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We take an unorthodox view of voting by expanding the design space to include both the elicitation rule,
whereby voters map their (cardinal) preferences to votes, and the aggregation rule, which transforms the

reported votes into collective decisions. Intuitively, there is a tradeoff between the communication requirements

of the elicitation rule (i.e., the number of bits of information that voters need to provide about their preferences)

and the efficiency of the outcome of the aggregation rule, which we measure through distortion (i.e., how well

the utilitarian social welfare of the outcome approximates the maximum social welfare in the worst case). Our

results chart the Pareto frontier of the communication-distortion tradeoff.

1 INTRODUCTION
Social choice theory studies the aggregation of individual preferences into collective decisions.

While its origins can be traced back to the contributions of Condorcet [22] and others in the

18th Century, the field was founded in its modern form in the 20th Century. With his famous

impossibility result, Arrow [4] pioneered the axiomatic approach to voting, in which voting rules

that aggregate ranked preferences of individuals are compared qualitatively based on the axiomatic

desiderata they satisfy or violate. This approach underlies most of the work on voting in social

choice theory [see, e.g., 5, 36].

By contrast, research in computational social choice [17] has put more emphasis on quantitative
evaluation of voting rules. In particular, Procaccia and Rosenschein [35] introduced the implicit
utilitarian voting framework, in which it is assumed that individuals (a.k.a. voters) have underlying

cardinal utilities for the different alternatives, and express ranked preferences that are consistent

with their utilities. The goal is to choose an alternative that maximizes (utilitarian) social welfare
— the sum of utilities — by relying on the reported rankings as a proxy for the latent utilities.

Specifically, voting rules are compared by their distortion, which is the worst-case ratio of the

maximum social welfare to the social welfare of the alternative they choose. The implicit utilitarian

voting approach has received significant attention in the past decade [2, 3, 10, 11, 13–16, 18, 19,

21, 25, 28, 29, 31], and voting rules based on it have been deployed on the online voting platform

robovote.org.

Benadè et al. [10] observe that implicit utilitarian voting has another advantage: it allows

comparing not only voting rules that aggregate ranked preferences, but also voting rules that

aggregate other types of ballots, which they refer to as input formats. They further argue that

we can associate each input format with the best rule for aggregating votes in that format, and

ultimately compare the input formats themselves based on the lowest distortion they make possible.

They also introduce a new input format, threshold approval, whereby each voter is asked to report

whether her utility for each alternative is above or below a given threshold; this input format allows

achieving logarithmic distortion.

The results of Benadè et al. [10] beg the question: why should we set only a single threshold?

What if we set two thresholds and ask each voter to report whether her utility for each alternative is

below the lower threshold, between the two thresholds, or above the higher threshold? What if we

set five thresholds? Or a million for that matter? Intuitively there is a tradeoff between the number

of thresholds and the distortion that can be achieved. However, perhaps adding thresholds is not

robovote.org
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the most efficient way to drive down distortion; there may be other input formats that encapsulate

more useful information. (Spoiler alert: this is indeed the case.)

Our goal in this paper is to characterize the optimal tradeoff between elicitation and distortion:

as we elicit more information from voters about their utilities, we should be able to achieve lower

distortion. But exactly how low? To answer this question, we need a precise way to reason about

the complexity of vote elicitation. We use the nomenclature of communication complexity [33],

and, in particular, examine the number of bits needed to report a vote. Note that this is simply the

logarithm of the number of possible votes that a voter can provide in a given input format. Hence,

plurality votes that ask a voter to report which of them alternatives is her top choice contain logm
bits of information, while ranked preferences that ask a voter to rank allm alternatives contain

logm! = Θ(m logm) bits of information.
1
Our main research question is this:

For any k , given a budget of at most k bits per vote, what is the minimum distortion any
voting rule can achieve?

1.1 Our Results
Before outlining our results, we describe our framework in a bit more detail. A voting rule f is

composed of two parts. Its elicitation rule Πf elicits information from voters about their utilities.

Essentially, it chooses a (possibly randomized) mapping from utility functions to finitely many

(say k) possible responses, and each voter uses this mapping to cast her vote. The communication

complexity of f , denoted C(f ), is then E[logk], where the expectation is due to random choices

made byΠf . The aggregation rule Γf aggregates the votes cast by voters to choose a single alternative
(possibly in randomized way). The distortion of f , denoted dist(f ), is the worst-case ratio of the

maximum social welfare to the (expected) social welfare of this chosen alternative. The distortion

is typically a function of the number of alternativesm. Our goal is to study the tradeoff between

C(f ) and dist(f ).
Figure 1 shows our results and positions them in the context of previous results. We note that

any upper bound with deterministic elicitation (resp. aggregation) also serves as an upper bound

with randomized elicitation (resp. aggregation), and the converse holds for lower bounds.

For deterministic elicitation, it is known that plurality achieves Θ(m2) distortion with determinis-

tic aggregation and logm communication complexity, and that it is trivial to achieveΘ(m) distortion

with randomized aggregation and zero communication complexity [18]. Our lower bounds from

Section 4 establish that these are the best possible asymptotic bounds with communication complex-

ity at most logm. We show that these bounds do not hold for randomized elicitation by constructing

a new voting rule in Section 3, RandSubset, which uses randomized elicitation and achieves o(m)

distortion with communication complexity at most logm.

We also propose a family of voting rules, PrefThreshold, which use deterministic elicitation

and aggregation, and can achieve d distortion withO(m log(d logm)/d) communication complexity.

In Section 5, we leverage tools from multi-party communication complexity to show that this result

is nearly optimal: any voting rule with d distortion must have Ω(m/d2) communication complexity

with deterministic elicitation and Ω(m/d3) communication complexity with randomized elicitation.

Note that our upper and lower bounds differ by a factor that is almost linear or almost quadratic in

d , and sublogarithmic inm. This implies a surprising fact: when our goal is to achieve near-constant

distortion, randomization cannot significantly help.

1
Our use of the number of bits of information can be seen as a conceptual measure of cognitive burden. In many applications

of voting, voters do not really communicate their votes electronically in bits. Hence, in our work, unlike in much of the

work on communication complexity, the number of bits may not be an integer (however, 2 raised to the number of bits is

always an integer). This distinction is crucial for some of our lower bounds.
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Fig. 1. Existing results (in blue) and our results (in red) on the communication-distortion tradeoff.

1.2 Related Work
There are two threads of research on implicit utilitarian voting. The first thread does not make

any assumptions on utilities, other than that they are normalized [10, 11, 13, 14, 16, 18, 19, 35].

The second thread assumes that utilities are induced by a metric [2, 3, 15, 21, 25, 28, 29, 31]; this

structure generally enables lower distortion. Our approach is consistent with the former thread.

In addition to the work of Benadè et al. [10], discussed above, an especially relevant paper is

that of Caragiannis and Procaccia [19]. Their goal is also to achieve low distortion while keeping

the communication requirements low. To that end, they employ specific voting techniques such as

approving a single alternative (like plurality) or approving a subset of alternatives (like approval

voting) — these require logm and m bits per voter, respectively — but use what they call an

embedding to describe how voters translate their cardinal preferences into votes. For example, in

the case of approving a single alternative, a natural randomized embedding is to ask each voter to

approve each alternative with probability proportional to its utility; roughly speaking, this achieves

distortion that goes to 1 as the number of voters goes to infinity. The key difference between

the work of Caragiannis and Procaccia and our work is that our design space is much larger: we

simultaneously optimize both the embedding and the voting technique (together, these form our

elicitation rule), as well as the aggregation rule.
2
It is interesting to note that Caragiannis and

Procaccia draw their motivation from settings where the voters are software agents, which can

actually compute their utilities for alternatives, and are endowed with algorithms that map utilities

to votes (so the algorithms themselves can conceivably be quite intricate). Although we are more

interested in settings where voters are people, it is worth keeping the software-agents-as-voters

setting in mind too because our model and results are equally relevant to it.

