
ar
X

iv
:1

90
7.

02
06

3v
1

 [e
es

s.S
P]

 3
 Ju

l 2
01

9

TinySDR: Low-Power SDR Platform for

Over-the-Air Programmable IoT Testbeds

Mehrdad Hessar
†
, Ali Najafi

†
, Vikram Iyer and Shyamnath Gollakota

University of Washington
†
Co-primary Student Authors

Abstract — Wireless protocol design for IoT networks is

an active area of research which has seen significant inter-

est and developments in recent years. The research commu-

nity is however handicapped by the lack of a flexible, eas-

ily deployable platform for prototyping IoT endpoints that

would allow for ground up protocol development and investi-

gation of how such protocols perform at scale. We introduce

tinySDR, the first software-defined radio platform tailored to

the needs of power-constrained IoT endpoints. TinySDR pro-

vides a standalone, fully programmable low power software-

defined radio solution that can be duty cycled for battery op-

eration like a real IoT endpoint, and more importantly, can be

programmed over the air to allow for large scale deployment.

We present extensive evaluation of our platform showing it

consumes as little as 30 uW of power in sleep mode, which

is 10,000x lower than existing SDR platforms. We present

two case studies by implementing LoRa and BLE beacons

on the platform and achieve sensitivities of -126 dBm and

-94 dBm respectively while consuming 11% and 3% of the

FPGA resources. Finally, using tinySDR, we explore the re-

search question of whether an IoT device can demodulate

concurrent LoRa transmissions in real-time, within its power

and computing constraints.

1 Introduction

Recent years have seen development of numerous wireless

protocols for Internet of Things (IoT) devices. In addition to

longtime standards such as Bluetooth and Zigbee, a number

of new protocols including LoRa, Sigfox, NB-IoT and LTE-

M have been developed that achieve long ranges of more than

a few kilometers. Due to the lack of a de-facto standard, this

space remains an active area of research for both industry and

academia. The rapid advances in this space however present

practical challenges for researchers: each of these protocols

requires a dedicated radio chipset to evaluate, and these pro-

prietary solutions often leave little room for protocol modifi-

Accepted to NSDI 2020.

Figure 1: TinySDR Hardware Platform. It has two antenna ports for

running IoT PHY and MAC protocols at 2.4 GHz and 900 MHz. This image

is the actual size of the platform on printed paper.

cation. The academic community is therefore severely hand-

icapped by the lack of a flexible platform, as even a complex

multi-radio prototype cannot adapt to evaluate new protocols

or even customize existing solutions. The current ecosystem

therefore discourages researchers from investigating the im-

portant questions that arise when scaling up IoT networks,

and more importantly taking a systematic approach to devel-

oping new protocols from the ground up.

Ideally, we would like a large scale IoT network testbed

with the flexibility to run any IoT protocol at the PHY and

MAC layers. Further, since many of these IoT testbeds can

span hundreds of endpoints across a large campus or even

a city, we need the ability to push changes to the PHY

and MAC layers, using simple over-the-air software updates.

This would allow for performance comparisons on a single

testbed to investigate the trade-offs between existing stan-

dards as well as showcase the advantages of an entirely new

custom protocol. Moreover, to make such a system represen-

tative of real-world deployments, individual network nodes

should model the constraints of IoT endpoints. Specifically,

these devices should have appropriate power controls and op-

tions to duty cycle transmissions, have an ultra-low power

sleep mode and also have interfaces to connect sensors. Fi-

nally, the ability to run these endpoints on batteries would

also allow for flexibility of deployment in spaces without ded-

icated power access, or even in mobile scenarios.

Realizing this vision however is challenging with existing

software defined radio (SDR) platforms. Specifically, we re-

1

http://arxiv.org/abs/1907.02063v1

Platform
Sleep
Power

Standalone OTA Cost
Max BW
(MHz)

ADC
(bits)

Frequency Spectrum (MHz) Size (cm)

USRP E310 [7, 16] 2820 mW ✓ ✗ $3000 30.72 12 70∼6000 6.8×13.3

USRP B200mini [6, 12] N/A ✗ ✗ $733 30.72 12 70∼6000 5×8.3

bladeRF 2.0 [1, 16] 717 mW ✓ ✗ $720 30.72 12 47∼6000 6.3×12.7

LimeSDR Mini [2, 3, 24] N/A ✗ ✗ $159 30.72 12 10∼3500 3.1×6.9

PlutoSDR [17] N/A ✗ ✗ $149 20 12 325∼3800 7.9×11.7

µSDR [9, 10, 29] 320 mW ✓ ✗ $150 40 8 2400∼2500 7×14.5

GalioT [5, 62] 350 mW ✓ ✗ $60 14.4 8 0.5∼1766 2.5×7

TinySDR 0.03 mW ✓ ✓ $55 4 13 389.5∼510, 779∼1020, 2400∼2483 3×5

Table 1: Comparison Between Different SDR Platforms. Costs are based on sale prices for commercial products without a public bill of materials (BOM)

and published BOM prices for research prototypes. OTA refers to over-the-air programming capabilities.

quire an SDR for the flexibility of implementing different

PHY protocols; but there is currently no SDR platform that

meets the requirements of IoT endpoints (see Table 1). Exist-

ing SDR systems consume large amounts of power for trans-

mitting data, do not support ultra-low power sleep modes,

require wired infrastructure and often a dedicated computer

and furthermore, are expensive. More importantly, none of

the existing SDR platforms support over-the-air program-

ming to update PHY or MAC protocols. Finally, IoT devices

prioritize power consumption and communication range and

hence use limited radio bandwidth — LoRa, Sigfox, NB-IoT,

LTE-M, Bluetooth and ZigBee use only 500 kHz, 200 Hz,

180 kHz, 1.4 MHz, 2 MHz and 2 MHz respectively. In con-

trast, existing SDR platforms focus on achieving high perfor-

mance in terms of bandwidth because they are tailored to the

needs of gateway devices and not for IoT endpoint devices.

Driven by a need for such a platform in our own research,

we design tinySDR as shown in Fig. 1, the first SDR plat-

form tailored to the needs of IoT endpoints. TinySDR pro-

vides an entirely standalone solution that incorporates a radio

front-end, FPGA and microcontroller for custom processing,

over-the-air FPGA and microcontroller programming capa-

bilities, a microSD card interface for storage, ultra-low power

sleep modes and highly granular power management options

to enable battery-powered operation. It is capable of trans-

mitting and receiving in both the 900 MHz and 2.4 GHz ISM

bands, supports 4 MHz of bandwidth which is sufficient for

most IoT protocols including Bluetooth, Zigbee, LoRa, Sig-

fox, NB-IoT and LTE-M, and can achieve the high sensitiv-

ities of commercial solutions such as LoRa chip [23]. Addi-

tionally it includes multiple analog and digital I/O options

for connecting sensors.

Designing such a SDR platform required addressing multi-

ple systems, architecture, power and engineering challenges:

• Low-power hardware architecture. Achieving a small

form-factor, low-power SDR requires a minimalist design ap-

proach that can satisfy the real-time needs of IoT protocols

and ensure flexibility at the PHY and MAC layers. To do this,

we exploit recent advances in small, low-power microcon-

trollers, FPGAs and flash memory to pick the right compo-

nents for our platform (see §3.1). We use a low-power FPGA

to run the PHY layer while the microcontroller runs the MAC

protocols as well as handles the I/O operations between the

FPGA, radio, memory and sensor interfaces (see §3.2).

• Efficient power management. Achieving highly granu-

lar power management needed for battery-powered operation

and enabling ultra-low power sleep modes requires shutting

down parts of SDR when not in use. This is important for

IoT endpoints that perform duty-cycle operations and require

an ultra-low power sleep mode to achieve a long battery life.

This presents a design tradeoff between the complexity of

toggling the power of each hardware component ON and

OFF, and the cost of additional circuitry to do so. We ad-

dress this challenge in §3.3 and achieve sleep power as low

as 30 µW.

• Over-the-air SDR programming. Enabling a truly scal-

able system requires the ability to update the PHY and MAC

layers on the platform, over-the-air, in a testbed deployment.

This however also introduces the challenge of over-the-air

FPGA and microcontroller programming as well as commu-

nicating these updates robustly to each device in the network

while minimizing power consumption and network utiliza-

tion. We use a dedicated wireless backbone subsystem com-

plete with a MAC protocol and its own flash memory to

program both the microcontroller and FPGA. Additionally

we leverage compression and low-power decompression al-

gorithms to minimize network downtime during the updates

(see §3.4)

Fig. 2 shows the power consumption of the radio module

in tinySDR compared to existing SDR platforms. We evalu-

ate tinySDR’s performance by presenting case studies of two

common protocols: LoRa and BLE beacons, and also evalu-

ate tinySDR in a campus-testbed of 20 devices.

• LoRa modulation and demodulation use 4% and 11% of

the FPGA resources respectively and achieve a sensitivity of

-126 dBm for 3.12 kbps, which is similar to an SX1276 [23]

LoRa chip with the same configuration. Further, the FPGA

supports real-time modulation and demodulation of all LoRa

spreading factors from 6 to 12. A LoRa MAC implementa-

tion on our MCU is compatible with the The Things Network.

• TinySDR supports 2.4 GHz BLE beacon transmissions.

The full baseband packet generation on the FPGA uses 3% of

its resources. The platform can perform frequency hopping

with a delay of 220 us and achieves a sensitivity of -94 dBm

which is comparable to the commercial BLE chipsets [20].

2

Finally, we present a case study of how the unique capabil-

ities of tinySDR could be used to answer new research ques-

tions. Recent work has explored techniques to enable concur-

rent transmissions in LoRa networks [43,46]; however these

solutions were prototyped on USRPs and it is unclear if IoT

endpoints can decode concurrent transmissions in real-time

within their power and resource constraints. We implement a

custom decoder on tinySDR to demonstrate for the first time

that IoT endpoints can receive concurrent transmissions.

