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A B S T R A C T

The purpose of this study is to investigate and determine the relationship between occupants’ thermal sa-
tisfaction and physiological responses in an office environment, and to estimate their thermal satisfaction level
via human physiological signals. This study adapted the heart rate and seven local body skin temperatures as
physiological signals, as well as human factors (gender, age, BMI), to determine establish a thermal satisfaction
prediction model by combining human factors and physiological signals. The results revealed significant cor-
relations between overall thermal satisfaction levels and local body skin temperatures, as well as heart rates. The
heart rates showed a negative correlation with overall thermal satisfaction, and the skin temperature of the
forehead, arm, wrist (back and front), chest, and belly also revealed a significant correlation with the thermal
satisfaction levels of the study participants. This study also determined the order and priority of local skin
temperatures (as well as gender and BMI) by their impact on thermal satisfaction. Considering all human
physiological factors and practical application of the results, the local skin temperatures of the forehead, wrist
(back), and gender demonstrated 88.52% accuracy for estimating thermal satisfaction, which provided sig-
nificant validation for practical use of this procedure.

1. Introduction

In modern daily life, people spend 87% of their time indoors [1], so
architects and engineers have tried to achieve indoor environmental
satisfaction for building users, while minimizing building energy con-
sumption. Thermal comfort is defined as ‘the condition of mind that
expresses satisfaction with the thermal environment’ [2]. Many modern
buildings use mechanical systems to maintain an acceptable indoor
thermal environment based on an existing thermal comfort model, such
as ASHRAE's Predictive Mean Vote (PMV) [3]. These thermal comfort
models are based on pre-defined equations or empirically verified re-
commendations, which rely on aggregated thermal perceptions of an
occupant group [4].

However, these models rarely consider individual preferences or
physiological factors (such as age and gender), that have been con-
sidered to be significant factors for thermal sensation [5–9]. Therefore,
the thermal dissatisfaction of office occupants in the United States ap-
peared higher than 60%, even though indoor temperatures were
maintained within a prescribed comfort range [10–12]. In addition, this
uniform control of indoor thermal environment did not just fail to
provide a comfortable thermal environment for study participants, but

it also consumed a large amount of energy [13]. Moon revealed that
PMV model-based control systems provided too much heating or
cooling due to their technical features, which resulted in over-perfor-
mance of the building's systems [14].

To overcome these issues, recent studies have approached micro-
scale control systems, considering individual controls [15–20]. Goyal
et al. [21] investigated multiple algorithms and performance through
simulation studies. In the result, they showed that the occupancy-based
control algorithm achieved significant energy savings over a conven-
tional temperature control algorithm. Other researchers also reported
significant HVAC energy savings, from 4% to 75%, through individual
thermal environmental control settings [15–20,22,23]. Gupta et al.
[24] investigated an occupant feedback-based temperature control
system, and indicated the possibility of an optimum temperature set-
ting, while minimizing a building's energy consumption as well as
maintaining thermal comfort through a mechanical system. Murakami
[16] studied the on-line control system by using input from occupants,
and showed a 20% HVAC energy savings over that of a conventional
thermostat setting. Vesely and Zeiler [25] also investigated persona-
lized thermal environmental conditioning to optimize thermal comfort
and energy efficiency. They revealed that the proposed system

https://doi.org/10.1016/j.buildenv.2019.01.007
Received 30 September 2018; Received in revised form 24 December 2018; Accepted 5 January 2019

∗ Corresponding author.
E-mail address: joonhoch@usc.edu (J.-H. Choi).

Building and Environment 150 (2019) 206–218

Available online 11 January 2019
0360-1323/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2019.01.007
https://doi.org/10.1016/j.buildenv.2019.01.007
mailto:joonhoch@usc.edu
https://doi.org/10.1016/j.buildenv.2019.01.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2019.01.007&domain=pdf


prevented over-cooling or excessive heating, and saved up to 60% in
energy consumption for the HVAC system, while successfully main-
tained an acceptable thermal comfort level for occupants.

However, because it may not be practical for building occupants to

input their thermal information or satisfaction into the system every
time, some researchers have investigated the thermal comfort predic-
tion model that is based on the physiological signals of an occupant
[26–30]. These prediction models rely on the principle that the phy-
siological signals could be correlated with thermal comfort/sensations
[29,31]. However, it is difficult to assess an occupant's thermal comfort
in real-time, based on human physiological signals, due to the sub-
jective nature of thermal comfort and various relevant human factors.
On the contrary, advanced modern sensors and analysis algorithms,
such as machine-learning, provide various possibilities, and recent re-
searchers have approached the problem from this perspective.