Further afield, Conitzer and Sandholm [23] study the communication complexity of voting rules,

in a fundamentally different sense from ours. They are interested in studying howmuch information

2
That said, in this work we focus only on deterministic embeddings. That is, we study elicitation rules in which voters

deterministically translate their cardinal preferences into votes, and show that the foregoing result is impossible to achieve

in this case. We discuss implications of randomized embeddings in Section 6.
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about the voters’ ranked preferences has to be elicited in order to compute the outcome under a

given voting rule. By contrast, we are interested in designing the voting rule, and the very way in

which preferences are represented, in order to minimize distortion.

In addition, the voting rules we design, which lead to the best known communication-distortion

tradeoffs, ask voters to report their approximate utility either for their top few choices or for a

randomly chosen subset of alternatives. Related ideas have been explored previously [26] or in

parallel [12] in the computational social choice literature, albeit in fundamentally different models.

Another loosely related line of work was initiated by Balcan and Harvey [7] and Badanidiyuru

et al. [6]. Their goal is to sketch combinatorial valuation functions, that is, to encode such func-

tions using a polynomial number of bits in a way that the value of each subset can be recovered

approximately. We deal with much simpler valuation functions, but, on the other hand, are looking

to achieve much lower communication complexity. We are also interested in how multiple such

‘sketches’ can be aggregated to achieve a socially desirable outcome. More generally, most of the

work on sketching combinatorial valuation functions [6, 7], optimizing combinatorial functions

using access to a value oracle [8, 24], or maximizing welfare in combinatorial auctions [34] assumes

input which consists of real numbers; their focus is on using only polynomially many (instead of

exponentially many) real numbers. By contrast, in our framework, asking for even a single real

number leads to infinite communication complexity.

2 MODEL
For k ∈ N, define [k] = {1, . . . ,k}. Let x ∼ D denote that random variable x has distribution D. Let
log denote the logarithm to base 2, and ln denote the logarithm to base e .
There is a set of alternatives A with |A| = m, and a set of voters N = [n]. Each voter i ∈ N

is endowed with a valuation vi : A → R+, where vi (a) ≥ 0 represents the value of voter i for
alternative a. Equivalently, we view vi ∈ R

m
+ as a vector which contains the voter’s value for each

alternative. We slightly abuse notation and let vi (S) =
∑

a∈S vi (a) for S ⊆ A. Collectively, voter
valuations are denoted ®v = (v1, . . . ,vn). Given ®v , the (utilitarian) social welfare of an alternative a
is sw(a, ®v) =

∑
i ∈N vi (a). Our goal is to elicit information about voter valuations and use it to find

an alternative with as high social welfare as possible.

Valuations: We adopt the standard normalization assumption that

∑
a∈Avi (a) = 1 for each i ∈ N .

This can be thought of as a “one voter, one vote” principle for cardinal valuations as it prevents voters

from overshadowing other voters by expressing very high values.
3
An equivalent interpretation is

that we allow voter valuations that are not normalized but aim to maximize normalized (utilitarian)
social welfare defined as nsw(a) =

∑
i ∈N [vi (a)/

∑
b ∈Avi (b)]. We stick to the former interpretation

for the sake of simplicity. Let ∆m denote them-simplex, i.e., the set of all vectors in Rm+ whose

coordinates sum to 1. Hence, we have that vi ∈ ∆m for each i ∈ N . Given such a vector vi ∈ ∆m ,
let supp(vi ) ⊆ A denote the support of vi , i.e., the set of alternatives a for which vi (a) > 0.

Query space: If we ask voters to report their value for every alternative, we can easily find an

alternative maximizing social welfare. However, reporting real-valued utilities requires infinitely

many bits of communication. Our goal is to maximize social welfare subject to a finite bound on

the number of bits of information that can be elicited from each voter.

Consider any interaction with voter i which elicits finitely many bits of information and in which

the voter responds deterministically. In this interaction, the voter must provide one of finitely many

3
Effectively, voters are only allowed to report the intensity of their relative preference for one alternative over another.
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(say k) possible responses. We say that this interaction elicits logk bits of information.
4
It effectively

partitions ∆m into k compartments, where the compartment corresponding to each response is the

set of all valuations which would result in the voter choosing that response. In other words, any

interaction which elicits logk bits of information is equivalent to a query which partitions ∆m into

k compartments and asks the voter to pick the compartment in which her valuation belongs.

Let Q denote the set of all queries which partition ∆m into finitely many compartments. For a

query q ∈ Q, let k(q) denote the number of compartments created by q; the number of bits elicited is

logk(q).5 This query space incorporates traditional elicitation methods studied in the social choice

literature. For instance, plurality votes (which ask voters to report their favorite alternative) usem
compartments, k-approval votes (which ask voters to report the set of their k favorite alternatives)

use

(m
k

)
compartments, threshold approval votes (which ask voters to approve alternatives for

which their value is at least a given threshold) use 2
m
compartments, and ranked votes (which ask

voters to rank all alternatives) usem! compartments.

Voting Rule: A voting rule (or simply, a rule) f consists of two parts: an elicitation rule Πf and

an aggregation rule Γf . The (randomized) elicitation rule Πf is a distribution over Q, according

to which a query q is sampled. Each voter i provides a response ρi to this query, depending on

her valuation vi . We say that the elicitation rule is deterministic if it has singleton support (i.e. it

chooses a query deterministically). The (randomized) aggregation rule Γf takes voter responses

®ρ = (ρ1, . . . , ρn) as input, and returns a distribution over alternatives. We say that the aggregation

rule is deterministic if it always returns a distribution with singleton support. Slightly abusing

notation, we denote by f (®v) the (randomized) alternative returned by f when voter valuations are

®v = (v1, . . . ,vn). We measure the performance of f via two metrics.

(1) The communication complexity of f form alternatives, denoted C
m(f ) = Eq∼Πf logk(q), is

the expected number of bits of information elicited by f from each voter. We dropm from

the superscript when its value is clear from the context.

(2) The distortion of f form alternatives, denoted dist
m(f ), is the worst-case ratio of the optimal

social welfare to the expected social welfare achieved by f . Again, we drop m from the

superscript when its value is clear from the context. Formally,

dist(f ) = sup

®v ∈(∆m )n

maxa∈A sw(a, ®v)

Eâ∼f ( ®v) sw(â, ®v)
.

While it is desirable for a voting rule to have low communication complexity and low distortion,

typically eliciting more information from voters enables achieving low distortion. Our goal is to

understand the Pareto frontier of the tradeoff between communication complexity and distortion.

3 UPPER BOUNDS
In this section, we derive upper bounds on the best distortion a voting rule can achieve given

an upper bound on its communication complexity (equivalently, this gives an upper bound on

the communication complexity required to achieve a given level of distortion). We study both

deterministic and randomized elicitation, and our results are constructive.

4
In case of a multi-round interaction, we can consider the string obtained by concatenating the voter’s responses in different

rounds. This is equivalent to a single-round interaction in which the voter is asked to provide the entire string upfront, and

the number of bits elicited is logarithm of the number of possible strings.

5
Note that the number of bits elicited may not be an integer, but 2 raised to the power of the number of bits must an integer.

We could take the ceiling to enforce an integral number of bits, and this would only minimally increase elicitation, but some

of our lower bounds are sensitive to this non-integral formulation.
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Our main contributions in this section are two families of voting rules: PrefThreshold, which

use deterministic elicitation and aggregation, and RandSubset, which convert a given voting rule

into one which uses randomized elicitation.

3.1 Deterministic Elicitation, Deterministic Aggregation
We begin by designing voting rules which use deterministic elicitation and deterministic aggre-

gation — the most practical combination. Caragiannis et al. [18] show that plurality achieves

Θ(m2) distortion with logm communication complexity, and even voting rules that elicit ranked

preferences, and thus have Θ(m logm) communication complexity, cannot achieve asymptotically

better distortion.

We propose a novel voting rule PrefThresholdt, ℓ , parametrized by t ∈ [m] and ℓ ∈ N. It is
presented as Algorithm 1. Its elicitation rule asks each voter to report the set of her t most preferred

alternatives, and for each alternative in this set, report her approximate value for it by picking one

of ℓ + 1 subintervals of [0, 1]. Note that for t = 1, we use ℓ subintervals of [1/m, 1]; this is valid
because a voter’s value for her most favorite alternative must be at least 1/m. The aggregation rule

is also intuitive: it uses the approximate values to compute an estimated social welfare of each

alternative, and picks an alternative with the highest estimated social welfare.