Contributions. To summarize, we design the first SDR

platform tailored to the needs of IoT endpoint devices. By

making careful design and architectural choices, our plat-

form achieves low power, supports IoT protocols at both

900 MHz and 2.4 GHz and has computation resources to

do on-board processing. We present a highly granular power

management scheme that enables duty-cycled operation and

10,000x lower power sleep modes. We also develop the first

over-the-air SDR programming capability to support PHY

and MAC updates in a wireless testbed. We characterize and

evaluate our platform with case studies of LoRa and BLE

beacons. Finally, we present a research exploration of con-

currently receiving multiple LoRa transmissions on our SDR

platform.

Platform availability. We will release the tinySDR plat-

form, along with its hardware schematics and software, for

others to use and contribute to, before the conference.

2 SDR Requirements for IoT Nodes

To motivate the need for tinySDR and inform our design de-

cisions, we begin by identifying the key requirements for an

IoT endpoint. These include 1) operation in the 900 MHz and

2.4 GHz bands, 2) low power operation which requires the

ability to transition to ultra-low power sleep mode, 3) stan-

dalone operation which requires an on-board control unit to

duty cycle the radio, 4) over-the-air programming capabili-

ties for large scale IoT testbeds, 5) low cost per node, and 6)

at least 2 MHz bandwidth to support IoT protocols includ-

ing LoRa, SIGFOX, LTE-M, NB-IoT, ZigBee and Bluetooth.

While there are a number of commercially available SDRs

such as the USRP, BladeRF, PlutoSDR, and LimeSDR [1, 3,

7, 30, 35] on the market and SDR research prototypes such

as WARP, Argos, SORA, SODA, KUAR, Tick, µSDR, Open-

Mili, and GalioT [39,40,42,45,54–57,59,62–66,68,70,71],

all of them are designed as gateway devices and do not satisfy

many of the above constraints. Here, we analyze the short-

comings of these platforms in the context of these require-

ments.

• Low power operation and sleep mode. Fig. 2 compares

the power consumption of the radio module alone in existing

SDR platforms, since each one has different peripherals. We

find that most SDR platforms consume 200-300 mW in re-

ceive mode, but a lot more power when transmitting. While

 0
 0.3
 0.6
 0.9
 1.2
 1.5

UBX 40

USRP E
31

0

USRP B
20

0

bla
de

RF 2.
0

Lim
eS

DR

Mini

Plut
o S

DR
uS

DR
Gali

oT

Tiny
SDR

P
ow

er
C

on
su

m
pt

io
n

(W
)

TX RX14dBm

10dBm 10dBm 10dBm
10dBm10dBm 14dBm

No TX

14dBm

Figure 2: Radio Module Power Consumption for Each Platform. The

TX output power of each radio module is shown on top of it.

this may be acceptable for a gateway devices that are more

often receiving, typical IoT endpoints do the opposite and

are required to transmit data like sensor information. More-

over, real IoT nodes spend a very short time transmitting be-

fore transitioning to ultra-low power sleep modes. Although

IoT radios often consume tens to hundreds of milliwatts of

power, the key to achieving long battery lifetimes is exploit-

ing their microwatt power sleep modes. Table 1 shows that

none of the other platforms can benefit from duty cycling as

they consume more power in sleep mode than tinySDR does

when transmitting; tinySDR’s microwatt power consumption

in sleep mode enables dramatic power savings with duty cy-

cling.

• Standalone operation and cost. We observe that some

of these platforms do not allow for standalone operation, i.e.,

they cannot be used in a testbed deployment without an exter-

nal computer. Among the ones that do, the Embedded USRP

and bladeRF cost $700 or more per unit making large scale

deployments expensive. µSDR allows for standalone opera-

tion but only operates at 2.4 GHz and cannot support proto-

cols like LoRa. GalioT [62] uses the low cost RTL2832U

radio [5] connected to a Raspberry Pi computer which al-

lows for standalone operation, however it does not support

2.4 GHz band. Moreover, this platform is receiver only and

cannot be used to prototype a typical IoT node that transmits

data.

• Over-the-air (OTA) programming. As shown in Table 1,

all existing SDR platforms rely on wired interfaces for pro-

gramming. This means that even if one of these systems were

connected to a battery, running an experiment would require

either tethering each one to a wired network or individually

programming them. An OTA programming system is crucial

to realizing the goal of a large scale wide area testbed as

without it, researchers have to decide between limiting them-

selves to deployment scenarios with wired infrastructure that

are not representative of real IoT use cases or traveling over

kilometer distances to update individual nodes for each mi-

nor protocol modification, which would be unmanageable at

scale.

3 TinySDR Platform

We first describe our design choices for the different compo-

nents of our hardware shown in Fig. 3 and explain the inter-

3

faces between them. Next we present the power management

module which enables our ultra-low-power sleep mode. Fi-

nally, we describe our over-the-air update protocol including

decompression algorithms and over-the-air reprogramming.

3.1 Hardware Design

We seek to minimize power consumption and cost while of-

fering the flexibility of an SDR to process raw samples.

3.1.1 Designing the Software Radio

The core block on our platform is the software-defined ra-

dio, a programmable PHY layer that processes and converts

bits to radio signals and vice versa. We begin by explaining

our choices for the primary components of an SDR which

are a radio chip that provides an interface for sending and

receiving raw samples of an RF signal as well as an FPGA

that can process these signals in real time. We then discuss

the supporting peripherals for these devices such as a power

amplifier (PA) to boost the output of the radio chip and non-

volatile memory for the FPGA to read and write data from.

Choosing a radio chip. We begin by choosing a radio

chip as its specs define the requirements for the FPGA and

other blocks. Our primary requirement is that the chip sup-

ports reading and writing raw complex I/Q samples of the

RF signal. As shown in Table 2, current SDR systems use

I/Q radio chips that are designed to cover a multi-GHz spec-

trum and have high ADC/DAC sampling rates to support

large bandwidth. For example, AD936x [16] series which is

used in USRP and ADPluto can transmit from 325 MHz to

3.8 GHz and supports sampling rates as high as tens of MHz.

Each of these specs such as wide bandwidth, low noise, and

high sampling rate represent fundamental trade offs of power

for performance, and therefore these chips consume watts of

power. Moreover, some of these radio chips costs more than

$100.

We instead take a different approach: identify the min-

imum required specs and find a radio that supports them.

Specifically, an IoT platform must be able to operate in at

least the 900 MHz and 2.4 GHz ISM bands, have 4 MHz of

bandwidth, while otherwise minimizing power and ideally

costing less than $10. We analyze all of the commercially

available radio chips that provide baseband I/Q samples and

list them in Table 2, where only the AT86RF215 supports all

of our requirements. In addition to lower cost and support

for both frequency bands, it also consumes less power than

the MAX2831 and the SX1257. Moreover, the AT86RF215

integrates all the necessary blocks including an LNA, pro-

grammable receive gain, automatic gain control (AGC) and

low pass filter, ADC on the RX chain, as well as a DAC and

programmable PA with a maximum power of 14 dBm on the

TX side. In terms of noise, the RF front-end has a 3-5 dB

noise figure which is even better than the noise figure of the

front-end used in Semtech SX1276 LoRa chipset, suggesting

Table 2: Existing Off-the-Shelf I/Q Radio Modules.
I/Q Radio Frequency (MHz) RX Power (mW) Cost

AD9361 [16] 70∼6000 262 $282

AD9363 [17] 325∼3800 262 $123

AD9364 [12] 70∼6000 262 $210

LMS7002M [24] 10∼3500 378 $110

MAX2831 [10] 2400∼2500 276 $9

SX1257 [34] 862∼1020 54 $7.5

AT86RF215 [19]
389.5∼510
779∼1020
2400∼2483

50 $5.5

it should be able to achieve long range performance. It con-

sumes 5x less power than the radios used on other SDRs as

shown in Fig. 2 and has built in support for common modu-

lations such as MR-FSK, MR-OFDM, MR-O-QPSK and O-

QPSK that can save FPGA resources or power by bypassing

the FPGA entirely.

Picking an FPGA. Now that we have chosen a radio chip,

the next step in our design process is to find an FPGA that

can interface with it. Aside from minimizing power and cost,

we would also like to maintain a small form factor and short

wake-up time. Although flash-based FPGAs are capable of

fast wake-ups, they are more expensive compared to SRAM-

based FPGAs with the same number of logic elements. We

use LFE5U-25F [32] FPGA from Lattice Semiconductor for

baseband processing which is an SRAM-based and has 24 k

logic units. This chip provides a greater number of look up ta-

bles (LUTs) than the FPGAs on the PlutoSDR and LimeSDR

mini, and at lower cost.

Adding a power amplifier (PA). AT86RF215 only sup-

ports a maximum transmit power of 14 dBm which is tra-

ditionally used by IoT radios but is less than the 30 dBm

maximum allowed by the FCC. To provide flexibility, we

add optional PAs. Given the high cost and power require-

ments of wide-band PAs that could operate at both 900 MHz

and 2.4 GHz we instead select two different chips: the

SE2435L [22] for 900 MHz and SKY66112 [27] for 2.4 GHz.

Our 900 MHz PA supports up to 30 dBm output power, and

the 2.4 GHz PA can output up to 27 dBm. Both chips also

include an LNA for receive mode and a built in circuit to

bypass either of these components for power savings. In re-

ceive mode, we can either pass the incoming signal through

the LNA and then connect it to the radio or completely by-

pass the LNA and connect the signal directly. The maximum

bypass current is 280 uA and the sleep current of both power

amplifiers is only 1 uA. In transmit operation we can pass

the signal through the PA and amplify the signal or turn off

the PA and pass the signal directly to the antenna for transmit

power < 14 dBm.