Zhou et al. [32] studied three different thermal sensation models to
predict an individual's thermal sensation, via monitoring skin tem-
peratures, and suggested the most effective one. Feng et al. revealed the
impact of air supply on thermal comfort by using a personal nozzle
system based on skin temperature monitoring, as well as a thermal
sensation survey [33]. They reported the most effective local body spots
for cooling, and suggested the ideal position of the nozzles. Chaudhuri
et al. [34] also investigated a thermal comfort prediction model, based
on normalized skin temperature. They presented an estimation model
of the thermal state with 87% accuracy via local skin temperature and
its gradient. Wu et al. [35] studied local body skin temperatures, fo-
cusing on the upper extremities to assess thermal comfort in office
buildings. The results revealed that upper extremity skin temperatures
satisfactorily predicted thermal sensations as well as assessing thermal
comfort. Additionally, Choi and Yeom [36] investigated local body skin
temperature as a function of whole body thermal sensation prediction
model. This study adopted seven local body skin temperatures, and
revealed the best combination of local body segments for predicting a
whole body thermal sensation.

Although these recent studies considered human physiological sig-
nals to predict an individual's thermal comfort, much research focused
on a thermal sensation prediction model, and a very limited number of
studies investigated the direct relationship between physiological re-
sponses and thermal satisfaction. Also, many studies used correlation

Fig. 1. Research flow including experimental procedures.

Table 1
Demographic information (Number of participants).

Underweight Normal Weight Over weight Sub-total

Male 3 5 2 10
Female 2 4 – 6
Total 5 9 2 16

Fig. 2. Local body spots for measurement.

Table 2
Thermal satisfaction questionnaire using the Likert 7-Point Scale.

-3 −2 −1 0 1 2 3

Very Dissatisfied Dissatisfied A little Dissatisfied Neutral A little Satisfied Satisfied Very Satisfied

Fig. 3. Experiment chamber floor plan.
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analysis to consider a single local body area, rather than a combination
of multiple areas. Furthermore, some studies did not consider human
factors (such as gender, age, or body mass index (BMI)) that have been
reported to have a significant impact on thermal satisfaction.

Therefore, the purpose of this study is to investigate the re-
lationship between an individual's thermal satisfaction level and

physiological responses in an office environment, and to accurately
estimate the thermal satisfaction of each user via human physiolo-
gical signals. This study adapted the heart rate and seven local body
skin temperatures as a physiological signal, as well as human factors
(e.g., gender, age, BMI), to develop a thermal satisfaction prediction
model based on a combination of human factors and physiological
signals.

2. Methodology

2.1. Experimental procedure

A series of human subject experiments were conducted to collect
local body skin temperatures and heart rates. The experiments were
approved by the IRB (Institutional Review Board: UP-16-00104) of the
University of Southern California (USC), and a consent form was signed
and collected from each participant before the experiment began. The
overall research flow is illustrated in Fig. 1.

The volunteers were mostly students at USC, with a total of 18
recruited to participate (7 females and 11 males). After an initial
analysis, two datasets were excluded from the results due to sensor
damages, and the remaining 16 datasets were processed for analysis in
this study.

The average age of the participants was 24.6 (Standard Deviation
(SD): 2.64), and the average BMI was 20.59 (SD: 3.50). Each

Fig. 4. Monitoring interface of DAQ system.

Table 3
Sensor specifications.

Sensor Model Specification

Air temperature LM35DT Accuracy:± 0.5 °C (at 25 °C), Resolution: 0.01 °C, Sensing range: -55 °C∼150 °C
Air velocity Testo 405-V2 Accuracy:± 0.1 m/s + 5%, Resolution: 0.01 m/s
CO2 Telarire 6004 Accuracy:± 40 ppm
Radiant temperature OS-542 Accuracy:± 2 °C, Resolution: 0.1 °C
Relative humidity HIH-4000-003 Accuracy: 3.5%, Resolution: 0.5%
Heart rate HER-BTA Transmission frequency: 5 kHz ± 10%
Skin temperature SBS-BTA Accuracy:± 0.5 °C, Resolution: 0.03 °C
Data acquisition board 1 Sensor DAQ Resolution: 13 bit, Sampling rate: 10 kS/s
Data acquisition board 2 NI-DAQ 6008 Resolution: 12 bit, Sampling rate: 10 kS/s

Fig. 5. Interval plot of the indoor temperature by thermal satisfaction level.
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participant's physical condition was normal without any specific health
issues. Each participant was asked to wear simple clothes for Clo level
0.55 or 0.59 (a long sleeve T-shirt: 0.25, long pants: 0.25, socks: 0.02,
panties: 0.03, bra: 0.04). Basic physical information of each participant
(such as age, weight, and height) was surveyed, and the body mass
index (BMI) was calculated. Basic demographic information is sum-
marized in Table 1.

