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Abstract

Data poisoning attacks aim to manipulate the model
produced by a learning algorithm by adversarially
modifying the training set. We consider differential
privacy as a defensive measure against this type of
attack. We show that private learners are resistant to
data poisoning attacks when the adversary is only
able to poison a small number of items. However,
this protection degrades as the adversary is allowed
to poison more data. We emprically evaluate this
protection by designing attack algorithms targeting
objective and output perturbation learners, two stan-
dard approaches to differentially-private machine
learning. Experiments show that our methods are
effective when the attacker is allowed to poison suf-
ficiently many training items.

1 Introduction

As machine learning is increasingly used for consequential de-
cisions in the real world, their security has received more and
more scrutiny. Most machine learning systems were originally
designed without much thought to security, but researchers
have since identified several kinds of attacks under the um-
brella of adversarial machine learning. The most well-known
example is adversarial examples [Szegedy et al., 2013], where
inputs are crafted to fool classifiers. More subtle methods aim
to recover training examples [Fredrikson et al., 2015], or even
extract the model itself [Tramèr et al., 2016].

In data poisoning attacks [Biggio et al., 2012; Koh et al.,
2018; Mei and Zhu, 2015; Alfeld et al., 2016; Li et al., 2016;
Xiao et al., 2015; Muñoz-González et al., 2017; Jun et al.,
2018; Zhao et al., 2017; Zhang and Zhu, 2019], the adver-
sary corrupts examples at training time to manipulate the
learned model. As is generally the case in adversarial ma-
chine learning, the rise of data poisoning attacks has outpaced
the development of robust defenses. While attacks are often
evaluated against specific target learning procedures, effec-
tive defenses should provide protection—ideally guaranteed—
against a broad class of attacks. In this paper, we study dif-
ferential privacy [Dwork et al., 2006; Dwork, 2011] as a
simple and general defensive technique against data poison-
ing. While the original motivation of differential privacy was
originally capture notions of privacy—the output should not

depend too much on any single individual’s (private) data—it
also provides a defense against data poisoning. Concretely,
we establish quantitative bounds on how much an adversary
can change the distribution over learned models by manipu-
lating a fixed number of training items. We are not the first
to design defenses to data poisoning [Steinhardt et al., 2017;
Raghunathan et al., 2018], but our proposal has several no-
table strengths compared to previous work. First, our defense
provides provable protection against a worst-case adversary.
Second, our defense is general. Differentially-private learning
procedures are known for a wide variety of tasks, and new
algorithms are continually being developed. These learners
are all resilient against data poisoning.

We complement our theoretical bounds with an empiri-
cal evaluation of data poisoning attacks against differentially
private learners. Concretely, we design an attack based on
stochastic gradient descent to search for effective training ex-
amples to corrupt against specific learning algorithms. We
evaluate our attack on two private learners: objective perturba-
tion [Kifer et al., 2012] and output perturbation [Chaudhuri et
al., 2011]. Our evaluation confirms the theoretical prediction
that private learners are vulnerable to data poisoning attacks
when the adversary can poison sufficiently many examples. A
gap remains between the performance of attack and theoreti-
cal limit of data poisoning attacks—it seems like differential
privacy provides a substantially stronger defense in practice
than in theory. We discuss possible causes and leave further
investigation to future work.

2 Preliminaries

Let the data space be Z = X × Y , where X is the feature
space and Y is the label space. We write D = ∪∞

n=0
Zn for

the space of all training sets, and write D ∈ D for a particular
training set. A randomized learner M : D × R

d 7→ Θ maps a
training set D and noise b ∈ R

d drawn from a distribution ν
to a model in the model space Θ.

Definition 1. (Differential Privacy) M is (ǫ, δ)-differentially-

private if ∀D, D̃ ∈ D that differ by one item, and ∀S ⊂ Θ,

P (M(D, b) ∈ S) ≤ eǫP
(

M(D̃, b) ∈ S
)

+ δ, (1)

where the probability is taken over b ∼ ν. When δ = 0, we
say that M is ǫ-differentially private.



Many standard machine learning tasks can be phrased as
optimization problems modeling empirical risk minimiza-
tion (ERM). Broadly speaking, there are two families of
techniques in the privacy literature for solving these prob-
lems. Objective perturbation injects noise into the objec-
tive function of a vanilla machine learner to train a ran-
domized model [Chaudhuri et al., 2011; Kifer et al., 2012;
Nozari et al., 2016]. In contrast, output perturbation runs the
vanilla learner but after training, it randomly perturbs the out-
put model [Chaudhuri et al., 2011]. We will consider data
poisoning attacks against both kinds of learners. We first fix
the adversarial attack setting.