Picking the microcontroller. We use a microcontroller to

control all the individual chips and toggle all of these power

saving options. In addition to having a low sleep current

it must be able to support multiple control interfaces, have

enough memory resources to support IoT MAC protocols

and also be able to run a decompression algorithm for our

OTA system. We select the MSP432P401R [26] a 32-Bit

4

Figure 3: TinySDR System Block Diagram. A complete system diagram showing all of the components of tinySDR. This includes the software radio

consisting of the radio, amplifiers, and FPGA, OTA programmer which uses a LoRa radio and flash memory to store programs, and a power managment system

with the flexibility to turn off power consuming components. Each of these subsystems are controlled in software running on the MCU.

Cortex M4F MCU which meets all of our requirements with

less than 1 uA sleep current, has 64 KB of onboard SRAM

and 256 KB of onboard flash memory. In addition to control-

ling the I/Q and backbone radio parameters, and reprogram-

ming of the FPGA, the MCU performs the important func-

tion of power management. It is responsible for toggling ON

and OFF the power amplifiers, as well as performing power-

gating by turning ON and OFF different voltage regulators

in §3.3.

3.1.2 Designing OTA Update Hardware

While the above discussion enables a small, low power, low

cost SDR for easy deployment, FPGAs and microcontrollers

typically require a wired interface for reprogramming. Here

we present the hardware for the OTA update system to recon-

figure and program tinySDR nodes wirelessly.

OTA wireless chipset. A key question when designing

an OTA update system is, what wireless protocol should be

used? To support wide area networking, we focus on proto-

cols designed for long range operation. We analyze all of the

available long range protocols and select LoRa for our OTA

system for a number of reasons. First, LoRa receivers have

a high sensitivity which enables kilometer ranges. LoRa also

support a wide range of data rates from 11 bps to 37 kbps

which allows us to trade off rate for range depending on the

deployment scenario. Moreover, LoRa is becoming more and

more wide-spread in the US. We use the SX1276 Semtech

chipset [23] which is available for $4.5, minimizing cost.

Flash Memory. Our FPGA is SRAM based and does not

include on-chip non-volatile memory for storing program-

ming data. We instead store the firmware bitstream on a sep-

arate flash memory chip. The FPGA programming bitstream

is 579 KB and the MCU programs require a maximum of

256 KB. We chose the MX25R6435F flash chip with 8 MB

memory. Although this is far more than the size required, it

allows tinySDR to store multiple FPGA bitstreams and MCU

programs to quickly switch between stored protocols without

having to re-send the programming data over the air.

Figure 4: I/Q Word Structure Used in I/Q Interface.

3.2 Interfacing Between Blocks

3.2.1 Reading and Writing I/Q Samples

The AT86RF215 radio chipset samples baseband signals at

4 MHz with a 13 bit resolution for both I and Q. Operat-

ing at the full rate therefore requires an interface which can

support a throughput of over 100 Mbps without consuming

a large amount of power to meet our design objectives. To

do this we use low-voltage differential signaling (LVDS) [4]

which is a high-speed digital interface that reduces power by

using lower voltage signals but maintains good SNR by send-

ing data over two differential lines to reduce common mode

noise.

Receiving serial I/Q data. Our system communicates

over LVDS to the FPGA in serial mode to transfer I/Q data

with a physical interface consisting of 4 I/O lines, pairs of

which are used to send data and clock signals. The radio out-

puts 32-bit serial data words at 4 Mwords/s using the for-

mat in Fig. 4. Each data word starts with the I_SYNC pat-

tern which indicates the start of the I sample which we use

for synchronization. Next, it has 13 bits of I_Data followed

by a control bit. The same format follows for Q, beginning

with a synchronization pattern Q_SYNC and then 13 bits for

Q_Data and the final control bit. The required 128 Mbps data

rate is achieved using a 64 MHz clock provided by the radio

operating at double data rate by sampling at both the rising

and falling edges of the clock. We implement an I/Q dese-

rializer on the FPGA to read the data which samples the in-

put at both the rising and falling edges of the clock, uses the

I_SYNC and Q_SYNC to detect the beginning of the data

fields and loads the I and Q values into 13 bit registers for

parallel processing.

Transmitting I/Q samples. In TX mode we need to do

the opposite of the above sequence to convert from the paral-

lel representation on the FPGA to a serialized LVDS stream.

To do this, we use the FPGA’s onboard PLL to generate the

5

64 MHz clock signal. Next to create our double data rate out-

put signal that varies on both the positive and negative edges

of this clock signal using a dual-edge D flip-flop design [47]

resulting in the desired 128 Mbps data rate. We use this to

generate the same I/Q word structure described above.

3.2.2 Memory Interfaces

After reading the raw data from the LVDS lines using the

I/Q deserializer described above, we store the samples into

a FIFO buffer implemented using the FPGA’s embedded

SRAM. We implement a simple memory controller to write

data to the FIFO which generates the memory control sig-

nals and writes a full data word on each cycle. The em-

bedded memory can run at rates significantly greater than

4 MHz meaning it is not a limiting factor for real time pro-

cessing. The SRAM can buffer up to 126 kB. The data stored

in the FIFO can then be sent to signal processing blocks

to implement filters, cryptographic functions, etc. or to non-

volatile flash memory. For flash memory, we use microSD

cards which support two modes: native SD mode and stan-

dard SPI mode. In native SD mode, we use 4 parallel data

lines to read/write data to/from the microSD card. This mode

supports a higher data rate compared to the SPI mode which

only supports 1 bit serial interface. However, we implement

SPI mode since it supports the 104 Mbps data rate which

we need to write data in real time. This allows us to re-use

the same, simpler SPI block for multiple functions and save

resources on the FPGA.

3.2.3 RF, Control and Sensor Interfaces

The AT86RF215 provides differential RF signals for both

900 MHz and 2.4 GHz and has an integrated TX/RX switch

for both. At 2.4 GHz, the differential signal is transformed to

a single-ended output using the 2450FB15A050E [8] balun

and fed to the SKY66112 [27] front-end with the bypassable

LNA and PA. Finally, after passing through a matching net-

work, the 2.4 GHz signal is connected to an SMA output.

On the 900 MHz side, the differential output of the

AT86RF215 is connected to 0896BM15E0025E [31] to con-

vert it to a single-ended output. This must be shared between

the backbone radio’s two separate RF paths for transmit

and receive and AT86RF215’s 900 MHz single-ended signal.

We choose between them using a ADG904 [18] SP4T RF

switch. The single port side is connected to the SE2435L [22]

900 MHz front-end which is similar to the 2.4 GHz front-

end. The MCU communicates with the I/Q radio, backbone

radio, FPGA and Flash memory through SPI which it uses

to send commands for changing the frequency, selecting the

outputs, etc. It also has control signals for FPGA program-

ming, 900 MHz and 2.4 GHz front-end modules, RF switch

and voltage regulators for active power control. The I2C and

SPI serial interfaces and analog to digital converter (ADC)

Table 3: Power Domains in TinySDR.
Component Voltage [V] Power Domain

MCU 1.8V V1

FPGA 1.1, 1.8, 2.5, Vlvds V2, V3, V4, V5

I/Q Radio 1.8< V5 <3.6 V5

Backbone Radio 1.8< V5 <3.6 V5

sub-GHz PA 3.5V V6

2.4 GHz PA 1.8, 3.0 V3, V7

FLASH Memory 1.8 V3

Micro SD Memory 3.0 V7

inputs of the MCU are broken out on tinySDR board to sup-

port both digital and analog sensors.

3.3 Power Management Unit

Next, we present the design of our power management unit

which seeks to maximize the system lifetime when running

off of a 3.7 V Lithium battery. To enable long battery life-

times we need to be able to duty-cycle our system and allow

the MCU to toggle each of the above blocks ON and OFF

when they are not in use. Further, different components have

different supply voltage requirements and we wish to provide

each one with the lowest voltage possible to minimize power

usage.

Ideally we would want separate controllable voltage reg-

ulators for each component in the system. However, hav-

ing many different regulators with individual controls signifi-

cantly increases the complexity, number of components, and

price. Moreover, it complicates the PCB design by requiring

many control signals and a multitude of power planes. There-

fore, there exists a trade-off between the granularity of power

control and the price/complexity of a design. We outline the

supply voltages needed for each component and the power

domain supporting it in Table 3. Below, we show how we

group components to balance power and complexity.

• Power domain V1 (MCU). Since the MCU is the central

controller which implements power management, it needs to

be powered at all times and therefore has its own power do-

main. To minimize its sleep current we need to use a voltage

regulator with a low quiescent current. Although switching

voltage regulators have higher conversion efficiency when

active, they also have high quiescent currents so we instead

select the TPS78218 linear regulator.

• Power domains V2, V3, V4, V6 and V7. These power

domains provide power to blocks such as the FPGA, mem-

ory blocks, and PAs. Since these components can all be

turned off when not operating, the voltage regulators for

these domains should have low shut-down current during

sleep and high efficiency when active. We therefore choose

the TPS62240 which has a shutdown current of only 0.1 uA.

It is highly efficient and is rated to support the current draw

required by all components except the 900 MHz PA. To

support this PA at its maximum output power we use the

TPS62080 switching regulator which supports the required

current.

6

Figure 5: LoRa Packet Structure.

• Power domain V5. V5 is a shared power domain for I/Q

radio, backbone LoRa radio and FPGA I/O bank. This power

domain is initially set to 1.8V to minimize power consump-

tion, however components such as the radio chips can require

higher voltage to achieve maximum output power. Therefore,

in addition to high efficiency and low shut-down current like

the others, this domain should be programmable. To do this,

we use Semtech SC195ULTRT [14] which provides an ad-

justable output that can be set from 1.8 V to 3.6 V.