ALGORITHM 1: PrefThresholdt, ℓ , where t ∈ [m] and ℓ ∈ N.

Elicitation Rule:
• If t > 1, create ℓ + 1 buckets: B0 = [0, 1/m2] and Bp = (1/m2−2(p−1)/ℓ , 1/m2−2p/ℓ] for p ∈ [ℓ].

• If t = 1, create ℓ buckets: B1 = [m−1,m−1+1/ℓ] and Bp = (m−1+(p−1)/ℓ ,m−1+p/ℓ] for p ∈ [ℓ] \ {1}.

• The query asks each voter i to identify set Sti of the t alternatives for which she has the highest value

(breaking ties arbitrarily), and for each a ∈ Sti , identify bucket index pi,a such that vi (a) ∈ Bpi,a .

Aggregation Rule:
• For each p, letUp denote the upper endpoint of bucket Bp .

• For each voter i ∈ N and alternative a ∈ A, define v̂i (a) = Upi,a if a ∈ Sti and v̂i (a) = 0 otherwise.

• For an alternative a ∈ A, define the estimated social welfare as ŝw(a) =
∑
i ∈N v̂i (a).

• Return an alternative with the highest estimated social welfare, i.e., â ∈ argmaxa∈A ŝw(a).

Communication Complexity:

C(PrefThresholdt, ℓ) =

{
log

[ (m
t
)
· (ℓ + 1)t

]
= Θ

(
t log m(ℓ+1)

t

)
, if t > 1,

log(mℓ), if t = 1.

Distortion:

dist(PrefThresholdt, ℓ) =

{
O(m1+2/ℓ/t), if t > 1,

O(m1+1/ℓ), if t = 1.

Theorem 3.1. For t ∈ [m] \ {1} and ℓ ∈ N, we have

C(PrefThresholdt, ℓ) = log

[(
m

t

)
· (ℓ + 1)t

]
= Θ

(
t log

m(ℓ + 1)

t

)
,

dist(PrefThresholdt, ℓ) = O
(
m1+2/ℓ/t

)
.

For t = 1 and ℓ ∈ N, we have

C(PrefThreshold1, ℓ) = log(mℓ), dist(PrefThresholdt, ℓ) = O
(
m1+1/ℓ

)
.
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Proof. It is evident that the number of possible responses that a voter can provide under

PrefThresholdt, ℓ is
(m
t

)
· (ℓ + 1)t if t > 1, andmℓ if t = 1. Taking the logarithm of this gives us

the desired communication complexity.

We now establish the distortion of PrefThresholdt, ℓ . Let ®v = (v1, . . . ,vn) be the underlying
valuations of voters. For alternative a ∈ A, recall that sw(a, ®v) =

∑
i ∈N vi (a), and

ŝw(a) =
∑
i ∈N

v̂i (a) =
∑

i ∈N :a∈S ti

v̂i (a) =
∑

i ∈N :a∈S ti

Upi,a .

Let â ∈ argmaxa∈A ŝw(a) be the alternative chosen by the rule, and let a∗ ∈ argmaxa∈A sw(a, ®v)
be an alternative maximizing social welfare.

We begin by finding an upper bound on sw(a∗, ®v) in terms of ŝw(â).

sw(a∗, ®v) =
∑
i ∈N

vi (a
∗) =

∑
i ∈N :a∗∈S ti

vi (a
∗) +

∑
i ∈N :a∗<S ti

vi (a
∗)

≤
∑

i ∈N :a∗∈S ti

vi (a
∗) +

∑
i ∈N :a∗<S ti

(∑
a∈S ti

vi (a)

t

)
≤

∑
i ∈N :a∗∈S ti

v̂i (a
∗) +

∑
a∈A\{a∗ }

∑
i ∈N :a∗<S ti ∧a∈S

t
i
v̂i (a)

t

≤ ŝw(a∗) +

∑
a∈A\{a∗ } ŝw(a)

t
≤ ŝw(â) +

(m − 1) · ŝw(â)

t
=
m + t − 1

t
· ŝw(â), (1)

where the third transition holds because for every i ∈ N with a∗ < Sti and every a ∈ Sti , we have
vi (a

∗) ≤ vi (a); the fourth transition holds because for every i ∈ N and a ∈ Sti , vi (a) ≤ v̂i (a); the
fifth transition follows from the definition of ŝw; and the sixth transition holds because â is a

maximizer of ŝw.

We now establish the distortion for t > 1. The first step is to derive an upper bound on ŝw(â)
in terms of sw(â, ®v). Our bucketing implies that for all i ∈ N and a ∈ Sti , we have vi (a) ≤ v̂i (a) ≤

m2/ℓvi (a) +
1

m2
. Using this, we can derive the following.

ŝw(â) =
∑

i ∈N :â∈S ti

v̂i (â) ≤
∑

i ∈N :â∈S ti

(
m2/ℓvi (â) +

1

m2

)
≤ m2/ℓ

sw(â, ®v) +
n

m2
. (2)

Next, we derive a lower bound on ŝw(â), which helps establish a lower bound on sw(â, ®v). Note
that for each voter i ∈ N ,

∑
a∈S ti

vi (a) ≥ t/m. Hence,∑
a∈A

ŝw(a) =
∑
i ∈N

∑
a∈S ti

v̂i (a) ≥
∑
i ∈N

∑
a∈S ti

vi (a) ≥
n · t

m
.

Because â is a maximizer of ŝw, this yields ŝw(â) ≥ n · t/m2
. Substituting this into Equation (2),

we get

n

m2
+ sw(â, ®v) ·m2/ℓ ≥ ŝw(â) ≥

n · t

m2
⇒ sw(â, ®v) ≥

n · (t − 1)

m2
·m−2/ℓ ≥

n

m2
·m−2/ℓ . (3)

Applying Equations (1), (2), and (3) in this order, we have

sw(a∗, ®v)

sw(â, ®v)
≤

m + t − 1

t
·

ŝw(â)

sw(â, ®v)
≤

m + t − 1

t
·

(
m2/ℓ +

n

m2 · sw(â, ®v)

)
≤

m + t − 1

t
·

(
m2/ℓ +m2/ℓ

)
∈ O(m1+2/ℓ/t).
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For t = 1, we have that for every i ∈ N and a ∈ Sti , vi (a) ≤ v̂i (a) ≤ m1/ℓvi (a). Hence, in

Equation (2), the additive factor of n/m2
disappears and the multiplicative factor ofm2/ℓ

becomes

m1/ℓ
, yielding ŝw(â) ≤ sw(â, ®v) · m1/ℓ

. Similarly, Equation (3) becomes sw(â, ®v) ≥ n
m2

· m−1/ℓ
.

Following the same line of proof as for the case of t > 1, we obtain

sw(a∗, ®v)

sw(â, ®v)
≤ m ·

ŝw(â)

sw(â, ®v)
≤ m ·m1/ℓ,

which is the desired bound on distortion. �

PrefThresholdt, ℓ offers a tradeoff between two parameters, t and ℓ. Increasing either parameter

increases the communication complexity but reduces the distortion. We remark that there is no

(asymptotic) benefit of choosing ℓ > logm. This is because at ℓ = logm, our upper bound on

distortion reduces to O(m/t), and increasing ℓ further does not change the bound asymptotically.

Further, increasing ℓ from 1 to logm reduces the distortion by a factor of m2
(m if t = 1), but

does not (asymptotically) increase the communication complexity when t = O(m/logm) and only

increases it by a sublogarithmic factor when t = ω(m/logm). Hence, unless our goal is to make the

communication complexity very small (e.g. with constant t and ℓ), it is best to set ℓ = logm. This

gives rise to the following interesting choices of t and ℓ.

• t = 1, ℓ = 1: PrefThreshold1,1 coincides with plurality. Hence, C(PrefThreshold1,1) =

logm and dist(PrefThreshold1,1) = O(m
2). We later show that O(m2) distortion is asymp-

totically optimal for voting rules with deterministic elicitation, deterministic aggregation,

and at most logm communication complexity (Theorem 4.3).

• t = 1, ℓ = 2: In this case, C(PrefThreshold1,2) = logm + 1 and dist(PrefThreshold1,2) =

O(m
√
m). This shows that eliciting just one extra bit per voter compared to plurality is

sufficient for achieving subquadratic distortion.