To stabilize his or her physiological condition before the experi-
ment started, a participant remained for 30min in a waiting area
where the temperature was maintained at 24 °C by the central HVAC
system of the building. Then, the participant moved into the en-
vironmental chamber for testing, where the initial temperature (con-
trolled by the independent HVAC system) started at 20 °C, and a
thermal satisfaction survey was administered, and skin temperature,
heart rate, and indoor environmental data were collected. The indoor
temperature was increased from 20 °C to 30 °C. The temperature
change rate was 1 °C per 10 min and the thermal satisfaction survey
interval was synchronized with it. This interval of temperature
change, that could be perceived by a participant, was based on pre-
vious human subject research [7,12,37]. Seven local body areas, from
which local body skin temperatures were to be collected, were chosen
based on the 16 most frequently selected thermoregulation models
[37,38]. The local body areas selected were the forehead, neck (back
of the neck), back (upper part), chest, waist, arm (upper arm), and
belly (illustrated in Fig. 2).

During the experiment, a participant sat on a chair by a desk, while
moderate music played. A general office chair, with polyester mesh
support (back and bottom), was used to minimize any possible insula-
tion effect of the chair on a participant's thermal satisfaction. A parti-
cipant stayed in the experiment room for 100min, while the location
and posture of the participant were maintained as uniform as possible.
Once the experiment started, participants were asked to mark their
thermal satisfaction on a check list every 10min. The Likert 7-points
scale was used for the thermal satisfaction check list (Table 2), which
was based on the ASHRAE PMV survey [3]. The indoor environmental

data, local body skin temperatures, and heart rates were constantly
recorded every 10 s.

2.2. Experiment chamber

The experiment was conducted in the experiment chamber at USC,
which consisted of a 2.9 m×2.9 m experiment area and
2.9 m×1.5 m system space (Fig. 3). An independent HVAC system
was used to control the air supply, and the air velocity was maintained
lower than 0.2 m/s, based on the ASHRAE recommendation [3]. A
desk and chair were located in the center of the experiment area, and
data collection equipment was also installed. The indoor temperatures
of the experiment area were monitored at four different heights
(0.1 m, 0.6 m, 1.1 m and 1.7 m), and the result,1.1 m, was used for an
analysis, that considered the height of the participant's head/neck in a
sitting position. The relative humidity (RH) and CO2 density were
monitored to check any irregularity in the experiment area, based on
ASHRAE standard 62.1 [39]. During the experiment, the RH was
maintained at 35%, and the CO2 density was between 700 and
900 ppm. Air nozzles were located at each side of the desk on the floor,
and were controlled to minimize the air velocity around the desk and
chair. During the experiment, the measured air velocity was
0.1 ± 0.05m/s at the height of the floor level, 0.6 m, 1.2 m, and
1.6 m. This was an acceptable range based on ASHRAE standard 55
(maximum 0.2 m/s) [3].

2.3. Equipment

Labview-based Data Acquisition (DAQ) system was installed and
used to collect physiological data on participants, as well as indoor
environmental data (Fig. 4). The DAQ system was installed in a desktop
computer, and recorded the indoor temperature, RH, CO2 density, air
velocity, radiant temperatures, heart rates and local body skin tem-
peratures. Specifications for each monitoring sensor are summarized in
Table 3.

2.4. Data analysis

The collected data was analyzed using multiple statistical methods,
such as the two-sample T-test, Anova, correlation analysis, and stepwise
regression analysis. Minitab and Microsoft Excel were the main tools
used for data analysis, and the statistical analysis were conducted at a
95% significant level. Additionally, WEKA (data-mining software) was
adopted to generate a decision tree model (J48) and to determine the
accuracy of estimates.

2.4.1. WEKA [40]
WEKA is an open source data-mining software, that was developed

by the machine learning research group at the University of Waikato in
New Zealand. This program includes collections of machine-learning
algorithms for data mining tasks, such as data pre-processing, classifi-
cation, regression, clustering, association rules, and visualization.

2.4.2. J48 decision tree model
The distribution of data can be easily understood with a decision

Fig. 6. Interval plot of the heart rate by thermal satisfaction level (95% CI for
the mean).

Table 4
Descriptive statistics of the skin temperatures.