3.4 Over-the-Air Programming protocol

OTA AP and MAC protocol. To update a network of

tinySDR devices, we use an AP with a LoRa radio to com-

municate with each device sequentially. In order to prop-

agate updates throughout a testbed or to specific tinySDR

nodes, we design a MAC layer for the LoRa PHY. We pre-

program a timer on the MCU to periodically turn off the

FPGA and switch from IQ radio mode to the backbone ra-

dio to listen for new firmware updates. If there is an update,

the AP sends a programming request as a LoRa packet with

specific device IDs indicating the nodes to be programmed

along with the time they should wake up to receive the up-

date. Upon processing this packet and detecting its ID, the

tinySDR node switches into update mode and sends a ready

message to the AP at the scheduled time. Then, the AP trans-

mits the firmware update as a series of LoRa packets with se-

quence numbers. Upon receiving each packet, the tinySDR

node checks the sequence number and CRC. For a correct

packet it writes the data to its flash memory and transmits

an ACK to indicate correct reception. In the case of failure

no ACK is sent and the AP re-transmits the corrupted packet

after a timeout. After sending all the firmware data, the AP

sends a final packet indicating the end of firmware update

which tells the tinySDR node to reprogram itself and switch

back to normal operation.

Compressing and decompressing the bitstream. Our

system compresses data to reduce update times, however this

compression must be compatible with the resources avail-

able on tinySDR. We choose the miniLZO compression

algorithm [33], which is a lightweight subset of the Lem-

pel–Ziv–Oberhumer (LZO) algorithm. Our implementation

of miniLZO only requires a memory allocation equal to the

size of the uncompressed data. We perform compression on

the AP. The compression ratio of bitstream file varies based

on the content of the bitstream, and in the worst case the com-

pressed file could have almost the same size of the original

file. This would require a maximum memory allocation of

579 kB which we cannot afford on a low-cost MCU. Instead,

we first divide the original update file into blocks of 30 kB

that will fit in the MCU memory. Then we compress each

(a) LoRa Modulator

(b) LoRa Demodulator

Figure 6: LoRa Implementation Block Diagrams.

block separately and transmit them to the tinySDR node one

by one. Considering the LoRa radio takes more power than

the MCU, we immediately write the data to our dedicated

programming flash memory using an SPI interface.

After receiving all the data we turn off the LoRa radio and

decompress data. First, we allocate memory on the MCU’s

SRAM equal to the block size and load a block of data from

flash. Next, we perform decompression and write the data in

the allocated SRAM memory. Finally, we write the decom-

pressed data back to the flash beginning at the corresponding

address of the programming boot file. We repeat these steps

until we decompress the full firmware update.

Over-the-air FPGA programming. After storing uncom-

pressed programming data in flash memory, we program the

FPGA. We use the MCU to set the FPGA into programming

mode. When the FPGA switches to programming mode, it

automatically reads its firmware directly from the flash mem-

ory using a 62 MHz quad SPI interface and programs itself.

Reading from flash using quad SPI achieves programming

times of 22 ms which is similar to FPGAs with embedded

flash memory and results in minimal system down time. Af-

ter programming is complete, it resumes operation and be-

gins running the new firmware.

4 Case Studies: LoRa and BLE Beacons

4.1 LoRa Protocol with tinySDR

We choose LoRa as it is gaining popularity for IoT solutions

due to its long range capabilities. Since LoRa is a proprietary

standard, we begin by describing the basics of its modulation

and packet structure followed by the implementation details

of our modulator, demodulator and MAC protocol.

LoRa Protocol Primer. LoRa achieves long ranges by

using Chirp Spread Spectrum (CSS) modulation. In CSS,

data is modulated using linearly increasing frequency up-

chirp symbol. Each upchirp symbol has two main features:

Spreading Factor (SF) and Bandwidth (BW). SF determines

the number of bits in each upchirp symbol [43, 46, 67] and

BW is the difference between upper and lower frequency of

the chirp which together with SF determines the length of

7

Figure 7: Evaluation Testbed Map.

an upchirp symbol. SF and BW trade data rate for range.

Data is modulated by 2SF cyclic-shifts of an upchirp sym-

bol. The starting point of the symbol in frequency domain,

which is the cyclic shift of the upchirp symbol, determines

its value [15]. LoRa uses SF values from 6 to 12 and BW

values from 7.8125 KHz to 500 KHz to achieve PHY-layer

rates of BW
2SF × SF.

Fig. 5 shows the LoRa packet structure which begins with

a preamble of 10 zero symbols (upchirps with zero cyclic-

shift). This is followed by the Sync field with two upchirp

symbols. Next, a sequence of 2.25 downchirp symbols (chirp

symbol with linearly decreasing frequency) indicate the be-

ginning of the payload. The payload then consists of a se-

quence of upchirp symbols which encode a header, payload

and CRC.

LoRa Modulator. Fig. 6a shows the block diagram of our

LoRa modulator. We use our FPGA to implement a LoRa

modulator in Verilog and stream data to AT86RF215 in I/Q

mode. The modulator begins with the Packet Generator mod-

ule which reads data either from FPGA memory for trans-

mitting fixed packets or from the MCU, as well as LoRa

configuration parameters such as SF, coding and BW. This

module determines each symbol value and its corresponding

cyclic-shift. Next, the Packet Generator sends these param-

eters along with the symbol values to the Chirp Generator

module, which generates the I/Q samples of each chirp sym-

bol in the packet using a squared phase accumulator and two

lookup tables for Sin and Cos function [67]. We then feed

these I/Q samples into I/Q Serializer to stream them over the

LVDS interface to the I/Q radio. We generate 64 MHz trans-

mission clock using internal PLL of the FPGA.

LoRa Demodulator. Fig. 6b shows the block diagram of

our LoRa demodulator. It begins by reading data from the I/Q

radio into the I/Q Deserializer module on the FPGA which

converts the serial I/Q stream to parallel I/Q for further sig-

nal processing. Next, we run the data through a 14 tap FIR

low-pass filter to suppress high frequency noise and interfer-

ence. We store the filtered samples in a buffer implemented

using the FPGA’s memory blocks. To decode the data, we

use the Chirp Generator module from the LoRa Modulator

described above to generate a baseline upchirp/downchirp

symbol, and then we multiply that with the received chirp

symbol using our Complex Multiplier unit. The output of the

multiplication then goes to an FFT block implemented using

-120
-100
-80
-60
-40

 912 913 914 915 916 917 918

P
ow

er
 (d

B
m

)

Frequency (MHz)
Figure 8: TinySDR Single-Tone Frequency Spectrum.

Table 4: Different Operation Timing for TinySDR.
Operation Duration (ms)

Sleep to Radio Operation 22

Radio Setup 1.2

TX to RX 0.045

RX to TX 0.011

Frequency Switch 0.220

a standard IP core from Lattice. Finally the Symbol Detector

scans the output of the FFT for peaks and records the fre-

quency of the peak to determine the symbol value. To detect

chirp type (upchirp/downchirp), we multiply each chirp sym-

bol with both an upchirp and downchirp and then compare

the amplitudes of their FFT peaks. The higher peak in the

FFT shows higher correlation which indicates the chirp type.

LoRa MAC Layer. To demonstrate that our LoRa imple-

mentation on tinySDR is compatible with existing LoRa net-

works such as the LoRa Alliance’s [25] The Things Network

(TTN) [37], we adopt their LoRa MAC design from TTN’s

Arduino libraries [38] and implement it on tinySDR’s MCU.

TTN uses two methods for device association; Over-the-air

activation (OTAA) and activation by personalization (ABP).

In OTAA, each node performs a join-procedure during which

a dynamic device address is assigned to a node. However,

in ABP we can hard-code the device address in the device

which makes it simpler since the node skips the join proce-

dure. Our platform can support both OTAA and ABP meth-

ods.

4.2 BLE Beacons with tinySDR

To demonstrate tinySDR’s 2.4 GHz capabilities we imple-

ment Bluetooth beacons which are commonly used by IoT

devices.

BLE Beacon Primer. We implement non-connectable

BLE advertisements (ADV_NON_CONN_IND) which are

broadcast packets used for beacons. These packets allow a

low power device to broadcast its data to any listening re-

ceiver within range without the power overhead of exchang-

ing packets to setup a connection. These packets have a bit

rate of 1 Mbps in Bluetooth 4.0 or up to 2 Mbps in Bluetooth

5.0 and are generated using GFSK with a modulation index

of 0.45-0.55. The GFSK modulation is binary frequency shift

keying (BFSK) with the addition of a Gaussian filter to the

square wave pulses to reduce the spectral width.

Generating a BLE Packet. Bluetooth advertisements

consist of 6-37 octets, beginning with fixed preamble and ac-

8

cess address fields indicating the packet type set to 0xAA and

0x8E89BED6 respectively. This is followed by the packet

data unit (PDU) beginning with a 2 byte length field and fol-

lowed by a manufacturer specific advertisement address and

data. The final 3 bytes of the packet consist of a CRC gen-

erated using a 24-bit linear feedback shift register (LFSR)

with the polynomial x24
+x10

+x9
+x6

+x4
+x3

+x+1. The

LFSR is set to a starting state of 0x555555 and the PDU is in-

put LSB first. The final LFSR state after inputting the PDU

becomes the CRC. Data whitening is then performed over

the PDU and CRC fields to eliminate long strings of zeros or

ones within a packet. This is also done using a 7-bit LFSR

with polynomial x7
+x4

+1. The LFSR is initialized with the

lower 7 bits of the channel number the packet will be trans-

mitted on, and each byte is input LSB first. We implement

both these blocks in Verilog on the FPGA.

