f(xi, x

′
i, h) is a Bernoulli ran-

dom variable with success probability Ex,x′∼P [f(x, x′, h)].
Applying Hoeffding’s inequality to any fixed hypothe-
sis h ∈ H guarantees that PrS(Ex,x′∼P [f(x, x′, h)] ≥
1
n

∑n
i=1 f(xi, x

′
i, h) + γ) ≤ exp(−2nγ2). Therefore, if

h is (α, β)-EF on S, then it is also (α + γ, β)-EF on P
with probability at least 1 − exp(−2nγ2). Applying the
union bound over all h ∈ H and using the lower bound on
n completes the proof.

Lemma 4. Let G be a family of deterministic classifiers
with Natarajan dimension d, and let H = H(G,m) for
some m ∈ N. For any γ > 0, there exists a subset Ĥ ⊂ H
of sizeO

( (dm|Y|2 log(m|Y|/γ))dm
γ(d+1)m

)
such that for every h ∈ H

there exists ĥ ∈ H satisfying:

1. Prx∼P (‖h(x)− ĥ(x)‖1 > γ) ≤ γ.

2. If S is an i.i.d. sample of individuals of size
O(m

2

γ2 (d log |Y|+ log 1
δ )) then w.p. ≥ 1− δ, we have

‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-fraction of x ∈ S.

Proof. As described above, we begin by constructing finite
covers of ∆m and G. First, let ∆̂m ⊂ ∆m be the set of
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distributions over [m] where each coordinate is a multiple
of γ/m. Then we have |∆̂m| = O((mγ )m) and for every

p ∈ ∆m, there exists q ∈ ∆̂m such that ‖p− q‖1 ≤ γ.

In order to find a small cover of G, we use the fact that it
has low Natarajan dimension. This implies that the number
of effective functions in G when restricted to a sample S′

grows only polynomially in the size of S′. At the same time,
if two functions in G agree on a large sample, they will also
agree with high probability on the distribution.

Formally, let S′ be an i.i.d. sample drawn from P of size
O(m

2

γ2 d log |Y|), and let Ĝ = G
∣∣
S′

be any minimal subset of
G that realizes all possible labelings of S′ by functions in G.
We now argue that with probability 0.99, for every g ∈ G
there exists ĝ ∈ Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m.
For any pair of functions g, g′ ∈ G, let (g, g′) : X → Y2

be the function given by (g, g′)(x) = (g(x), g′(x)), and
let G2 = {(g, g′) : g, g′ ∈ G}. The Natarajan dimen-
sion of G2 is at most 2d (see Lemma 6 below). More-
over, consider the loss c : G2 × X → {0, 1} given by
c(g, g′, x) = I{g(x) 6= g′(x)}. Applying Lemma 2 with
the chosen size of |S′| ensures that with probability at least
0.99 every pair (g, g′) ∈ G2 satisfies∣∣∣∣∣ E

x∼P
[c(g, g′, x)]− 1

|S′|
∑
x∈S′

c(g, g′, x)

∣∣∣∣∣ ≤ γ

m
.

By the definition of Ĝ, for every g ∈ G, there exists ĝ ∈ Ĝ
for which c(g, ĝ, x) = 0 for all x ∈ S′, which implies that
Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m.

Using Lemma 1 to bound the size of Ĝ, we have that

|Ĝ| ≤ |S′|d|Y|2d = O

((
m2

γ2
d|Y|2 log |Y|

)d)
.

Since this construction succeeds with non-zero probability,
we are guaranteed that such a set Ĝ exists. Finally, by an
identical uniform convergence argument, it follows that if
S is a fresh i.i.d. sample of the size given in Item 2 of the
lemma’s statement, then, with probability at least 1 − δ,
every g and ĝ will disagree on at most a 2γ/m-fraction of
S, since they disagree with probability at most γ/m on P .

Next, let Ĥ = {h~g,η : ~g ∈ Ĝm, η ∈ ∆̂m} be the same
family asH, except restricted to choosing functions from Ĝ
and mixing weights from ∆̂m. Using the size bounds above
and the fact that

(
N
m

)
= O((Nm )m), we have that

|Ĥ| =
(
|Ĝ|
m

)
·|∆̂m| = O

(
(dm2|Y|2 log(m|Y|/γ))dm

γ(2d+1)m

)
.