Forehead Arm Wrist (Back) Wrist (Front) Chest Belly Waist Back Neck

Mean 35.646 33.919 33.108 33.275 35.051 34.426 34.890 34.722 34.712
SD 1.424 1.138 2.299 2.322 0.949 1.562 1.578 1.717 1.173
Max 37.181 36.290 37.033 38.853 38.853 36.207 36.885 36.306 36.468
Min 29.115 30.113 27.322 29.610 29.610 26.544 22.636 26.762 27.289
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tree algorithm [41]. A decision tree algorithm generates principles to
predict a variable target. The J48 decision tree is the implementation of
the algorithm ID3 (Iterative Dichotomiser 3), which was developed by
the WEKA project team. The objective of the J48 algorithm is to nor-
malize a decision tree model until it reaches the flexibility and accuracy
as an equilibrium [12].

2.4.3. Stepwise regression
Stepwise regression can be applied to build a model by fitting re-

gression models in which the choice of predictive variables is de-
termined by automatic procedures [42]. The process of stepwise re-
gression systematically adds the most significant variable, or removes
the least significant one, in each step.

3. Results

3.1. Comparison of physiological responses and thermal satisfaction

Fig. 5 illustrates a box plot of the indoor temperature at each
thermal satisfaction level. After an initial analysis, the data at thermal
satisfaction level −3 (very dissatisfied) and 3 (very satisfied) were too
small in number to be statistically significant; therefore those were
excluded from the analyses for this study. The average indoor tem-
perature decreases from the thermal satisfaction level −2 to 1, and the
average value did not show any significant differences in the thermal
satisfaction levels of 0, 1, and 2 (Fig. 5). However, it is clear that
thermal satisfaction levels were prone to increase as indoor tempera-
tures decreased. A correlation analysis between indoor temperature and
thermal satisfaction level also showed a statistically significant negative
correlation (Pearson R: -0.369, p < 0.001).

This study focuses on two human physiological signals, those
from the heart rate and the local body skin temperature, that re-
spond to surrounding ambient temperature changes. Fig. 6 illus-
trates the interval plot of the heart rate by overall thermal sa-
tisfaction level. It is also clear that the heart rate decreased as the
overall thermal satisfaction level increased from level −1 to 2, al-
though the heart rate at thermal satisfaction level −2 was a bit

lower than the one at level −1. The Spearman R value for heart rate
and overall thermal satisfaction level appeared at −0.323, with a
significant p-value (p < 0.001). Therefore, it is safe to say that the
overall thermal satisfaction level is negatively correlated with the
heart rate.

Each local body spot is a different size and varing sensitivity that
exchanges heat between the human body and ambient air. Since these
local body spots are affected by the surrounding ambient air tempera-
ture, this study analyzed the overall thermal satisfaction level as a
function of each individual local body area. Table 4 summarizes de-
scriptive statistics of aggregated skin temperatures at the nine local
body spots, that were monitored during the experiment. The average
skin temperature of each local body spot ranged from 33 °C to 36 °C,
while the indoor temperature changed from 20 °C to 30 °C. The fore-
head skin temperature was relatively higher than that of the rest of the
body parts, while the skin temperatures of the arm and both wrists
(back & front) were lower than the others. Based on the standard de-
viation (SD), the chest showed the most stable skin temperature var-
iation, while both back and front wrists showed relatively significant
large temperature variations.

Fig. 7 illustrates the box plot of the skin temperature of every par-
ticipant's wrist (back), with the median value (horizontal line in each
box) as a sample. Each vertical line and box indicate a quartile of the
distributed data. It is clear that each participant generated various skin
temperature levels, even though all of them were exposed to the same
indoor temperature range. Other local body spots of each participant
also showed similar temperature variations, without any specific pat-
tern or tendency.

Table 5 summarizes similar results to those illustrated in Fig. 7
and Table 4, which represent the correlation between local skin
temperatures and overall thermal satisfaction level. This reveals that
most local body spots (except the waist, back, and neck) have a ne-
gative correlation with the overall thermal satisfaction level. Among
the physiological responses, the heart rate and local skin tempera-
tures of the belly and arm showed strong correlation with thermal
satisfaction, respectively, while the forehead, chest, waist, and neck
showed relatively weak correlation. Fig. 8 illustrates the interval
plots of the local skin temperature distribution at each thermal sa-
tisfaction level, which showed that the overall thermal satisfaction
level increased when the local skin temperature decreased. As illu-
strated, the arm, wrist (back and front), and belly showed a relatively
clear declining pattern, while the thermal satisfaction levels of the
chest, waist, back, and neck increased. Also, the local skin tem-
perature variations of the wrist (back), wrist (front), and the belly
were within 2 °C, respectively, which was significantly larger than
that of the other local body areas.