Packet Transmission and MAC Protocol. From this bit-

stream, we need to generate the I/Q samples to feed to the

I/Q radio. First, we upsample and apply a Gaussian filter

to the bitstream. This gives us the desired changes in fre-

quency which we integrate to get the phase. We then feed

the phase to sine and cosine functions to get the final I and

Q samples, which are passed to I/Q serializer and sent to

the I/Q radio. BLE divides the 2.4 GHz band into channels,

each spaced 2 MHz apart, but BLE beacons are only trans-

mitted on three advertising channels without carrier sense,

typically in sequential order separated by a few hundred mi-

croseconds. This sequence is re-transmitted every advertis-

ing interval [36].

5 Evaluation

We deploy a testbed of 20 tinySDR devices across our in-

stitution’s campus as shown in Fig. 7 (details removed for

anonymity). To see if tinySDR meets the requirements for

IoT endpoint devices, we characterize its power, computa-

tional resource usage, delays and cost when operating in dif-

ferent modes and running different protocols.

5.1 Benchmarks and Specifications

Sleep mode power. Many IoT nodes perform short, sim-

ple tasks allowing them to be heavily duty cycled which al-

lows them to achieve battery lifetimes of years. We design

tinySDR with this critical need in mind such that the MCU

can actively toggle on and off power consuming components

such as the radio, PAs, and FPGA to enter a low power sleep

mode.

We do this by first turning off the the I/Q transceiver and

LoRa radios. To reduce the static power consumption of the

FPGA, we shut it down by disabling the voltage regulators

that provide power to its I/O banks and core voltage. Simi-

larly, we also turn off the PAs. Finally, we put the MCU in

Table 5: TinySDR Cost Breakdown for 1000 Units.
Components Price

DSP
FPGA $8.69

Oscillator $0.9

IQ Front-End

Radio $5.08

Crystal $0.53

2.4 GHz Balun $0.36

Sub-GHz Balun $0.3

Backbone

Radio $4.5

Crystal $0.4

Flash Memory $1.6

MAC
MCU $3.89

Crystals $0.68

RF

Switch $3.14

Sub-GHz PA $1.54

2.4 GHz PA $1.72

Power Management Regulators $3.7

Supporting Components – $4.5

Production
Fabrication [21] $3

Assembly [21] $10

Total – $54.53

sleep mode LPM3 running only a wakeup timer. The mea-

sured total system sleep power in this mode was 30 uW.

The low sleep power allows for significant power savings,

but also introduces latency. Table 4 shows the time required

to wake up from sleep mode until the radio is active. Because

we can perform the I/Q radio setup in parallel with booting

the FPGA, the total wakeup time for RX and TX is 22 ms.

The I/Q radio setup takes 1.2 ms, so the wakeup time is dom-

inated by booting up the FPGA which itself takes 22 ms. We

compare this to a SmartSense Temperature sensor [13] and

find that tinySDR has only a 4x longer wakeup time even

though it requires programming unlike commercial products

that use a custom single protocol radio. Additionally many

IoT devices operate at low duty cycles waiting in sleep mode

for seconds or more making tinySDR’s wakeup latency in-

significant.

Switching delays. We also measure the switching delays

for different operations on the I/Q radio as this is an im-

portant parameter for meeting MAC and protocol timing re-

quirements. Table 4 shows that it takes 45 µs and 11 µs to

switch from TX to RX mode and RX to TX mode respec-

tively. As we see later, this is sufficient to meet the timing

requirements of IoT packet ACKs and MAC protocols. Fur-

ther, the delay for switching between different frequencies

is only 220 us. To measure this number, we switch between

2.402 GHz, 2.426 GHz and 2.480 GHz. This switching de-

lay is again sufficient to meet the requirements of frequency

hopping during Bluetooth advertising.

Transmitter performance. First, we implement a single-

tone modulator on the FPGA that generates the appropriate

I/Q samples and streams them over LVDS to the radio. We

connect the output to an MDO4104b-6 [11] spectrum ana-

lyzer and observe a single tone, shown in Fig. 8, with no un-

expected harmonics introduced by the modulator.

Next we measure the end-to-end DC power consumption

of our system including the I/Q radio, FPGA, MCU and regu-

9

 230
 240
 250
 260
 270
 280
 290

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

P
ow

er
C

on
su

m
pt

io
n

(m
W

)

Radio Output Power (dBm)

tinySDR 900 MHz
tinySDR 2.4 GHz

Figure 9: Single-Tone Transmitter Power Consumption. We show the

total power consumption of tinySDR including I/Q radio, FPGA, MCU and

regulators at different transmitter output power. This is 15-16 times lower
power consumption than the USRP E310 embedded SDR.

lators to see how it scales with RF output power. We vary our

radio output power while transmitting a single tone and use a

Fluke 287 multimeter to measure its DC power draw. Fig. 9

shows the power consumption of tinySDR for 900 MHz and

2.4 GHz operation. Interestingly, we observe the DC power is

constant at low RF power but increases as expected beyond

some RF power level. TinySDR consumes 231 mW when

transmitting at 0 dBm, and for comparison the end-to-end

power consumption of the USRP E310 is 16x higher under

the same conditions. Similarly tinySDR consumes 283 mW

at its 14 dBm setting while the USRP E310 is 15x higher.

Cost. We also analyze the cost which is an important prac-

tical consideration for real world deployment at scale. Ta-

ble 5 shows a detailed breakdown of cost including each com-

ponent as well as PCB fabrication and assembly based on

quotes for 1000 units [21], where the overall cost is around

$55.

5.2 Evaluating the Case Studies

LoRa using tinySDR. We evaluate various different compo-

nents of tinySDR using LoRa as a case study.

LoRa modulator. To evaluate this, we use our LoRa mod-

ulator to generate packets with three byte payloads using a

spreading factor of SF = 8 and bandwidths of 250 kHz and

125 kHz which we transmit at -13 dBm. We receive the out-

put of tinySDR on a Semtech SX1276 LoRa transceiver [34]

which we use to measure the packet error rate (PER) ver-

sus RSSI and plot the results in Fig. 10. We compare our

LoRa modulator to transmissions from an SX1276 LoRa

transceiver. The plots show that we can achieve a compara-

ble sensitivity of -126 dBm which is the LoRa sensitivity for

SF = 8 and BW = 125kHz configuration. This is true for

both configurations, which shows that our low-power SDR

can meet the sensitivity requirement of LPWAN IoT proto-

cols.

LoRa demodulator. Next we evaluate our LoRa demodu-

lator on tinySDR. To test this, we use transmissions from a

Semtech SX1276 LoRa transceiver and use tinySDR to re-

ceive these transmissions. The LoRa transceiver transmits

packets with two configurations using a spreading factor of

8 and bandwidths of 250 kHz and 125 kHz. We record the

received RF signals in the FPGA memory and run them

 0
 20
 40
 60
 80

 100

-135 -130 -125 -120 -115 -110 -105 -100 -95

P
E

R
 (%

)

RSSI (dBm)

TinySDR: SF8, BW250kHz
TinySDR: SF8, BW125kHz
SX1276: SF8, BW250kHz
SX1276: SF8, BW125kHz

Figure 10: LoRa Modulator Evaluation. We evaluate our LoRa modu-

lator in comparison with Semtech LoRa chip.

 0
 20
 40
 60
 80

 100

-140 -135 -130 -125 -120 -115 -110 -105 -100

C
hi

rp
 S

ym
bo

l
E

rr
or

 R
at

e(
%

)

RSSI (dBm)

SF8, BW250kHz
SF8, BW125kHz

SF8, BW250k Sensitivity
SF8, BW125k Sensitivity

Figure 11: LoRa Demodulator Evaluation. We evaluate our LoRa de-

modulator by demodulating chirp symbols at different RSSI.

through our demodulator to compute a chirp symbol error

rate. Note that the Semtech LoRa transceiver does not give

access to symbol error rate but since we have access to I/Q

samples, we can compute it on our platform. We plot the re-

sults in Fig. 11 as a function of the LoRa RSSI values. Our

LoRa demodulator can demodulate chirp symbols down to

-126 dBm which is LoRa protocol sensitivity at SF = 8 and

BW = 125kHz. Both the LoRa modulator and demodulator

run in real-time.

Resource allocation. Next, we evaluate the resource uti-

lization of our LoRa PHY implementation on the FPGA. Ta-

ble 6 shows the size for implementing the modulator and de-

modulator on our FPGA performing using different SFs. Our

LoRa modulator supports all LoRa configurations with differ-

ent SF with no additional cost. However, in the LoRa demod-

ulator, we need FFT blocks with different sizes to support

different SF configurations. This table shows that our FPGA

has sufficient resources to support multiple configurations of

LoRa and still leave space for other custom operations.

LoRa MAC. We implement the LoRa MAC based on

TTN’s Arduino libraries [38]. TTN protocol together with

control for the I/Q radio, backbone radio, FPGA, PMU and

decompression algorithm for OTA take only 18% of MCU

resources. Also, as shown in Table 4, our timings are well

within the requirements for LoRaWAN specifications [25].

We also measure the power consumption of our platform

for LoRa packet transmission and reception. LoRa packet

transmission with SF = 9 and BW = 500 kHz and radio out-

put power of 14 dBm consumes a total power of 287 mW

from which 179 mW is for the radio and the rest is for the

FPGA and MCU. LoRa packet reception consumes 186 mW

with radio taking 59 mW.

BLE using tinySDR. Next, we evaluate tinySDR using

BLE beacons as a case study. First, we measure the impact

of our BLE beacons transmitted from tinySDR using the TI

CC2650 [20] BLE chip as a receiver. We do this by configur-

ing tinySDR to transmit BLE beacons at a rate of 1 packet per

second. We transmit 100 packets and set the CC2650 BLE

10

Table 6: FPGA Utilization for LoRa Protocol.
SF LoRa TX (LUT) LoRa RX (LUT)

6 976 (4%) 2656 (10%)

7 976 (4%) 2670 (10%)

8 976 (4%) 2700 (11%)

9 976 (4%) 2742 (11%)

10 976 (4%) 2786 (11%)

11 976 (4%) 2794 (11%)

12 976 (4%) 2818 (11%)

chip to report bit error rate (BER). Fig. 12 shows the BER as

a function of the received RSSI as reported by the CC2650

BLE chip. The plot shows that we achieve a sensitivity of

-94 dBm. This is within 2 dB of the CC2650 BLE chipset’s

sensitivity, defined by a BER threshold of 10−3.