• t = 1, ℓ = logm: In this case, we obtain C(PrefThreshold1, logm) = logm + log logm =
O(logm) and dist(PrefThreshold1, logm) = O(m). Thus, asking each voter to report not

only her most favorite alternative, but also her approximate value for this alternative allows

achieving linear distortion with the same asymptotic communication complexity as that of

plurality.

• t =m1−γ , ℓ = logm, where γ ∈ (0, 1) is a constant: This achieves sublinear distortion

with polynomial communication complexity. Specifically, C(PrefThresholdm1−γ , logm) =

O(m1−γ
logm) and dist(PrefThresholdm1−γ , logm) = O(m

γ ).

• t =m/
√

logm, ℓ = logm: We obtain

C

(
PrefThresholdm/

√
logm, logm

)
= O

(
m log logm√

logm

)
= o(m),

dist

(
PrefThresholdm/

√
logm, logm

)
= O

(√
logm

)
.

This choice Pareto-dominates the use of threshold approval votes, which has higher commu-

nication complexity ofm and results in higher distortion of Ω(logm/log logm), even when

randomized aggregation is allowed [10].

• t =m, ℓ = logm: In this case, each voter reports her approximate value for each alternative.

We obtain C(PrefThresholdm, logm) = O(m log logm) and dist(PrefThresholdm, logm) =

O(1). By contrast, eliciting ranked preferences leads to not only higher communication

complexity of Θ(m logm), but also significantly higher distortion of Θ(m2) with deterministic

aggregation [18] and Ω(
√
m) with randomized aggregation [16]. In other words, this choice

Pareto-dominates the use of ranked preferences.
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3.2 Randomized Elicitation, Randomized Aggregation
We now present a generic approach to designing voting rules with randomized elicitation. Given

a voting rule f and an integer s ≤ m, instead of using f to select one alternative from A directly,

we sample S ⊆ A with |S | = s at random and use f to select one alternative from S . Recall that
for p ∈ N, Cp (f ) and dist

p (f ) denote the communication complexity and distortion of f for p
alternatives, respectively.

Clearly, this approach reduces the communication complexity from C
m(f ) to Cs (f ). Its effect on

distortion, however, is more subtle. On the one hand, selecting an alternative from S instead of A
results in an inevitable loss of welfare because we can only hope to do as well as the best alternative

in S . On the other hand, the welfare we achieve is related to the welfare of the best alternative in S
via the factor dist

s (f ), which can be significantly lower than dist
m(f ). We show that in some cases,

this approach reduces distortion in addition to reducing communication complexity.

The key challenge in making this approach work is that we cannot apply f directly to select

one alternative from S . This is because f assumes that each voter has a total value of 1 for the set

of alternatives under consideration. This is true when we apply f to select an alternative from A,
but not when we apply it to select an alternative from S . We circumvent this obstacle by eliciting

an approximate value of vi (S) from each voter i , making a number of copies of voter i that is
approximately proportional to vi (S) (where each copy now has a total value of 1 for alternatives in

S), and running f on the resulting instance.

ALGORITHM 2: RandSubset(f , s), where f is a voting rule and s ∈ [m]

Elicitation Rule:
• Pick S ⊆ A with |S | = s uniformly at random from among all subsets of A of size s .

• Partition [0, 1] into ⌈log(4m)⌉ buckets as follows: B0 =
[
0, 1

4m
]
, Bj =

(
2
j−1

4m ,
2
j

4m

]
for j ∈ ⌈log(4m)⌉.

• Ask two reports from each voter i:
(1) The bucket index pi such that vi (S) =

∑
a∈S vi (a) ∈ Bpi ;

(2) A response ρi to the elicitation rule of f for the set of alternatives S according to the renormalized

valuation v̂i defined as v̂i (a) = vi (a)/vi (S) for each a ∈ S .

Aggregation Rule:
• Let Lp denote the lower endpoint of bucket Bp for p ∈ ⌈log(4m)⌉ ∪ {0}.

• Run the aggregation rule of f on an input which consists of 4m · Lpi copies of ρi for each i ∈ N .

Communication Complexity: Cm (RandSubset(f , s)) = C
s (f ) + log⌈log(4m)⌉.

Distortion: distm (RandSubset(f , s)) ≤ 4m
s · dists (f ).

Theorem 3.2. For every voting rule f and s ∈ [m], we have Cm(RandSubset(f , s)) = Cs (f ) +
log⌈log(4m)⌉ and distm(RandSubset(f , s)) ≤ 4m

s · dists (f ).

Proof. Let ®v = (v1, . . . ,vn) denote the underlying valuations of voters. First, let us consider a
fixed choice of S ⊆ A with |S | = s . Due to our bucketing, we have that for every i ∈ N ,

vi (S)

2

−
1

4m
≤ Lpi ≤ vi (S). (4)

Recall that in the input to the aggregation rule of f , we have 4m · Lpi copies of the response ρi
of voter i . Hence, the social welfare function approximated by the aggregation rule of f is given by

∀a ∈ S, ŝw(a, ®v) =
∑
i ∈N

4m · Lpi ·
vi (a)

vi (S)
= 4m

∑
i ∈N

vi (a) ·
Lpi
vi (S)

.
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Combining this with Equation (4), we have that for each a ∈ S ,

ŝw(a, ®v) ≥ 4m
∑
i ∈N

vi (a) ·

(
1

2

−
1

4m · vi (S)

)
= 2m · sw(a, ®v) −

∑
i ∈N

vi (a)

vi (S)
≥ 2m · sw(a, ®v) − n, (5)

as well as

ŝw(a, ®v) ≤ 4m
∑
i ∈N

vi (a) · 1 = 4m · sw(a, ®v). (6)

Let â denote the alternative chosen by our rule. Because the distortion of f for choosing an

alternative from S is dist
s (f ), we have that E[ŝw(â, ®v)] ≥ maxa∈S ŝw(a, ®v)/dist

s (f ). Note that so
far, we have fixed S . The expectation on the left hand side is due to the fact that even for fixed S , â
can be randomized if f is randomized.

Next, we take expectation over the choice of S , and use the fact that the optimal alternative

a∗ ∈ argmaxa∈A sw(a, ®v) belongs to S with probability s/m. We obtain

E[ŝw(â, ®v)] ≥
E[maxa∈S ŝw(a, ®v)]

dist
s (f )

≥

s
m · ŝw(a∗, ®v)

dist
s (f )

≥

s
m (2m · sw(a∗, ®v) − n)

dist
s (f )

, (7)

where the final transition follows from Equation (5). On the other hand, from Equation (6), we have

E[ŝw(â, ®v)] ≤ 4m E[sw(â, ®v)]. (8)

Combining Equations (7) and (8), we have that

dist
m(RandSubset(f , s)) =

sw(a∗, ®v)

E[sw(â, ®v)]
≤

sw(a∗, ®v)
sw(a∗, ®v)

2
− n

4m

·
m

s
· dists (f ) ≤

4m

s
· dists (f ),

where the final transition uses the fact that sw(a∗, ®v) ≥ (1/m)·
∑

a∈A sw(a, ®v) = n/m. This establishes

the desired distortion bound. Since each voter answers the query of f for s alternatives and chooses
one of ⌈log(4m)⌉ buckets, we get Cm(RandSubset(f , s)) = C

s (f ) + log⌈log(4m)⌉, as desired. �

Using f = PrefThresholdt, ℓ and Theorem 3.1, we obtain that for s ∈ [m], t ∈ [s], and ℓ ∈ N,

C
m (

RandSubset

(
PrefThresholdt, ℓ, s

) )
= O (t log(s(ℓ + 1)/t) + log logm) ,

dist
m (

RandSubset

(
PrefThresholdt, ℓ, s

) )
= O

(
m · s2/ℓ/t

)
.

Setting ℓ = log s , we get O(m/t) distortion. Then, we set s = t to minimize communication

complexity to O(t log log t + log logm). This is slightly better than using PrefThresholdt, logm ,

which achieves O(m/t) distortion with O(t log
m logm

t ) communication complexity. In particular,

for t = O(1) this reduces communication complexity by a factor of logm/log logm.