3.2. Comparison of physiological responses and thermal satisfaction by
gender

Various studies have described the influence of gender differences
on thermal perceptions [43,44]; the monitoring results of this study
also verified that there are significant differences in the thermal sa-
tisfaction and physiological responses of males and females in the same
thermal environment. Table 6 shows that the average thermal sa-
tisfaction level of females is significantly higher than that of males, and

Fig. 7. Box plot of wrist (back) skin temperatures by individual participant.

Table 5
Correlation analysis of local skin temperatures and thermal satisfaction.

Fore head Arm Wrist (Back) Wrist (Front) Chest Belly Waist Back Neck

Spearman −0.172 −0.259 −0.165 −0.186 −0.130 −0.334 0.047 0.098 0.065
P-value P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.012 P < 0.001 0.001
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Fig. 8. Interval plot of the local skin temperatures by thermal satisfaction levels (95% CI for the mean).
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the heart rate was also clearly different in that the average for males
was higher than that for females. The variations in the thermal sa-
tisfaction levels of the male group and the female group were not sig-
nificantly different, while the average heart rates of the females were
more stable than those of the males.

Table 7 demonstrates the heart rate difference, by gender, at each
thermal satisfaction level. It shows that there is an overall difference
in the thermal satisfaction perceptions of males and those of females.
The heart rates of the female group decreased consistently while the
thermal satisfaction level was getting higher, but the heart rate of the
male group did not show any significant pattern. It was also clear that
the heart rates of the male group were generally higher than those of
the female group at every thermal satisfaction level, except −2, with a
significant p-value. Additionally, the correlation analysis between the
heart rate and thermal satisfaction level showed that the Pearson R
was −0.378 and the Spearman R value was −0.380 for the female
group (p < 0.001), respectively, and −0.073 (Pearson R) and
−0.048 (Spearman R) for the male group (p < 0.005), respectively.
This demonstrated that the correlation between the heart rate and
thermal satisfaction level of the females was stronger than those of the
males.

The local skin temperatures also showed a correlation between the
gender groups. Table 8 summarizes the correlation analysis results
between the local skin temperature and thermal satisfaction, by gender
difference. In the male group, every local skin temperature was nega-
tively correlated with the thermal satisfaction level (p < 0.01), while
the female group showed negative correlation at five local body areas
and positive correlation at four other areas. Also, the arm and back skin
temperatures in the female group were not significantly correlated with

the thermal satisfaction levels (p > 0.05). It is also interesting that the
female group had a stronger correlation with the thermal satisfaction
levels than the male group when the results were significant, except for
the wrist (front).

Fig. 9 (See also Appendix A) illustrates the local skin temperature
difference, by gender, at each thermal satisfaction level. In general,
the forehead, wrist (back), wrist (front), and neck showed consistent
temperature differences between the male group and the female
group, and the thermal satisfaction level at these local body spots
increased when the skin temperature decreased. The local skin tem-
peratures of the male group were higher than those of the female
group at the forehead, chest, back, and neck, while the female group
showed higher local skin temperatures than the male group at the
wrist (back), wrist (front), and belly. The arm and waist did not show
a clear pattern of difference.

3.3. Comparison of physiological responses and thermal satisfaction by BMI

The Body Mass Index (BMI) has been used as a significant phy-
siological factor for thermal sensation [45,46]. The World Health
Organization (WHO) classifies BMI in four levels– underweight (less
than 18.5), normal weight (18.5–24.9), overweight (25–29.9), and
obese (over 30). In this study, two participants were overweight, nine
were normal, and five were underweight. Considering statistical sig-
nificance and comparative analysis, the participants were divided into
two groups; high BMI group (eight participants, BMI > 20) and low
BMI group (eight participants, BMI<=20). The initial analysis re-
sults demonstrated clear differences in the BMI group. In Table 9, the
aggregated thermal satisfaction level appeared higher in the low BMI
group, than in the high BMI group, with a significant p-value, while
the heart rates of the high BMI group were higher than those of the
low BMI group. A correlation analysis of the aggregated data also
showed significant differences by BMI group. The correlation analysis
results between the heart rate and thermal satisfaction level in the
high BMI group were −0.070 (Spearman, p < 0.05) and −0.099
(Pearson, p < 0.001), while the low BMI group showed −0.442
(Spearman, p < 0.001) and −0.435 (Pearson, p < 0.001). This de-
monstrated that the heart rates and overall thermal satisfaction levels
were more correlated in the low BMI group than in the high BMI
group.

The heart rate differences by gender at each thermal satisfaction
level are demonstrated in Table 10. It is clear that the heart rate dif-
ference between the high and low BMI groups increased as the sa-
tisfaction level or dissatisfaction level increased. The high BMI group
showed higher heart rates than the low BMI group did at satisfaction
levels −1, 1, and 2, while the low BMI group had higher heart rates at
thermal satisfaction levels −1 and 1. Therefore, heart rate differences
by BMI group are significant at every thermal satisfaction level, even
though it does not show a consistent pattern.