Knowledge of the attacker: The attacker has full knowledge
of the full training set D and the differentially-private machine
learner M, including the noise distribution ν. However, the
attacker does not know the realized noise b.

Ability of the attacker: The attacker is able to modify the
clean training set D by changing the features or labels, adding
additional items, or deleting existing items, but the attacker
can modify at most k items. Formally, the poisoned training

set D̃ must lie in the ball B(D, k) ⊂ D, where the center is
the clean data D and the radius k is the maximum number of
item changes.

Goal of the attacker: The attacker aims to drive the (stochas-

tic) model learned from the poisoned data θ̃ = M(D̃, b) to
achieve a certain goal. Formally, we define a cost function

C : Θ 7→ R that measures how much the poisoned model θ̃
deviates from the attack target. Then the attack problem can
be formulated as minimizing an objective function J :

min
D̃∈B(D,k)

J(D̃) := Eb

[

C(M(D̃, b))
]

. (2)

This formulation differs from previous works (e.g. [Biggio et
al., 2012; Mei and Zhu, 2015; Xiao et al., 2015]) because the
differentially-private learner produces a stochastic model, so
the objective takes the expected value of C.

Example 1. (Parameter-Targeting Attack) If the attacker
wants the output model to be close to a target model θ′, the

attacker can define C(θ̃) = 1
2‖θ̃ − θ′‖2. Minimizing J(D̃)

pushes the poisoned model close to θ′ in expectation.

Example 2. (Label-Targeting Attack) If the attacker wants
small prediction error on an evaluation set {z∗i }i∈[m], the

attacker can define C(θ̃) = 1
m

∑m
i=1 ℓ(θ̃, z

∗
i ) where ℓ(θ̃, z∗i )

is the loss on item z∗i = (x∗
i , y

∗
i ). Minimizing J(D̃) pushes

the prediction on x∗
i towards the target label y∗i .

Example 3. (Label-Aversion Attack) If the attacker wants to
induce large prediction error on an evaluation set {z∗i }i∈[m],

the attacker can define C(θ̃) = − 1
m

∑m
i=1 ℓ(θ̃, z

∗
i ), a non-

positive cost. Minimizing J(D̃) pushes the prediction on x∗
i

away from the true label y∗i .

Now, we turn to our two main contributions: i) we show
that differentially-private learners have a degree of natural
immunity against data poisoning attacks. Specifically, in sec-
tion 3 we present a lower bound on how much the attacker

can reduce J(D̃) by manipulating up to k items; and ii) as k
increases, the attacker’s power grows and it becomes easier

to attack differentially-private learners. In section 4 we pro-
pose a stochastic gradient descent algorithm to solve the attack
problem (2). To our knowledge, this is the first data poisoning
attack targeting specifically differentially-private learners.

3 Differential Privacy Resists Data Poisoning

Fixing the number of poisoned items k and a differentially
private learner, can a powerful attacker achieve arbitrarily low

attack cost J(D̃)? We show that the answer is no: differen-

tial privacy implies a lower bound on how far J(D̃) can be
reduced, so private learners are inherently resistant to data
poisoning attacks. Previous work [Lecuyer et al., 2018] pro-
posed defenses based on differential privacy, but for test-time
attacks. While effective, these defenses require the classifier to
make randomized predictions. In contrast, our defense against
data poisoning only requires the learning algorithm, not the
classification process, to be randomized.

Our first result is for ǫ-differentially private learners: if an
attacker can manipulate at most k items in the clean data, then
the attack cost is lower bounded.

Theorem 1. Let M be an ǫ-differentially-private learner. Let

J(D̃) be the attack cost, where D̃ ∈ B(D, k), then

J(D̃) ≥ e−kǫJ(D) (C ≥ 0),

J(D̃) ≥ ekǫJ(D) (C ≤ 0).
(3)

Note that for C ≥ 0, Theorem 1 shows that no attacker
can achieve the trivial lower bound J(D̃) = 0. For C ≤ 0,

although J(D̃) could be unbounded from below, Theorem 1

shows that no attacker can reduce J(D̃) arbitrarily. These
results follow from the differential privacy property of M.
Corollary 2 re-states the theorem in terms of the minimum
number of items an attacker has to modify in order to suffi-

ciently reduce the attack cost J(D̃).

Corollary 2. Let M be an ǫ-differentially-private learner.
Assume J(D) 6= 0. Let τ ≥ 1. Then the attacker has to
modify at least k ≥ ⌈ 1

ǫ
log τ⌉ items in D in order to achieve

i). J(D̃) ≤ 1
τ
J(D) (C ≥ 0).

ii). J(D̃) ≤ τJ(D) (C ≤ 0).