An interesting choice is t =
logm

log logm , which leads to distortion O (m log logm/logm) = o(m) and

communication complexity O (t log log t + log logm) = o(logm). Note that this rule has random-

ized elicitation but deterministic aggregation. By contrast, we later show that with deterministic

elicitation, no voting rule can achieve o(m) distortion with communication complexity at most

logm, even when randomized aggregation is allowed (Theorem 4.3).

4 DIRECT LOWER BOUNDS FOR DETERMINISTIC ELICITATION
We now turn our attention to deriving lower bounds on the distortion of a voting rule given an

upper bound on its communication complexity (equivalently, this gives a lower bound on the

communication complexity required to achieve a given level of distortion). In this section, our focus

is on deterministic elicitation. In the next section, we use tools from multi-party communication

complexity to derive lower bounds for both deterministic and randomized elicitation.
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Consider a voting rule f which uses deterministic elicitation and has communication complexity

at most logk . Hence, the (deterministic) query of f must partition ∆m into at most k compartments.

We argue that for deriving a lower bound on the distortion of f , we can assume, without loss of

generality, that it uses exactly k compartments. This is because if f uses k ′
compartments where

k ′ < k , then we can partition some of its compartments into smaller compartments and derive

a new voting rule д which uses exactly k compartments, receives at least the information that f
receives from the voters, and simulates the aggregation rule of f to achieve the same distortion.

Thus, let us assume that f uses exactly k compartments.

Now, establishing a lower bound on the distortion of f requires analyzing the following game

between two players, the voting rule f and the adversary.

(1) The voting rule f decides the partition of ∆m into k compartments.

(2) The adversary decides the response of each voter.

(3) The voting rule f picks a winning alternative (or a distribution over winning alternatives, if

its aggregation rule is randomized).

(4) The adversary picks valuations of voters consistent with their responses in the second step.

We use this framework to derive lower bounds on the distortion of voting rules that use determin-

istic elicitation. We first focus on deterministic aggregation. Perhaps the simplest such voting rule

is plurality, which has logm communication complexity and achieves Θ(m2) distortion. This raises

an important question:What distortion can we achieve with deterministic elicitation, deterministic
aggregation, and communication complexity less than logm?
To answer this question, we start by establishing a straightforward lemma. Recall that for a

valuation v ∈ ∆m , supp(v) denotes the support of v .

Lemma 4.1. Let f be a voting rule which uses deterministic elicitation and deterministic aggregation.
Let q∗ be the query used by f . If some compartment of q∗ contains two valuations v1 and v2 such that
supp(v1) ∩ supp(v2) = ∅, then the distortion of f is unbounded.

Proof. Suppose compartment P contains valuationsv1
andv2

such that supp(v1)∩supp(v2) = ∅.

Let â be the alternative returned by f when all voters pick compartment P . Pick t ∈ {1, 2} such
that â < supp(vt ). Note that vt (â) = 0, but there exists a∗ ∈ supp(vt ) such that vt (a∗) > 0.

Define voter valuations ®v = (v1, . . . ,vn) such thatvi = v
t
for each i ∈ N . This yields sw(â, ®v) = 0

and sw(a∗, ®v) > 0, which implies that f must have infinite distortion. �

Next, we leverage this lemma to show that communication complexity less than logm leads to

unbounded distortion. For this, we need the following definition. For a ∈ A, we say that the unit
valuation corresponding to a is the valuation va ∈ ∆m for which va(a) = 1.

Theorem 4.2. Every voting rule that has deterministic elicitation, deterministic aggregation, and
communication complexity strictly less than logm has unbounded distortion.

Proof. Let f be a voting rule that has deterministic elicitation and deterministic aggregation,

and let C(f ) < logm. Hence, the query used by f must partition ∆m into less thanm compartments.

Because there arem unit valuations, by the pigeonhole principle there must exist distinct a,b ∈ A
such thatva andvb belong to the same compartment. Because supp(va)∩ supp(vb ) = ∅, Lemma 4.1

implies that the distortion of f must be infinite. �

Thus, we have established that with deterministic aggregation, we must have communication

complexity at least logm to achieve finite distortion. Plurality has communication complexity logm
and achieves Θ(m2) distortion. Can a different voting rule achieve better distortion using only logm
communication complexity? Perhaps unsurprisingly, we answer this in the negative. However, the

proof of this intuitive result is surprisingly intricate.
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Further, using randomized aggregation we can trivially achieve O(m) distortion with zero com-

munication complexity (by returning the uniform distribution over alternatives). One may wonder:

How much information do we need from the voters to achieve sublinear distortion? It is easy to

show that eliciting plurality votes is not sufficient (while this is implied by the next result, we

present a much simpler proof in Appendix A). Surprisingly, we show that this holds for every
logm-bit elicitation. That is, even with randomized aggregation, eliciting logm bits per voter is

asymptotically no better than blindly selecting an alternative uniformly at random!

Theorem 4.3. Let f be a voting rule which uses deterministic elicitation and has C(f ) ≤ logm.
If f uses deterministic aggregation, then dist(f ) = Ω(m2). If f uses randomized aggregation, then
dist(f ) = Ω(m).

Proof. Let f be a voting rule which has deterministic elicitation and C(f ) ≤ logm. As argued

above, we can assume C(f ) = logm without loss of generality. Hence, the query q∗ used by f
partitions ∆m intom compartments. Let P = (P1, . . . , Pm) denote the set of compartments. If f has

unbounded distortion, we are done. Suppose f has bounded distortion.

Due to Lemma 4.1, each ofm unit vectors must belong to a different compartment. Since there are

m compartments, we identify each compartment by the unit valuation it contains. For a ∈ A, let Pa

denote the compartment containing unit valuation va . Before we construct adversarial valuations,
we need to define low valuations and high valuations.

Low valuations: We say that a valuationv ∈ ∆m is a low valuation if |supp(v)| =m/5 andv(a) = 5/m
for every a ∈ supp(v). Let ∆m, low

denote the set of all low valuations. Due to Lemma 4.1, we have

v ∈ ∆m, low ∩ Pa ⇒ a ∈ supp(v) ∧v(a) =
5

m
. (9)

Let L = {P ∈ P : P ∩∆m, low , ∅} be the set of compartments containing at least one low valuation,

and AL = {a ∈ A : Pa ∈ L} be the set of alternatives corresponding to these compartments.

We claim that |AL | = |L| ≥ 4m/5 + 1. Suppose for contradiction that |AL | ≤ 4m/5. Then,

|A \ AL | ≥ m/5. Hence, there exists a low valuation v ∈ ∆m, low
such that supp(v) ⊆ A \ AL

.

Let a ∈ A be the alternative for which v ∈ Pa . Because Pa contains a low valuation, a ∈ AL
by

definition. Thus, the construction of v ensures v(a) = 0. We have v ∈ ∆m, low ∩ Pa with v(a) = 0,

which contradicts Equation (9). Hence, |AL | ≥ 4m/5 + 1.

High valuations: We say that a valuation v ∈ ∆m is a high valuation if |supp(v)| = 2 and v(a) = 1/2

for each a ∈ supp(v). Let ∆m,high
denote the set of high valuations. Note that |∆m,high | =

(m
2

)
.

Similarly to the case of low valuations, we can apply Lemma 4.1, and obtain that

v ∈ ∆m,high ∩ Pa ⇒ a ∈ supp(v) ∧v(a) =
1

2

. (10)

For a ∈ A, let Ha = {P ∈ L : ∃v ∈ ∆m,high ∩ P s.t. a ∈ supp(v)}. In words, Ha
is the set

of compartments from L which contain at least one high valuation v for which v(a) = 1/2. Let

Ahigh = {a ∈ A : |Ha | ≥ m/5}. We claim that |Ahigh | ≥ m/6.

Suppose this is not true. Let B = |A \ Ahigh |. Then, |B | ≥ 5m/6. Consider a ∈ B. Each of the

m − 1 high valuations which contain a in their support must belong to some compartments in

Ha ∪ (P \ L). Since |Ha | ≤ m/5 − 1 for a ∈ B and |P \ L| ≤ m/5 − 1, them − 1 high valuations

containing a in their support are distributed across at most 2m/5 − 2 compartments. However,

due to Lemma 4.1, a compartment other than Pa can contain at most one high valuation with a
in its support. Hence, Pa must contain at leastm − 1 − (2m/5 − 3) = 3m/5 + 2 high valuations.