The results of an analysis of the correlation between local skin
temperatures and thermal satisfaction are shown in Table 11. In gen-
eral, the high BMI group showed more significant correlation than did
the low BMI group, based on the p-value of each local body spot. In the
high BMI group, the wrist (back) and chest showed a relatively higher

Table 6
Descriptive analysis and T-test results of thermal satisfaction difference by
gender.

Gender Mean SD Ta Dfb pc

Thermal
Satisfaction

Female 0.7668 1.1761 24.24 2486 P < 0.001
Male −0.3383 1.2277

Heart Rate Female 74.893 8.758 −28.57 2481 P < 0.001
Male 86.697 11.968

a t-value in T-test.
b Degree of freedom.
c p-value (calculated probability).

Table 7
T-test results of the heart rate differences by gender at each thermal satisfaction
level.

−2 −1 0 1 2

Mean Female 89.6 75.5 82.35 74.90 71.08
Male 84.1 89.8 84.6 87.67 82.51

Δ Mean
(Female
– male)

5.48 −14.30 −2.287 −12.769 −11.430

P-value 0.047 P < 0.001 0.013 P < 0.001 P < 0.001

Table 8
Comparison of correlation analysis results for local skin temperatures and thermal satisfaction by gender difference.

Fore head Arm Wrist (Back) Wrist (Front) Chest Belly Waist Back Neck

Female Spearman −0.328 −0.059 0.305 0.217 −0.368 −0.341 0.205 0.004 −0.294
P-value P < 0.001 0.054 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.893 P < 0.001

Male Spearman −0.303 −0.230 −0.236 −0.251 −0.198 −0.205 −0.171 −0.066 −0.191
P-value P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.006 P < 0.001
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Fig. 9. Interval plot of local skin temperatures by thermal satisfaction level and gender (95% CI for the mean).
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correlation value than the other local body spots did, while the belly
was the highest in the low BMI group. Between the two groups, the high
BMI group showed higher correlation than the low BMI group did at the
wrist (back), wrist (front), chest, and back, and the low BMI group had
relatively stronger correlation than the high BMI group did at the
forehead, arm, belly, waist, and neck.

Fig. 10 (See also Appendix B) demonstrate the local skin tempera-
ture differences by BMI group at each thermal satisfaction level. It is
interesting that both wrists (back and front) showed significantly higher
local skin temperatures in the high BMI group than the low BMI group
did, while the other local skin temperatures generally showed the op-
posite results, with consideration of a p-value. The overall thermal sa-
tisfaction level generally increased when the local skin temperature was
decreasing, except for the waist and back.

4. Discussion

As described in the “3. Results” chapter, the heart rates and local
skin temperatures showed diverse results, depending on the local body
areas as well as human factors (such as gender and BMI) involved.
Through a series of analyses, this study verified some patterns from
these physiological responses, which showed a potential for predicting
individual thermal satisfaction levels based on selected skin tem-
peratures and heart rate, as well as human factors. Therefore, an in-
depth analysis was conducted and described in this chapter to quantify
the contributions and priorities of the selected local skin tempera-
tures, heart rate, and human factors on overall thermal satisfaction
levels.

4.1. Stepwise regression analysis

Table 12 demonstrates results of the stepwise analysis of the heart
rate and local skin temperatures on the overall thermal satisfaction
level. Among the physiological responses, the heart rate had the most
significant influence on thermal satisfaction (R-sq: 21.16%), and the
arm was the second of all, but the first among local skin temperatures.
The heart rate and arm were validated for 30.23% on the thermal sa-
tisfaction estimation, and the back and forehead also showed higher
accountability than the other local body areas did. A combination of all
variables showed 52.00% in the accountability of the overall thermal
satisfaction.

Similarly, this study conducted an additional stepwise analysis, by
gender and BMI group; a summarized R-sq is shown in Table 13.
Overall, the analysis results by gender group or BMI group demon-
strated a higher R-sq value than the general results did, which verified
the significant influence of the human factor on thermal satisfaction.
The cumulative results for the high BMI group showed the highest R-sq
value of all (70.00%), while the female group demonstrated the lowest
accountability among the human factors (64.17%). The priority of the
physiological responses varied by the human factor. The heart rate
appeared three times for the highest accountability in all participants,
in the female group, and in the low BMI group, while the arm, waist,
and chest generally showed relatively high validity. All of the partici-
pating group (without the human factor) demonstrated the lowest ac-
countability of all (52%); thus, it was clear that the human factor
should be included in a thermal satisfaction prediction model. Ad-
ditionally, it is safe to say that the heart rate, arm, chest, and waist have
relatively high accountability for thermal satisfaction prediction.