Next we evaluate the latency of our BLE implementation

as BLE beacons are typically transmitted in sequence by hop-

ping between three different advertising channels. We mea-

sure the minimum time tinySDR takes to switch between

these frequencies by connecting its output to a 2.4 GHz en-

velope detector and using an MDO4104B-6 oscilloscope to

measure the time delay between transmissions. Fig. 13 plots

the envelope of three BLE beacons in the time-domain trans-

mitted on the different advertising channels and shows that

our system can transmit packets with as little as 220 us delay

between beacons. The corresponding result when a iPhone 8

transmits beacons is 350 us. Finally, generating BLE beacons

requires only 3% of the FPGA resources on the tinySDR and

it could run for over 2 years on a 1000 mAh battery when

transmitting once per second.

5.3 Over-the-Air Programming

An effective OTA programming system should both min-

imize use of system resources such as power as well as

network downtime. Considering the time to reprogram the

FPGA and microcontroller from flash is fixed, the downtime

for programming a node depends on the amount of data sent

and the throughput which varies with SNR.

Raw programming files for our FPGA are 579 kB, how-

ever we compress our data using miniLZO. While the exact

compression ratio depends on FPGA utilization, our LoRa

program compresses to 99 kB and BLE to 40 kB. Our mi-

crocontroller programs for both LoRa and BLE are approx-

imately 78 kB and are both compressed to 24 kB. When

dividing the files into packets, we would ideally minimize

the preamble length and maximize packet length to reduce

overhead, however long packets with short preambles lead

to higher PER. We choose a preamble of 8 chirps and pack-

ets of 60 B which we find balances the trade-off of protocol

overhead versus range in our experiments.

To see the impact on a real deployment, we evaluate the

time required to program tinySDR nodes in our 20 device

testbed shown in Fig. 7. We set up a LoRa transceiver con-

figured with SF = 8, BW = 500 kHz and CodingRate = 6

connected to a patch antenna transmitting at 14 dBm as an

 0
 0.001
 0.002
 0.003
 0.004
 0.005

-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50

B
E

R

RSSI (dBm)

BLE Packet
CC2650 BLE Sensitivity

2dB

Figure 12: BLE evaluation. BLE beacons at different power levels.

 0
 1
 2
 3
 4

 0 1 2 3 4 5 6 7

A
m

pl
itu

de

Time (ms)

220 µs

Figure 13: BLE Beacons Signal. We show BLE beacon transmissions on

three advertising channels from tinySDR using an envelope detector.

AP and measure the time it takes to program the tinySDR

devices at each location, according to our protocol. We trans-

mit the compressed FPGA and MCU programming data for

LoRa and BLE and plot the results as a CDF in Fig. 14. The

plots show that the LoRa FPGA requires an average program-

ming time of 150 s while BLE, FPGA, and MCU require

59 s and 39 s respectively due to their smaller file size. De-

compressing these received files only takes a maximum of

450 ms.

Our OTA programming system components, backbone ra-

dio and MCU, consume an average energy of 6144 mJ for re-

ceiving a LoRa FPGA update and 2342 mJ for a BLE FPGA

update when using 14 dBm output power. Using a 1000 mAh

LiPo battery, we could OTA program each tinySDR node

with LoRa 2100 times and BLE 5600 times. Assuming OTA

programming of once per day, the average power consump-

tion would be 71 uW and 27 uW respectively for LoRa and

BLE.

6 Research Study: Concurrent Reception

An SDR designed for IoT endpoints that can provide I/Q

transmission and reception capability opens up opportunities

for addressing multiple research questions in IoT networks.

In this section, we focus on the following question: Can a

low-power IoT endpoint device decode multiple concurrent

LoRa transmissions at the same time? LoRa supports long

range communication for IoT devices and is gaining popular-

ity as a low-power wide area networking (LPWAN) standard.

Supporting long ranges introduces new challenges since it in-

creases the probability of collisions in large scale city-wide

deployments. While recent works [43, 46] have explored the

feasibility of enabling concurrent LoRa transmissions, they

have been designed for decoding on a gateway-style USRP

device. In fact, most concurrent transmission techniques in

our community [43, 44, 51] have been prototyped on USRPs

and it is unclear if a low-power IoT endpoint device can de-

11

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Duration (minutes)

FPGA: LoRa
FPGA: BLE

MCU: LoRa/BLE

Figure 14: OTA Programming Time. We show CDF of OTA program-
ming time for programming LoRa and BLE implementations on tinySDR.

code concurrent transmissions in real-time within its strin-

gent power and resource constraints. TinySDR enables us to

explore such questions and design MAC protocols for decod-

ing concurrent transmissions on IoT endpoints.

Using orthogonal LoRa codes. Here we explore a spe-

cific way of enabling concurrent transmissions in LoRa: us-

ing orthogonal codes. Specifically, to allow multiple LoRa

nodes to communicate at the same time, we exploit LoRa’s

support for orthogonal transmissions [15] which can occupy

the same frequency channel without interfering with each

other. Two chirp symbols are orthogonal when they have

a different chirp slope. For a chirp with a spreading factor

of SF and bandwidth of BW , the chirp slope is given by:
BW2

2SF [46].

Decoding concurrent transmissions on tinySDR. In or-

der to receive concurrent LoRa transmissions, tinySDR must

be able to demodulate LoRa upchirp symbols with differ-

ent slopes. Suppose we have two LoRa transmissions that

use different spreading factor and bandwidth configurations:

SF1,BW1 and SF2,BW2. To decode them concurrently, we im-

plement decoders similar to Fig. 6b for each chirp configura-

tion in parallel on our FPGA. Specifically, we first generate a

corresponding downchirp symbol for each configuration. We

then correlate the received signals with their corresponding

downchirp symbols using time domain multiplication. After

correlation, we take the appropriate length FFT of the result.

Evaluation. We evaluate three key aspects of our design:

1) the platform’s effectiveness in decoding concurrent trans-

missions across a range of RSSI values, 2) the power con-

sumption at the endpoint device while decoding concurrent

transmissions and 3) the computational resources required.

We use two SX1276 LoRa transceivers as our transmit-

ters and set them to transmit continuously at two different

settings: they both use a spreading factor of SF = 8 but

have two different bandwidth setups, BW1 = 125kHz and

BW2 = 250kHz. We set the two to send random chirp sym-

bols. The tinySDR platform decodes these two concurrent

transmissions and computes the chirp symbol error rate for

each transmission. We evaluate two scenarios: 1) when the

two transmitters have a similar power level at the receiver,

2) fix the power of one of the transmitters and increase the

power of the other one.

Fig. 15a shows the results when the two transmissions

have similar power at the receiver. We lose around 2 dB and

0.5 dB sensitivity for concurrent demodulation of LoRa con-

 0
 20
 40
 60
 80

 100

-130 -125 -120 -115 -110 -105 -100

C
hi

rp
 S

ym
bo

l
E

rr
or

 R
at

e(
%

)

RSSI (dBm)

SF8, BW250kHz
SF8, BW125kHz

SF8, BW250k Sensitivity
SF8, BW125k Sensitivity

(a) Orthogonal Transmissions with Same Received Signal Power.

 0
 20
 40
 60
 80

 100

-130 -125 -120 -115 -110 -105

C
hi

rp
 S

ym
bo

l
E

rr
or

 R
at

e(
%

)

Interference Signal Power (dBm)

SF8, BW125kHz

Noise
Dominant

Interference
Dominant

(b) Orthogonal Transmissions with Different Received Signal Power.

We set the power of LoRa transmission with BW1 = 125kHz to -123 dBm

and increase the power of the other one.

Figure 15: Orthogonal LoRa Demodulation Evaluation

figurations with BW1 = 125kHz and BW2 = 250kHz. This

is because while in theory the two chirps are orthogonal,

in practice, the chirps are created in the digital domain

with discrete frequency steps which introduces some non-

orthogonality.

Fig. 15b shows the results when the first LoRa transmitter

BW1 = 125kHz is received near its sensitivity of -123 dBm

and and the second LoRa transmitter changes its power. Here,

the chirp symbol error rate is affected when the other trans-

mission’s power is higher than -116 dBm. When two con-

current transmissions are present, one acts as an interferer

when decoding the other. The combined power of noise and

the interferer, PI,N , determines the error rate. When sweep-

ing the power of interferer, at first the PI,N is dominated by

noise and we should not see much effect on error rate. Then

at some point the power of them would be equal which re-

sults in a 3 dB increase of PI,N and hence 3 dB sensitivity

loss and afterwards the the error rate is determined by the in-

terferer power. This demonstrates the need for power control

for concurrent transmissions to be received on IoT endpoints.

Our parallel demodulation implementation, uses only 17%

of the FPGAs resources. This concurrent demodulation im-

plementation consumes 207 mW. Note that Semtech gateway

solutions such as SX1308 [28] can receive multiple transmis-

sions. But, to the best of our knowledge we are the first to

show that concurrent LoRa transmissions can be decoded on

a IoT endpoint while meeting its power and computational

requirements, which is difficult to do without tinySDR.

7 Conclusion and Research Opportunities

This paper presents the first SDR platform specifically tai-

lored to the needs of IoT endpoints that can be used for

large scale IoT network deployments. The goal of tinySDR

is to provide a platform that can catalyze research in IoT net-

12

works.