Thus, we have established that |B | ≥ 5m/6 and for each a ∈ B, Pa contains at least 3m/5 + 2 high
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valuations. Thus, the number of high valuations is at least (5m/6) · (3m/5+ 2) > m2/2 >
(m
2

)
, which

is a contradiction. Thus, we have |Ahigh | ≥ m/6.

We are now ready to prove the desired result for both deterministic and randomized aggregation.

Voter responses: When responding to the query q∗, suppose each compartment P ∈ L is picked by a

set NP of n/|L| voters.

Deterministic aggregation: Let â denote the alternative picked by f . We claim that â ∈ AL
. If â < AL

,

consider voter valuations ®v such that every voter i picking compartment Pa ∈ L has valuation

vi = v
a
. Since â < AL

, we have vi (â) = 0 for each i ∈ N , i.e., sw(â, ®v) = 0. Since sw(a, ®v) > 0 for

some a ∈ A, f has infinite distortion, which is a contradiction. Thus, we must have â ∈ AL
.

Now, let us construct the voter valuations as follows. Pick a low valuation v̂ ∈ P â ∩∆m, low
, which

exists because we have established â ∈ AL
. Note that v̂(â) = 5/m. For each i ∈ NP â , let vi = v̂ . Pick

a∗ ∈ Ahigh \ {â}. Let P̄ be the compartment containing the high valuation under which both â and

a∗ have utility 1/2. For each P ∈ Ha∗ \ {P â , P̄}, and for each i ∈ NP , let vi be the high valuation in

P such that vi (a
∗) = 1/2 and vi (â) = 0. For every other Pa ∈ L and every i ∈ NPa , let vi = v

a
.

Observe that under these valuations, sw(â, ®v) = Θ(n/m2), whereas, since |Ha∗ | ≥ m/5 and

|L| ≤ |P| =m, sw(a∗, ®v) = Θ(n). We conclude that dist(f ) = Ω(m2).

Randomized aggregation: Note that f must select at least one alternative a∗ ∈ Ahigh
with probability

at most 1/|Ahigh | ≤ 6/m. Construct voter valuations such that for every P ∈ Ha∗
and every i ∈ NP ,

vi is the high valuation under whichvi (a
∗) = 1/2. For every Pa ∈ L\Ha∗

, and for every i ∈ NPa , let

vi = v
a
. It holds that sw(a∗, ®v) = Θ(n) (as before), whereas sw(a, ®v) = O(n/m) for every a ∈ A\{a∗}.

Because f selects a∗ with probability at most 6/m, we have Eâ∼f ( ®v)[sw(â, ®v)] = O(n/m), implying

dist(f ) = Ω(m), as required. �

For deterministic aggregation, Theorem 4.3 shows that eliciting logm bits per voter is not suffi-

cient to achieve o(m2) distortion. By contrast, we know from Theorem 3.1 that we can achieveO(m)

distortion by eliciting O(logm) bits per voter. Similarly, for randomized aggregation, Theorem 4.3

shows that eliciting logm bits per voter is not sufficient to achieve o(m) distortion. However, we

can achieve o(m) distortion if we are willing to elicit ω(logm) bits per voter (Theorem 3.1),
6
or if

we are willing to use randomized elicitation (Theorem 3.2).

5 LOWER BOUNDS THROUGH MULTI-PARTY COMMUNICATION COMPLEXITY
In this section, we leverage tools from the literature on multi-party communication complexity to

derive lower bounds for both deterministic and randomized elicitation. Specifically, we derive lower

bounds on the communication complexity of voting rules that achieve a given level of distortion.

We can equivalently interpret these results similarly to the results in the previous section, i.e., as

lower bounds on the distortion given an upper bound on the communication complexity. We use the

former interpretation as it allows to make a direct connection to the literature on communication

complexity, which aims to derive lower bounds on the communication required to solve a problem.

We begin by reviewing existing results on multi-party communication complexity, and then

derive new results, which help us prove the desired lower bounds in our voting context.

5.1 Setup
In multi-party communication complexity, there are t computationally omnipotent players. Each

player i holds a private input Xi ∈ Xi . The input profile is the vector (X1, . . . ,Xt ). The goal is to

compute the output of a function f : X1 × X2 × . . . × Xt → {0, 1} on the input profile.

6
For t = ω(1), PrefThresholdt, logm achieves O (m/t ) = o(m) distortion and has communication complexity O (t logm).
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A shared protocol Π specifies how the players exchange information among themselves and

with the center. We use the blackboard model, in which messages written by one player are visible

to all other players. For a fixed input profile (X1, . . . ,Xt ), let Π(X1, . . . ,Xt ) denote the random

variable representing the message transcript obtained when players follow the protocol. Here, the

randomness is due to coin tosses either by the players or in the protocol.

The communication cost of Π, denoted |Π |, is the maximum length of Π(X1, . . . ,Xt ) over all input

profiles (X1, . . . ,Xt ) and all coin tosses. Given δ ≥ 0, we say that Π is a δ -error protocol for f if

there exists a function Πout such that for every input profile (X1, . . . ,Xt ), we have

Pr [Πout(Π(X1, . . . ,Xt )) = f (X1, . . . ,Xt )] ≥ 1 − δ .

The δ -error communication complexity of f , denoted Rδ (f ), is the communication cost of the best

δ -error protocol for f .

5.2 Multi-Party Fixed-Size Set-Disjointness
The main ingredient of our proof is the multi-party set-disjointness problem, denoted DISJm,t . This

is a standard problem in multi-party communication complexity. In this problem, there are t players.
Each player i holds an arbitrary set Si from a universe of sizem. The goal is to distinguish between

two types of inputs.

• NO inputs: The sets are pairwise disjoint, i.e., Si ∩ S j = ∅ for all i , j.
• YES inputs: The sets have a unique element in common, but are otherwise pairwise disjoint,

i.e., there exists x such that Si ∩ S j = {x} for all i , j.

It is promised that the input will be one of these two types (in other words, the protocol is free

to choose any output on an input that does not satisfy this promise). Alon et al. [1] proved that

Rδ (DISJm,t ) = Ω(m/t4). This was later improved to Ω(m/t2) by Bar-Yossef et al. [9] and then to

Ω(m/(t log t)) by Chakrabarti et al. [20]. Finally, Gronemeier [30] and Jayram [32] established the

optimal lower bound of Ω(m/t).
We introduce a variant of this problem, which we call multi-party fixed-size set-disjointness and

denote FDISJm,s,t . It is almost identical to DISJm,t , except that we know each player i holds a set Si
of a given size s . Our goal is to still determine whether the sets are pairwise disjoint (Si ∩ S j = ∅ for

all i , j) or pairwise uniquely intersecting (there exists x such that Si ∩ S j = {x} for all i , j). We

use the lower bound on Rδ (DISJm,t ) to derive the following lower bound on Rδ (FDISJm,s,t ). We do

so by reducing the standard set-disjointness problem to its fixed-size variant. A detailed proof is

provided in Appendix B.

Theorem 5.1. For a sufficiently small constant δ > 0 andm ≥ (3/2)st , Rδ (FDISJm,s,t ) = Ω(s).

5.3 Lower Bounds on the Communication Complexity of Voting Rules
We now use our lower bound on the δ -error communication complexity of FDISJm,s,t to derive a

lower bound on the communication complexity of a voting rule in terms of its distortion. We derive

different bounds depending on whether the elicitation rule of f is deterministic or randomized. For

randomized elicitation, our bound is weaker.

The key insight in the proof is that we can use a voting rule f with dist(f ) ≤ t/2 to construct a

δ -error protocol for solving FDISJm,s,t , and hence we can use the lower bound on Rδ (FDISJm,s,t )

from Theorem 5.1 to derive a lower bound on C(f ). At a high level, consider an instance (S1, . . . , St )
of FDISJm,s,t . We ask each player i to respond to the query of f according to an artificial valuation

function constructed using Si . We then use these responses to create an input for the aggregation rule

of f . We show that by asking each player an additional question about the alternative returned by

the aggregation rule, and possibly running this process a number of times, we can solve FDISJm,s,t .
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Theorem 5.2. For a voting rule f with elicitation rule Πf and dist(f ) = d , the following hold.