4.2. Thermal satisfaction prediction model

In the stepwise regression analysis, accountability for the thermal
satisfaction prediction was 52–70%, depending on each group. The
thermal satisfaction survey data is a discrete number with an interval (7
point scale), while physical data (heart rate and local skin tempera-
tures) are continuous type. These different characteristics in data can be
a reason for the relatively low accountability in Tables 12 and 13.
Therefore, this study also used J48 algorithm to generate a classifica-
tion model that accepts thermal satisfaction results as a nominal data.
All attributes of physiological signals (heart rate and local skin tem-
peratures), as well as human factors (gender and BMI group), were
included in this analysis. The accuracy was estimated by 10-fold cross
validation, and the results are demonstrated in Table 14 (See also
Appendix C).

Generally, the local skin temperatures demonstrated higher accu-
racy than the human factors did. The accuracy of every local skin
temperature appeared higher than 40%, while all human factors
showed lower accuracy than all of the skin temperatures did. Among
the skin temperatures, the forehead exhibited the highest accuracy as a
single attribute, and the wrist (back) was second. Every human factor
showed significantly lower accuracy than local skin temperatures did,
which was around 35%. Additionally, combining these attributes sig-
nificantly increased the accuracy. Among numerous combinations of

Table 9
Descriptive analysis and T-test results of thermal satisfaction differences by
BMI.

BMI Mean SD Ta Dfb pc

Thermal satisfaction High −0.3421 1.2715 17.68 2840 P < 0.001
Low 0.4865 1.2427

Heart Rate High 85.804 11.876 −15.92 2519 P < 0.001
Low 78.397 11.507

a t-value in T-test.
b Degree of freedom.
c p-value (calculated probability).

Table 10
T-test results of heart rate differences by gender at each thermal satisfaction
level.

−2 −1 0 1 2

Mean High
BMI

81.9 91.4 82.4 85.0 82.51

Low
BMI

100.1 79.9 85.7 78.59 71.08

Δ Mean (High –
Low)

−18.15 11.52 −3.37 6.41 −10.31

P-value P < 0.001 P < 0.001 0.002 P < 0.001 P < 0.001

Table 11
Correlation analysis of the local skin temperature and thermal satisfaction (Spearman Rho).

Fore head Arm Wrist (Back) Wrist (Front) Chest Belly Waist Back Neck

High BMI Spearman −0.174 −0.189 −0.290 −0.198 −0.221 −0.006 −0.090 0.059 −0.127
P-value P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.835* 0.001 0.028 P < 0.001

Low BMI Spearman −0.222 −0.306 0.062 −0.040 −0.090 −0.570 0.104 0.035 0.176
P-value P < 0.001 P < 0.001 0.017 0.120* 0.001 P < 0.001 P < 0.001 0.172* P < 0.001
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Fig. 10. Interval plot of local skin temperatures by thermal satisfaction level and BMI group (95% CI for the mean).

J.-H. Choi, D. Yeom Building and Environment 150 (2019) 206–218

215



two attributes, a combination of the forehead and wrist (back) skin
temperatures (the first and second highest single attribute) showed the
highest accuracy at 83.37%. When the three highest attributes were
combined, the forehead, wrist (back), and back, the accuracy increased
to 91.36%. Multiple attributes were also combined. The increment of
accuracy increased to 95% when five attributes were combined, but the
accuracy started to decrease when six were combined, so a combination
of five attributes was considered to be the maximum number.

Additionally, it is interesting to see that the human factors showed
low influence on the overall accuracy in this analysis, although a sig-
nificant influence was demonstrated in the previous stepwise analysis.
This may be because the stepwise regression model was based on sta-
tistical results, while 10-cross validation focused on the generalization
of the prediction model. Also, the number of participants may not be
large enough to generate a significant variation that is statistically
stronger. Among the human factors, gender showed the largest influ-
ence on the accuracy of the thermal satisfaction prediction. Even
though the influence of the human factors was small, gender and BMI
had significant contributions to the thermal satisfaction prediction
when it was combined with selected skin temperatures. Gender does not
require other measurement tools, and too many attributes can interfere
with the data.

Considering these factors, as well as practical application, a pre-
diction model was established for this study (Appendix D), which
adopted the forehead, wrist (back), and gender as key factors. It was
based on a classifier model (J48 algorithm), and the estimation was
verified using the 10-cross validation process, which is common in the
data informatics area. The classification model in Appendix D estimates
an occupant's thermal comfort level as a function of selected physio-
logical responses. As shown in Appendix D, gender was the most in-
fluential variable in this thermal satisfaction estimation model, and its
thermal satisfaction predictions were 88.52% accurate.