Research on PHY/MAC protocols. TinySDR presents

an opportunity for researchers to avoid the time consum-

ing endeavor of building their own custom hardware and in-

stead focus on PHY/MAC protocol innovations across the

stack: What is the trade-off between packet length and over-

all throughput? Are there benefits of rate adaptation? What

about concurrent transmissions from IoT devices? One can

also create multi-hop IoT PHY/MAC innovations, which

have not been explored well given the lack of a flexible plat-

form.

Research on IoT localization. TinySDR could also be

used to build localization systems as it gives access to I/Q sig-

nals and therefore phase across 2.4 GHz and 900 MHz bands,

which forms the basis for many localization algorithms [61].

One can also explore distributed localization solutions that

combine the phase information across a distributed set of sen-

sors to create a large MIMO sensing system.

Machine learning on IoT devices. The FPGA on

tinySDR opens up exciting opportunities [41] for exploring

machine learning algorithms on-board. This would allow re-

searchers to explore trade-offs between the power overhead

of running an on-board classifier versus sending data to the

cloud. This could also enable use of high bandwidth sensors

such as cameras and microphones where the power bottle-

neck may be communication rather than sensing.

Low power backscatter readers. Recent work on ambi-

ent backscatter [50, 52, 53, 58, 69] aims to achieve ultra-low

power communication for IoT devices. Many of these pro-

posals require either a single-tone generator [53] or a custom

receiver to decode the backscatter transmissions [48, 49, 60].

TinySDR can be used as a building block to achieve a battery-

operated backscatter signal generation and receiver.

Better programming interface and protocols. In addi-

tion to IoT research opportunities, we can also improve our

platform in multiple ways. TinySDR currently requires users

to write Verilog or VHDL to program the FPGA and C code

for programming the microcontroller. Future versions can in-

corporate a pipeline to use high level synthesis tools or inte-

grate with GNUradio for easy prototyping. Further, tinySDR

uses a simple MAC protocol for programming with a focus

on using minimal system resources to allow for other cus-

tom software; however we could explore modified MAC pro-

tocols that simultaneously broadcast the updates across the

network to reduce programming time.

References

[1] bladerf 2.0 micro. https://www.nuand.com/

bladeRF_2_micro-brief.pdf.

[2] Limesdr. https://myriadrf.org/projects/

limesdr/.

[3] Limesdr-mini. https://wiki.myriadrf.org/

LimeSDR-Mini.

[4] An overview of lvds technology. http://www.ti.

com/lit/an/snla165/snla165.pdf.

[5] Rtlsdr rtl2832u dvb-t tuner dongles. https://www.

rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/ .

[6] Usrp b200mini. https://www.ettus.com/content/

files/USRP_B200mini_Data_Sheet.pdf.

[7] Usrp e310. https://www.ettus.com/content/

files/USRP_E310_Datasheet.pdf.

[8] 2.45 ghz balun, filter combination, 2003. https://

www.mouser.com/datasheet/2/611/JTI_

Balun-Filter-2450FB15A050_2006-09-242325.

pdf.

[9] Max5189 datasheet, 2003. https://datasheets.

maximintegrated.com/en/ds/MAX5186-MAX5189.

pdf.

[10] Max2831 datasheet, 2011. https://datasheets.

maximintegrated.com/en/ds/MAX2831-MAX2832.

pdf.

[11] Mdo4000b series datasheet, 2013. http://

www.testequipmenthq.com/datasheets/

TEKTRONIX-MDO4104B-6-Datasheet.pdf.

[12] Ad9364 transceiver datasheet, 2014.

https://www.analog.com/media/en/

technical-documentation/data-sheets/AD9364.

pdf.

[13] Smartsense temp/humidity manual, 2014. https://

support.smartthings.com/hc/en-us/articles/

203040294-SmartSense-Temperature-Humidity-Sensor .

[14] 3.5mhz, 500ma synchronous step down dc-dc regu-

lator, 2015. https://www.semtech.com/uploads/

documents/sc195.pdf.

[15] Lora modulation basics, 2015. https://www.

semtech.com/uploads/documents/an1200.22.

pdf.

[16] Ad9361 transceiver datasheet, 2016.

https://www.analog.com/media/en/

technical-documentation/data-sheets/AD9361.

pdf.

[17] Ad9363 transceiver datasheet, 2016.

https://www.analog.com/media/en/

technical-documentation/data-sheets/AD9363.

pdf.

13

https://www.nuand.com/bladeRF_2_micro-brief.pdf
https://www.nuand.com/bladeRF_2_micro-brief.pdf
https://myriadrf.org/projects/limesdr/
https://myriadrf.org/projects/limesdr/
https://wiki.myriadrf.org/LimeSDR-Mini
https://wiki.myriadrf.org/LimeSDR-Mini
http://www.ti.com/lit/an/snla165/snla165.pdf
http://www.ti.com/lit/an/snla165/snla165.pdf
https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
https://www.ettus.com/content/files/USRP_B200mini_Data_Sheet.pdf
https://www.ettus.com/content/files/USRP_B200mini_Data_Sheet.pdf
https://www.ettus.com/content/files/USRP_E310_Datasheet.pdf
https://www.ettus.com/content/files/USRP_E310_Datasheet.pdf
https://www.mouser.com/datasheet/2/611/JTI_Balun-Filter-2450FB15A050_2006-09-242325.pdf
https://www.mouser.com/datasheet/2/611/JTI_Balun-Filter-2450FB15A050_2006-09-242325.pdf
https://www.mouser.com/datasheet/2/611/JTI_Balun-Filter-2450FB15A050_2006-09-242325.pdf
https://www.mouser.com/datasheet/2/611/JTI_Balun-Filter-2450FB15A050_2006-09-242325.pdf
https://datasheets.maximintegrated.com/en/ds/MAX5186-MAX5189.pdf
https://datasheets.maximintegrated.com/en/ds/MAX5186-MAX5189.pdf
https://datasheets.maximintegrated.com/en/ds/MAX5186-MAX5189.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
http://www.testequipmenthq.com/datasheets/TEKTRONIX-MDO4104B-6-Datasheet.pdf
http://www.testequipmenthq.com/datasheets/TEKTRONIX-MDO4104B-6-Datasheet.pdf
http://www.testequipmenthq.com/datasheets/TEKTRONIX-MDO4104B-6-Datasheet.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9364.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9364.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9364.pdf
https://support.smartthings.com/hc/en-us/articles/203040294-SmartSense-Temperature-Humidity-Sensor
https://support.smartthings.com/hc/en-us/articles/203040294-SmartSense-Temperature-Humidity-Sensor
https://support.smartthings.com/hc/en-us/articles/203040294-SmartSense-Temperature-Humidity-Sensor
https://www.semtech.com/uploads/documents/sc195.pdf
https://www.semtech.com/uploads/documents/sc195.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://www.semtech.com/uploads/documents/an1200.22.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9363.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9363.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9363.pdf

[18] Adg904 datasheet by analog devices,

2016. http://www.analog.com/media/en/

technical-documentation/data-sheets/ADG904.

pdf.

[19] At86rf215 datasheet, 2016.

[20] Cc2650 simplelink datasheet by ti, 2016. http://www.

ti.com/lit/ds/symlink/cc2650.pdf.

[21] Pcbminions inc., 2016. https://pcbminions.com/.

[22] Se2435l power amplifier datasheet, 2016. http://www.

skyworksinc.com/uploads/documents/SE2435L_

202412I.pdf.

[23] Sx1276 datasheet by semtech, 2016. https://www.

semtech.com/uploads/documents/sx1276.pdf.

[24] Lms7002m datasheet, 2017. https://

limemicro.com/app/uploads/2017/07/

LMS7002M-Data-Sheet-v3.1r00.pdf.

[25] Lora alliance, 2017. https://lora-alliance.

org/sites/default/files/2018-04/lorawantm_

specification_-v1.1.pdf.

[26] Msp432p401r, msp432p401m simplelink mixed-signal

microcontrollers datasheet, 2017. http://www.ti.

com/lit/ds/symlink/msp432p401r.pdf.

[27] Sky66112 power amplifier datasheet, 2017. http://

www.skyworksinc.com/uploads/documents/

SKY66112_11_203225L.pdf.

[28] Sx1308 datasheet by semtech, 2017. https://www.

semtech.com/uploads/documents/sx1308.pdf.

[29] Ad9228 datasheet, 2018. https://www.analog.

com/media/en/technical-documentation/

data-sheets/ad9228.pdf.

[30] Adalm-pluto overview, 2018. https://wiki.analog.

com/university/tools/pluto.

[31] Atmel at86rf215 868/915/928 mhz impedance matched

balun + lpf, 2018. https://www.mouser.com/

datasheet/2/611/0896BM15E0025-1518705.pdf.

[32] Lfe5u fpga family datasheet, 2018. http://www.

latticesemi.com/view_document?document_

id=50461.

[33] minilzo implementation, 2018. http://www.

oberhumer.com/opensource/lzo/#abstract.

[34] Sx1257 datasheet by semtech, 2018. https://www.

semtech.com/uploads/documents/DS_SX1257_V1.

2.pdf.

[35] Usrp x-300, 2018. https://www.ettus.com/

product/details/X300-KIT.

[36] Bluetooth core specification v5.1, Jan. 2019.

https://www.bluetooth.com/specifications/

bluetooth-core-specification .

[37] The things network, 2019. https://www.

thethingsnetwork.org/.

[38] The things network arduino library, 2019.

https://github.com/TheThingsNetwork/

arduino-device-lib.

[39] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro,

and A. Sabharwal. Warp, a unified wireless network

testbed for education and research. In 2007 IEEE In-

ternational Conference on Microelectronic Systems Ed-

ucation (MSE’07), pages 53–54. IEEE, 2007.