• If Πf is deterministic, then C(f ) ≥ Ω
(
m/d2

)
.

• If Πf is randomized, then C(f ) ≥ Ω
(
m/d3

)
.

Proof. Let t = 2·dist(f ) and s = 2m/(3t). Note that for these parameters, we haveRδ (FDISJm,s,t ) =

Ω(s) from Theorem 5.1.

Consider an input (S1, . . . , St ) to FDISJm,s,t with a universeU of sizem. Let us create an instance

of the voting problem with a set of n voters N and a set ofm alternatives A. Each alternative in

A corresponds to a unique element of U . Partition the set of voters N into t equal-size buckets
{N1, . . . ,Nt }. Here, bucket Ni corresponds to player i , and consists of n/t voters that each have

valuation vSi given by vSi (a) = 1/s for each a ∈ Si and v
Si (a) = 0 for each a < Si . Let ®v denote the

resulting profile of voter valuations. Note that under these valuations, sw(a, ®v) = n
ts

∑t
i=1 1[a ∈ Si ],

where 1 is the indicator variable. Due to the promise that an element either belongs to at most one

set or belongs to every set, we have sw(a, ®v) ∈ {0,n/(ts),n/s}. We say that a is a “good” alternative

if sw(a, ®v) = n/s and a “bad” alternative otherwise.

We define two processes that will help covert our voting rule f into a protocol for FDISJm,s,t .

Process E: In this process, we ask each player i to respond to the query posed by voting rule f
(possibly selected in a randomized manner) according to valuation vSi . We note that this requires a

total of t · C(f ) bits of communication from the players.

Process A: We take players’ responses from process E, create n/t copies of the response of each
player, and pass the resulting profile as input to the aggregation rule Γf to obtain the returned

alternative â (possibly selected in a randomized manner). We end the process by determining if â is

a good alternative or a bad alternative. This requires eliciting 2 extra bits of information: we can

ask any two players i and j whether their sets contain â, and due to the promise of FDISJm,s,t , we

know that â is good if and only if it belongs to both Si and S j .
Knowing whether â is good or bad is useful for solving the given instance of FDISJm,s,t due to

the following reason.

(1) If (S1, . . . , St ) is a “NO input”, then we know that every alternative is a bad alternative. Hence,

sw(a, ®v) ≤ (n/t) · (1/s) = n/(ts) for each a ∈ A. In particular, this implies sw(â, ®v) ≤ n/(ts)
with probability 1.

(2) If (S1, . . . , St ) is a “YES input”, then there exists a unique good alternative a∗ ∈ A with

sw(a∗, ®v) = n/s , and every other alternative a is a bad alternative with sw(a, ®v) ≤ n/(ts).

Because dist(f ) = t/2, we have that E[sw(â, ®v)] ≥
n/s
t/2 =

2n
ts . This implies that Pr[sw(â, ®v) =

n/s] = Pr[â = a∗] ≥ 1/t because if Pr[â = a∗] < 1/t , then E[sw(â, ®v)] < (1/t) · (n/s) + 1 ·
n/(ts) = 2n/(ts), which is a contradiction.

We are now ready to use f to construct a protocol for FDISJm,s,t , and use Theorem 5.1 to derive

a lower bound on C(f ). We consider two cases depending on whether the elicitation rule Πf is

deterministic or randomized.

(1) Deterministic elicitation: In this case, we run process E once and then run process A t ln(1/δ )
times. In a NO input, we always get a bad alternative. In a YES input, each run of process A

returns a good alternative with probability at least 1/t . Hence, the probability that we get a

good alternative at least once is at least 1 − (1 − 1/t)t ln(1/δ ) ≥ 1 − δ . Hence, this is a δ -error
protocol for FDISJm,s,t which requires t ·C(f )+ t ln(1/δ ) · 2 bits of total communication from

the players. Using Theorem 5.1, we have that t · (C(f ) + 2 ln(1/δ )) = Ω(s). Using s = 2m/(3t)
and t = 2d , we have C(f ) = Ω(m/d2).
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(2) Randomized elicitation: In this case, we run E once followed by running A once. And we

repeat this entire process t ln(1/δ ) times. Note that we need to repeat process E because the

elicitation is also randomized. Like in the previous case, we always get a bad alternative in a

NO input, and get a good alternative with probability at least 1/t in each run in a YES input.

Hence, in a YES input, we get a good alternative in at least one run with probability at least

1 − (1 − 1/t)t ln(1/δ ) ≥ 1 − δ . This results in a δ -error protocol for FDISJm,s,t which requires

t ln(1/δ ) · (t · C(f ) + 2) bits of total communication from the players. Using Theorem 5.1, we

have t ln(1/δ ) · (t ·C(f )+ 2) = Ω(s). Using s = 2m/(3t) and t = 2d , we have C(f ) = Ω(m/d3).

These are the desired lower bounds on C(f ). �

Note that we do not obtain an improved asymptotic lower bound on C(f ) when f uses deter-

ministic aggregation as compared to when it uses randomized aggregation. In case of deterministic

elicitation, we could slightly improve the bound by running process A only once instead of running

it Θ(t) times as it is guaranteed to always return a good alternative. However, because process A re-

quires much less communication than process E, this does not provide an asymptotic improvement.

In the case of randomized elicitation, we need to run both processes E and A repeatedly anyway,

so having deterministic aggregation does not seem to help.

Finally, let us consider the lower bounds on C(f ) implied by Theorem 5.2 for interesting choices

of upper bounds on dist(f ), and compare them with our previous results.

• When f uses deterministic elicitation and dist(f ) = O(
√
m/logm), we have that C(f ) =

Ω(logm). Theorem 4.3 already provides a stronger result: with deterministic elicitation, even

dist(f ) = o(m) implies C(f ) = Ω(logm). However, Theorems 4.2 and 4.3 fail to impose a

super-logarithmic lower bound on C(f ), which, as we see below, Theorem 5.2 is powerful

enough to do.

• When f uses deterministic elicitation and dist(f ) = O(mγ ) for γ ∈ (0, 1/2), we have that
C(f ) = Ω(m1−2γ ). For randomized elicitation and γ ∈ (0, 1/3), we have that C(f ) = Ω(m1−3γ ).

By contrast, PrefThresholdm1−γ , logm , which uses deterministic elicitation and deterministic

aggregation, achieves O(mγ ) distortion with O(m1−γ
logm) communication complexity. In

particular, this shows that in order to achieve O(mγ ) distortion for constant γ < 1/3, poly-

nomial communication complexity is both necessary (even with randomized elicitation and

aggregation) and sufficient (even with deterministic elicitation and aggregation).

• When dist(f ) = O(logm), we have C(f ) = Ω
(
m/log2m

)
for deterministic elicitation and

C(f ) = Ω
(
m/log3m

)
for randomized elicitation. By contrast, PrefThresholdm/logm, logm ,

which uses deterministic elicitation and aggregation, achieves O(logm) distortion with

O(m log logm/logm) communication complexity. Note that the upper and lower bounds

on communication complexity differ by only polylogarithmic factors.

• Finally, when dist(f ) = O(1), we have C(f ) = Ω(m) even with randomized elicitation and

aggregation. By contrast, again, PrefThresholdm, logm uses deterministic elicitation and

aggregation to achieve O(1) distortion with only O(m log logm) communication complexity.

In this case, our upper and lower bounds differ by only a sublogarithmic factor.

6 DISCUSSION
We have gained a significant understanding of the communication-distortion tradeoff. But our

work leaves open several research directions.

The most immediate direction is to improve our upper and lower bounds, and close the gap

between them. Regarding our upper bounds, both families of voting rules that we introduce —

PrefThreshold and RandSubset — use deterministic aggregation. Can randomized aggregation
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help? Also, using randomized elicitation in RandSubset, we can achieve sublinear distortion with

communication complexity at most logm; Theorem 4.3 shows that this is a barrier that deterministic

elicitation cannot help break. This raises an elegant question: What is the best possible distortion

with randomized elicitation and communication complexity at most logm?