5. Conclusion

This study investigated the relationship between an individual's
thermal satisfaction and human physiological responses to estimates an
overall thermal satisfaction level as a function of human physiological
signals (such as local body skin temperature and heart rate, as well as
gender and BMI) via an experiment using 16 participants in the en-
vironment chamber.

This study revealed significant correlations between overall thermal
satisfaction levels and local body skin temperatures, as well as the heart
rates. The heart rate showed a negative correlation with overall thermal
satisfaction, while skin temperatures of the forehead, arm, wrist (back
and front), chest, and belly also revealed a significant correlation with
the study participants’ thermal satisfaction levels. In addition, this
study also determined the order and priority of local skin temperatures
(as well as gender and BMI) by their impact on thermal satisfaction
perceptions. Considering all human physiological factors and practical
application of the results, the local skin temperatures of the forehead,
wrist (back), and gender demonstrated an 88.52% accuracy rate for
thermal satisfaction estimations, which provides significant validation
for their practical use.

The results of this study can be implemented in a building's indoor
thermal environmental control system, which requires user-centric,
micro-scale, and individual control these days. The technical evidence
of this study has high potential as support for a thermal environmental
system controlled by an individual using a wearable monitoring device
(such as a smart band or smart watch). It will contribute to providing
better indoor environmental quality while the number of participants
was 16, in this study, which demonstrated a statistically significant
result. However, a larger number of sample sizes will increase the va-
lidity and accuracy of those results, especially with regard to the dif-
ferences posed by gender and BMI. Additionally, other human factors
(such as age and ethnicity) should be considered for a future study asTa
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factors that may potentially affect the classification model. Also, this
study sets an experiment thermal condition from 20 °C to 30 °C, but a
broader or even more extreme thermal condition should be investigated
to help understand the relationship between physiological responses
and an individual's thermal satisfaction. Finally, subjective factors, such
as personal thermal preference, aesthetical preference, and cultural
background, could affect thermal satisfaction perceptions, so these
factors should be considered in a future study as well.
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Table 13
Stepwise analysis results (Cumulative R-sq) considering human factors.

All participants Female Male High BMI Low BMI

Heart rate 21.16 Heart rate 30.80 Arm 21.30 Forehead 31.28 Heart Rate 29.62

Arm 30.23 Chest 39.93 Waist 36.47 Chest 52.73 Belly 39.61
Waist 33.42 Waist 45.92 Neck 51.07 Waist 56.63 Arm 48.03
Forehead 39.90 Back 48.94 Wrist (Back) 54.93 Back 61.18 Neck 53.41
Back 48.47 Wrist (Back) 54.67 Forehead 56.94 Wrist (Front) 64.90 Back 58.18
Belly 51.28 Forehead 58.75 Back 64.80 Arm 69.45 Wrist (Back) 64.12
Chest 51.83 Belly 60.26 Chest 66.71 Belly 69.92 Chest 65.16
Neck 52 Arm 62.63 Hear rate 67.32 Heart Rate 70.00 Waist 66.06

Neck 63.45 Wrist (Front) 67.40 Wrist (Front) 67.89
Wrist (Front) 64.17 Forehead 68.70

Table 14
10-cross validation results of thermal satisfaction estimation accuracy.

# Attribute Accuracy (%)

1–1 Forehead 51.24
1–2 Wrist (Back) 50.69
1–3 Back 47.72
1–4 Waist 47.27
1–5 Arm 46.92
1–6 Wrist (Front) 45.23
1–7 Chest 44.36
1–8 Belly 43.54
1–9 Neck 43.22
1–10 Heart Rate 36.79
1–11 Gender 35.72
1–12 BMI 34.47
2–1 Forehead + Wrist (Back) 83.37
2–2 Forehead + Wrist (Back) + Gender 88.52
2–3 Forehead + Wrist (Back) + BMI 87.24
2–4 Forehead + Wrist (Back) + Heart rate 83.92
2–5 Forehead + Wrist (Back) + Back 91.36
2–6 Forehead + Wrist (Back) + Back + Gender 92.39
2–7 Forehead + Wrist (Back) + Back + Waist 93.26
2–8 Forehead + Wrist (Back) + Back + Waist + Gender 94.81
2–9 Forehead + Wrist (Back) + Back + Waist + Arm 94.81
2–10 Forehead + Wrist

(Back) + Back + Waist + Arm + Gender
95.23

2–11 Forehead + Wrist
(Back) + Back + Waist + Arm + Wrist (Front)

94.57
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