Suppose that h is the mixture of g1, . . . , gm ∈ G with
weights η ∈ ∆m. Let ĝi be the approximation to gi for

each i, let η̂ ∈ ∆̂m be such that ‖η − η̂‖1 ≤ γ, and let ĥ
be the random mixture of ĝ1, . . . , ĝm with weights η̂. For
an individual x drawn from P , we have gi(x) 6= ĝi(x) with
probability at most γ/m, and therefore they all agree with
probability at least 1− γ. When this event occurs, we have
‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

The second part of the claim follows by similar reason-
ing, using the fact that for the given sample size |S|, with
probability at least 1 − δ, every g ∈ G disagrees with its
approximation ĝ ∈ Ĝ on at most a 2γ/m-fraction of S.
This means that ĝi(x) = gi(x) for all i ∈ [m] on at least
a (1 − 2γ)-fraction of the individuals x in S. For these
individuals, ‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

Lemma 6. Let G = {g : X → Y} have Natarajan di-
mension d. For g1, g2 ∈ G, let (g1, g2) : X → Y2 denote
the function given by (g1, g2)(x) = (g1(x), g2(x)) and let
G2 = {(g1, g2) : g1, g2 ∈ G}. Then the Natarajan dimen-
sion of G2 is at most 2d.

Proof. Let D be the Natarajan dimension of G2. Then we
know that there exists a collection of points x1, . . . , xD ∈ X
that is shattered by G2, which means there are two sequences
q1, . . . , qn ∈ Y2 and q′1, . . . , q

′
n ∈ Y2 such that for all i we

have qi 6= q′i and for any subset C ⊂ [D] of indices, there
exists (g1, g2) ∈ G2 such that (g1, g2)(xi) = qi if i ∈ C
and (g1, g2)(xi) = q′i otherwise.

Let n1 =
∑D
i=1 I{qi1 6= q′i1} and n2 =

∑D
i=1 I{qi2 6= q′i2}

be the number of pairs on which the first and second labels
of qi and q′i disagree, respectively. Since none of the n pairs
are equal, we know that n1 + n2 ≥ D, which implies that
at at least one of n1 or n2 must be ≥ D/2. Assume without
loss of generality that n1 ≥ D/2 and that qi1 6= q′i1 for
i = 1, . . . , n1. Now consider any subset of indices C ⊂
[n1]. We know there exists a pair of functions (g1, g2) ∈ G2
with (g1, g2)(xi) evaluating to qi if i ∈ C and q′i if i 6∈ C.
But then we have g1(xi) = qi1 if i ∈ C and g1(xi) = q′i1
if i 6∈ C, and qi1 6= q′i1 for all i ∈ [n1]. It follows that G
shatters x1, . . . , xn1 , which consists of at least D/2 points.
Therefore, the Natarajan dimension of G2 is at most 2d, as
required.

D. Appendix for Section 5
Here we describe details of the transformation of the op-
timization problem from (2) to (3). Firstly, softening con-
straints of (2) with slack variables, we obtain

min
gk∈G,ξ∈R

n×n
≥0

n∑
i=1

L(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi))

≥ USF (k−1)
ij + η̃ku(xi, gk(xj))− ξij ∀(i, j).
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Here, ξij basically captures how much i envies j under
the selected assignments (note that, ξij is 0 if the pair is
non-envious, so that the algorithm does not go increasing
negative envy at the cost of positive envy for someone else).
Plugging in optimal values of the slack variables, we obtain

min
gk∈G

n∑
i=1

L(xi, gk(xi))

+ λ
∑
i 6=j

max
(
USF

(k−1)
ij + η̃ku(xi, gk(xj))

−USF (k−1)
ii − η̃ku(xi, gk(xi)), 0

)
.

(7)

Next, we perform convex relaxation of different compo-
nents of this objective function. For this, let’s observe the
term L(xi, gk(xi)). And, let ~w denote the parameters of gk.
By definition, we have

w>gk(xi)
xi ≥ w>y′xi

for any y′ ∈ Y . This implies that

L(xi, gk(xi)) ≤ L(xi, gk(xi)) + w>gk(xi)
xi − w>y′xi

≤ max
y∈Y

{
L(xi, y) + w>y xi − w>y′xi

}
,

giving us a convex upper bound on the loss L(xi, gk(xi)).
As this holds for any y′ ∈ Y , we choose y′ = yi as defined
in the main body, since it leads to the lowest achievable loss
value. Therefore, we have

L(xi, gk(xi)) ≤ max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
.

This right hand side is basically an upper bound which apart
from encouraging ~w to have the highest dot product with xi
at yi, also penalizes if the margin by which this is higher
is not enough (where the margin depends on other losses
L(xi, y)). This surrogate loss is very similar to multi-class
support vector machines. We perform similar relaxations
for the other two components of the objective function. In
particular, for the u(xi, gk(xi)) term, we have

−u(xi, gk(xi)) ≤ max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
,

where bi is as defined in the main body. Finally, for the
remaining term, we have

u(xi, gk(xj)) ≤ max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
,

where si is as defined in the main body5. On plugging in
the convex surrogates of all three terms in Equation (7), we
obtain the optimization problem (3).

5Note that, instead of using si, an alternative to use in this
equation is bj . In particular, for a pair (i, j), using si encourages
the assignment to give i their favorite outcome while j the outcome
that i likes the least (and hence causing i to envy j as less as
possible), while using bj encourages the assignment to give both i
and j their favorite outcomes (pushing the assignment to just give
everyone their favorite outcomes).