Regarding our lower bounds, in Section 5 we provide a general lower bound on communica-

tion complexity in terms of distortion. It is an interesting open question to derive better lower

bounds. It would be especially interesting if a different problem from the literature on multi-party

communication complexity could help in this regard.

Taking a broader viewpoint, it is possible to consider wilder forms of elicitation. For example, we

could ask questions towhich voters respond in a randomized fashion. Caragiannis and Procaccia [19]

show that if each voter is to vote for a single alternative, but instead of picking her favorite alternative

voter i picks each alternative a with probabilityvi (a), then one can achieve (roughly)O(1) distortion.
This only requires logm communication complexity. In this case, it makes sense to dive into the

world of sublogarithmic communication complexity, which is uninteresting in our setting.

Another possibility is to study non-uniform elicitation rules, which can ask different voters

different questions. In this case, Bhaskar et al. [13] show that to achieveO(1) distortion it is sufficient

to ask O(m5
logm) voters a single bit of information each: for a given random alternative and a

given random threshold in [0, 1], is your value for the alternative at least the threshold? In this case,

the average number of bits required per voter vanishes even when we want to achieve constant

distortion. Hence, it may make sense to instead focus on the total number of bits elicited.

Finally, one can also consider asking adaptive questions to voters based on past responses.

While our model can already handle adaptive elicitation based on a voter’s own answers, it is

strictly weaker than the model where one voter’s questions can be chosen based on another voter’s

responses. Interestingly, our lower bounds from Section 5, which are derived using multi-party

communication complexity techniques, apply even to adaptive elicitation rules so long as they

are anonymous, that is, to elicitation rules which never ask different questions to two voters with

the exact same valuation function. However, it is interesting to study what can be achieved with

non-anonymous adaptive elicitation rules. Such rules have received significant attention in the

computational social choice literature due to the fact that they can simulate efficient optimization

methods such as stochastic gradient descent (see, e.g., [27]).

On a conceptual level, perhaps the main take-away message of our paper is that it pays off to elicit

and aggregate preferences “by anymeans necessary,” that is, potentially through highly nonstandard

aggregation and, especially, elicitation rules. In the setting of Caragiannis and Procaccia [19]

where voters are software agents, this is only natural. But when voters are people, it is crucial

to better understand the implications of such unconventional approaches, both in terms of how

communication complexity corresponds to cognitive burden, and in terms of the interpretability

and transparency of aggregation rules.
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A LOWER BOUND FOR PLURALITY VOTES
In this section, we show that eliciting plurality votes (whereby each voter picks her most favorite

alternative) results in Ω(m) distortion, even with randomized aggregation. This is implied by

Theorem 4.3, which proves this for any elicitation that has at most logm communication complexity.

However, for the special case of plurality votes, we can provide a much simpler proof.

Theorem A.1. Every voting rule which elicits plurality votes incurs Ω(m) distortion.

Proof. For simplicity, let the number of voters n be divisible by the number of alternativesm.

Consider an input profile in which the set of voters N is partitioned into equal-size sets {Na}a∈A
such that for each a ∈ A, a is the most favorite alternative of every voter in Na .

Take any voting rule f . It must return some alternative a∗ ∈ A with probability at most 1/m.

Now, construct adversarial valuations of voters ®v as follows.

• For all i ∈ Na∗ , vi (a
∗) = 1 and vi (a) = 0 for all a ∈ A \ {a∗}.

• For all â ∈ A \ {a∗} and i ∈ Nâ , vi (â) = vi (a
∗) = 1/2 and vi (a) = 0 for all a ∈ A \ {a∗, â}.

Under these valuations, we have sw(a∗, ®v) ≥ n/2, while sw(a, ®v) = (n/m)·(1/2) for everya ∈ A\{a∗}.
Hence, the distortion of f is

dist(f ) ≥
sw(a∗, ®v)

1

m sw(a∗, ®v) + m−1
m

n
2m

= Ω(m),

where the final transition holds when substituting sw(a∗, ®v) ≥ n/2. �

B LOWER BOUND ON THE COMMUNICATION COMPLEXITY OF FDISJm,s,t

In this section, we prove a lower bound on the communication complexity of multi-party fixed-size

set-disjointness. Let us recall Theorem 5.1.

Theorem 5.1. For a sufficiently small constant δ > 0 andm ≥ (3/2)st , Rδ (FDISJm,s,t ) = Ω(s).

Proof. Suppose there is a δ -error protocol Π for FDISJm,s,t . We use it to construct a 2δ -error
protocol Π′

for DISJm′,t ′ , wherem
′ = st/2 and t ′ = 2t .

Consider an instance (S ′
1
, . . . , S ′t ′) ofDISJm′,t ′ . Due to the promise that the sets are either pairwise

disjoint or pairwise uniquely intersecting, we have that at most one of them′
elements can appear

in multiple sets. Hence,

∑t ′
i=1 |S

′
i | ≤ m′ − 1 + t ′. Due to the pigeonhole principle, there must exist at

least t ′/2 = t sets of size at most 2(m′ + t ′ − 1)/t ′. Note that

2(m′ + t ′ − 1)

t ′
=
st/2 + 2t − 1

t
=

s

2

+ 2 −
1

t
≤ s .

The final transition holds when s ≥ 4. When s < 4, the lower bound of Ω(s) is trivial.
Consider a set of t players {i1, . . . , it } such that |S ′ik | ≤ s for each k ∈ [t]. Suppose that each such

player ik adds s − |S ′ik | unique elements to S ′ik and creates a set Sik with |Sik | = s . The number of

unique elements required is at most st . Hence, the total number of elements used in sets Si1 , . . . , Sit
is at mostm′ + st = (3/2)st ≤ m. In other words, these sets can be created using them-element

universe of FDISJm,s,t . Further, it is easy to check that sets Si1 , . . . , Sit are pairwise disjoint (resp.
pairwise uniquely intersecting) if and only if sets S ′

1
, . . . , S ′t ′ are pairwise disjoint (resp. pairwise

uniquely intersecting). Thus, (Si1 , . . . , Sit ) is a valid instance of FDISJm,s,t and has the same solution

as the instance (S ′
1
, . . . , S ′t ′) of DISJm′,t ′ .
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Our goal is to construct a 2δ -error protocol Π′
for DISJm′,t ′ that solves (S

′
1
, . . . , S ′t ′) by effectively

running the given δ -error protocol Π for FDISJm,s,t on (S ′i1 , . . . , S
′
it ). We could ask each player i

to report a single bit indicating whether |S ′i | ≤ s , determine t players for which this holds, and

then run Π on them. However, this would add a t ′-bit overhead. Instead, we would like to bound

the overhead in terms of the communication cost of Π, denoted |Π |, which could be significantly

smaller.

This is achieved as follows. We first order the players according to a uniformly random permuta-

tion σ . Then, we simulate Π. Every time Π wants to interact with a new player, we ask players that

we have not interacted with so far, in the order in which they appear in σ , whether their sets have
size at most s , until we find one such player. Then, we let Π interact with this player. Protocol Π′

terminates naturally when protocol Π terminates (and returns the same answer), but terminates

abruptly if, at any point, it has interacted with more than 2|Π |/δ players (and returns an arbitrary

answer).

Note that |Π | is also an upper bound with the number of players that Π needs to interact with.

Let X be the smallest index such that there are at least |Π | players having sets of size at most s
among the first X players in σ . Then, because at least half of the players have sets of size at most

s , we have E[X ] ≤ 2 · |Π |. Due to Markov’s inequality, we have that Pr[X > 2|Π |/δ ] ≤ δ . Hence,
the probability that Π′

terminates abruptly is at most δ . When it does not terminate abruptly, it

returns the wrong answer with probability at most δ (as Π is a δ -error protocol). Hence, due to the

union bound, we conclude that Π′
is a 2δ -error protocol for DISJm′,t ′ .

Finally, we have that |Π′ | ≤ 2|Π |/δ + |Π | = |Π |(1 + 2/δ ). When δ is sufficiently small, Grone-

meier [30] showed that |Π′ | ≥ R2δ (DISJm′,t ′) = Ω(m′/t ′) = Ω(s). Hence, we have that |Π | = Ω(s).
Since this holds for every δ -error protocol Π for FDISJm,s,t , we have Rδ (FDISJm,s,t ) = Ω(s), as
desired. �
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