[40] N. Anand, E. Aryafar, and E. W. Knightly. Warplab: a

flexible framework for rapid physical layer design. In

Proceedings of the 2010 ACM workshop on Wireless of

the students, by the students, for the students, pages 53–

56. ACM, 2010.

[41] J. Chan, A. Wang, A. Krishnamurthy, and S. Gol-

lakota. Deepsense: Enabling carrier sense in low-

power wide area networks using deep learning. CoRR,

abs/1904.10607, 2019.

[42] P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, and P. Vol-

gyesi. Putting the software radio on a low-calorie diet.

In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, page 20. ACM, 2010.

[43] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan. Em-

powering low-power wide area networks in urban set-

tings. SIGCOMM ’17.

[44] S. Gollakota and D. Katabi. Zigzag decoding: Combat-

ing hidden terminals in wireless networks. In Proceed-

ings of the ACM SIGCOMM 2008 Conference on Data

Communication, SIGCOMM ’08, 2008.

[45] Y. Guddeti, R. Subbaraman, M. Khazraee, A. Schul-

man, and D. Bharadia. Sweepsense: Sensing 5 ghz in 5

milliseconds with low-cost radios. In 16th {USENIX}
Symposium on Networked Systems Design and Imple-

mentation ({NSDI} 19), pages 317–330, 2019.

[46] M. Hessar, A. Najafi, and S. Gollakota. Netscat-

ter: Enabling large-scale backscatter networks. In

16th {USENIX} Symposium on Networked Systems De-

sign and Implementation ({NSDI} 19), pages 271–284,

2019.

[47] R. Hildebrandt. The pseudo dual-edge d-flip-flop,

2011.

14

http://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADG904.pdf
http://www.ti.com/lit/ds/symlink/cc2650.pdf
http://www.ti.com/lit/ds/symlink/cc2650.pdf
https://pcbminions.com/
http://www.skyworksinc.com/uploads/documents/SE2435L_202412I.pdf
http://www.skyworksinc.com/uploads/documents/SE2435L_202412I.pdf
http://www.skyworksinc.com/uploads/documents/SE2435L_202412I.pdf
https://www.semtech.com/uploads/documents/sx1276.pdf
https://www.semtech.com/uploads/documents/sx1276.pdf
https://limemicro.com/app/uploads/2017/07/LMS7002M-Data-Sheet-v3.1r00.pdf
https://limemicro.com/app/uploads/2017/07/LMS7002M-Data-Sheet-v3.1r00.pdf
https://limemicro.com/app/uploads/2017/07/LMS7002M-Data-Sheet-v3.1r00.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.skyworksinc.com/uploads/documents/SKY66112_11_203225L.pdf
http://www.skyworksinc.com/uploads/documents/SKY66112_11_203225L.pdf
http://www.skyworksinc.com/uploads/documents/SKY66112_11_203225L.pdf
https://www.semtech.com/uploads/documents/sx1308.pdf
https://www.semtech.com/uploads/documents/sx1308.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad9228.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad9228.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad9228.pdf
https://wiki.analog.com/university/tools/pluto
https://wiki.analog.com/university/tools/pluto
https://www.mouser.com/datasheet/2/611/0896BM15E0025-1518705.pdf
https://www.mouser.com/datasheet/2/611/0896BM15E0025-1518705.pdf
http://www.latticesemi.com/view_document?document_id=50461
http://www.latticesemi.com/view_document?document_id=50461
http://www.latticesemi.com/view_document?document_id=50461
http://www.oberhumer.com/opensource/lzo/#abstract
http://www.oberhumer.com/opensource/lzo/#abstract
https://www.semtech.com/uploads/documents/DS_SX1257_V1.2.pdf
https://www.semtech.com/uploads/documents/DS_SX1257_V1.2.pdf
https://www.semtech.com/uploads/documents/DS_SX1257_V1.2.pdf
https://www.ettus.com/product/ details/X300-KIT
https://www.ettus.com/product/ details/X300-KIT
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/
https://github.com/TheThingsNetwork/arduino-device-lib
https://github.com/TheThingsNetwork/arduino-device-lib

[48] V. Iyer, J. Chan, I. Culhane, J. Mankoff, and S. Gol-

lakota. Wireless analytics for 3d printed objects. In Pro-

ceedings of the 31st Annual ACM Symposium on User

Interface Software and Technology, UIST ’18, pages

141–152, New York, NY, USA, 2018. ACM.

[49] V. Iyer, J. Chan, and S. Gollakota. 3d printing wire-

less connected objects. ACM Trans. Graph., 36(6), Nov.

2017.

[50] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith.

Inter-technology backscatter: Towards internet connec-

tivity for implanted devices. In Proceedings of the 2016

ACM SIGCOMM Conference.

[51] S. Katti, S. Gollakota, and D. Katabi. Embracing wire-

less interference: Analog network coding. In ACM SIG-

COMM Computer Communication Review, volume 37,

pages 397–408. ACM, 2007.

[52] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and

D. Wetherall. Wi-fi backscatter: Internet connectivity

for rf-powered devices. In Proceedings of the 2014

ACM Conference on SIGCOMM.

[53] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Pas-

sive wi-fi: Bringing low power to wi-fi transmissions.

In NSDI 16.

[54] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabhar-

wal, and E. W. Knightly. Warp: a flexible platform

for clean-slate wireless medium access protocol design.

ACM SIGMOBILE Mobile Computing and Communi-

cations Review, 12(1):56–58, 2008.

[55] Y.-S. Kuo, P. Pannuto, T. Schmid, and P. Dutta. Re-

configuring the software radio to improve power, price,

and portability. In Proceedings of the 10th ACM Con-

ference on Embedded Network Sensor Systems, pages

267–280. ACM, 2012.

[56] Y.-S. Kuo, T. Schmid, and P. Dutta. A compact, in-

expensive, and battery-powered software-defined radio

platform. In Proceedings of the 11th international con-

ference on Information Processing in Sensor Networks,

pages 137–138. ACM, 2012.

[57] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,

C. Chakrabarti, and K. Flautner. Soda: A low-power

architecture for software radio. ACM SIGARCH Com-

puter Architecture News, 34(2):89–101, 2006.

[58] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall,

and J. R. Smith. Ambient backscatter: Wireless com-

munication out of thin air. SIGCOMM ’13.

[59] G. J. Minden, J. B. Evans, L. Searl, D. DePardo, V. R.

Petty, R. Rajbanshi, T. Newman, Q. Chen, F. Weidling,

J. Guffey, et al. Kuar: A flexible software-defined radio

development platform. In 2007 2nd IEEE International

Symposium on New Frontiers in Dynamic Spectrum Ac-

cess Networks, pages 428–439. IEEE, 2007.

[60] S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and

J. R. Smith. Towards battery-free hd video streaming.

In 15th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 18), 2018.

[61] R. Nandakumar, V. Iyer, and S. Gollakota. 3d localiza-

tion for sub-centimeter sized devices. In Proceedings

of the 16th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’18, 2018.

[62] R. Narayanan and S. Kumar. Revisiting software de-

fined radios in the iot era. In Proceedings of the

17th ACM Workshop on Hot Topics in Networks. ACM,

2018.

[63] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross,

H. Balakrishnan, et al. Airblue: A system for cross-

layer wireless protocol development. In Proceedings of

the 6th ACM/IEEE Symposium on Architectures for Net-

working and Communications Systems, page 4. ACM,

2010.

[64] C. Shepard, A. Javed, and L. Zhong. Control channel

design for many-antenna mu-mimo. In Proceedings

of the 21st Annual International Conference on Mobile

Computing and Networking, MobiCom ’15.

[65] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta,

R. Yang, and L. Zhong. Argos: Practical many-antenna

base stations. In Proceedings of the 18th Annual In-

ternational Conference on Mobile Computing and Net-

working, Mobicom ’12.

[66] P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E.

Nolan, B. Ozgul, T. W. Rondeau, J. Noguera, and L. E.

Doyle. Iris: an architecture for cognitive radio net-

working testbeds. IEEE communications magazine,

48(9):114–122, 2010.

[67] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith,

and S. Gollakota. Lora backscatter: Enabling the vision

of ubiquitous connectivity. Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies, 2017.

[68] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M.

Voelker. Sora: high-performance software radio us-

ing general-purpose multi-core processors. In 6th

{USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 09), 2009.

15

[69] A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota.

FM backscatter: Enabling connected cities and smart

fabrics. In 14th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 17).

[70] H. Wu, T. Wang, Z. Yuan, C. Peng, Z. Li, Z. Tan,

B. Ding, X. Li, Y. Li, J. Liu, et al. The tick pro-

grammable low-latency sdr system. In Proceedings

of the 23rd Annual International Conference on Mo-

bile Computing and Networking, pages 101–113. ACM,

2017.

[71] J. Zhang, X. Zhang, P. Kulkarni, and P. Ramanathan.

Openmili: a 60 ghz software radio platform with a

reconfigurable phased-array antenna. In Proceedings

of the 22nd Annual International Conference on Mo-

bile Computing and Networking, pages 162–175. ACM,

2016.

16

	1 Introduction
	2 SDR Requirements for IoT Nodes
	3 TinySDR Platform
	3.1 Hardware Design
	3.1.1 Designing the Software Radio
	3.1.2 Designing OTA Update Hardware

	3.2 Interfacing Between Blocks
	3.2.1 Reading and Writing I/Q Samples
	3.2.2 Memory Interfaces
	3.2.3 RF, Control and Sensor Interfaces

	3.3 Power Management Unit
	3.4 Over-the-Air Programming protocol

	4 Case Studies: LoRa and BLE Beacons
	4.1 LoRa Protocol with tinySDR
	4.2 BLE Beacons with tinySDR

	5 Evaluation
	5.1 Benchmarks and Specifications
	5.2 Evaluating the Case Studies
	5.3 Over-the-Air Programming

	6 Research Study: Concurrent Reception
	7 Conclusion and Research Opportunities