To generalize Theorem 1 to (ǫ, δ)-private learners, we need
an additional assumption that C is bounded.

Theorem 3. Let M be (ǫ, δ)-differentially-private and J(D̃)

be the attack cost, where |C| ≤ C̄ and D̃ ∈ B(D, k). Then,

J(D̃) ≥ max{e−kǫ(J(D) +
C̄δ

eǫ − 1
)−

C̄δ

eǫ − 1
, 0}(C ≥ 0),

J(D̃) ≥ max{ekǫ(J(D)−
C̄δ

eǫ − 1
) +

C̄δ

eǫ − 1
,−C̄}(C ≤ 0).

(4)

As a corollary, we can lower-bound the minimum number
of modifications needed to reduce the attack cost to a certain
level.

Corollary 4. Let M be an (ǫ, δ)-differentially-private learner.
Assume J(D) 6= 0. Then



i). (0 ≤ C ≤ C̄): in order to achieve J(D̃) ≤ 1
τ
J(D) for

τ ≥ 1, the attacker has to modify at least the following
number of items in D.

k ≥ ⌈
1

ǫ
log

(eǫ − 1)J(D)τ + C̄δτ

(eǫ − 1)J(D) + C̄δτ
⌉. (5)

ii). (−C̄ ≤ C ≤ 0): in order to achieve J(D̃) ≤ τJ(D) for

τ ∈ [1,− C̄
J(D) ], the attacker has to modify at least the

following number of items in D.

k ≥ ⌈
1

ǫ
log

(eǫ − 1)J(D)τ − C̄δ

(eǫ − 1)J(D)− C̄δ
⌉. (6)

Note that in (5), the lower bound on k is always finite even
if τ = ∞, which means an attacker might be able to reduce

the attack cost J(D̃) to 0. This is in contrast to ǫ-differentially-

private learner, where J(D̃) = 0 can never be achieved. Thus,
the weaker (ǫ, δ)-differential privacy guarantee gives weaker
protection against attacks.

4 Data Poisoning Attacks on Private Learners

The results in the previous section provide a theoretical bound
on how effective a data poisoning attack can be against a
private learner. To evaluate how strong the protection is
in practice, we propose a range of attacks targeting general
differentially-private learners. Our adversary will modify (not
add or delete) any continuous features (for classification or re-
gression) and the continuous labels (for regression) on at most
k items in the training set. Restating the attack problem (2):

min
D̃⊂B(D,k)

J(D̃) = Eb

[

C(M(D̃, b))
]

(7)

This is a combinatorial problem—the attacker must pick k
items to modify. We propose a two-step attack procedure.

step I) use heuristic methods to select k items to poison.

step II) apply stochastic gradient descent to reduce J(D̃).

Step II) could lead to poisoned items taking arbitrary features
or labels. However, differentially-private learners typically
assume training examples are bounded. To avoid trivially-
detectable poisoned examples, we project poisoned features
and labels back to a bounded space after each iteration of SGD.
We now detail step II), assuming that the attacker has fixed k
items to poison. We will return to step I) later.

4.1 SGD on Differentially-Private Victims (DPV)

Our attacker uses stochastic gradient descent to minimize the

cost J(D̃). We first show how to compute a stochastic gradient
with respect to a training item.

Proposition 5. Assume M(D̃, b) is a differentiable function

of D̃, then under certain conditions (details deferred to the

full paper), a stochastic gradient of J(D̃) with respect to a

particular item z̃i is
∂C(M(D̃,b))

∂z̃i
, where b ∼ ν(b).

The concrete form of the stochastic gradient depends on
the target private learner M, as well as the attack cost (which
encodes the type of attack). In the following, we derive the
stochastic gradient for objective perturbation and output per-
turbation in the context of parameter-targeting attack with cost

function C(θ̃) = 1
2‖θ̃ − θ′‖2, where θ′ is the target model.

Instantiating Attack on Objective Perturbation

We first consider objective-perturbed private learners:

M(D̃, b) = argmin
θ∈Θ

n
∑

i=1

ℓ(θ, z̃i) + λΩ(θ) + b⊤θ, (8)

where ℓ is some convex learning loss, Ω is a regularization,
and Θ is the model space. Note that the noise b enters the
objective via linear product with the model θ. By Proposition 5,

the stochastic gradient is
∂C(M(D̃,b))

∂z̃i
= ∂C(θ̃)

∂z̃i
, where θ̃ =

M(D̃, b) is the poisoned model. By the chain rule, we have

∂C(θ̃)

∂z̃i
=

(

∂θ̃

∂z̃i

)⊤

dC(θ̃)

dθ̃
. (9)

Note that
dC(θ̃)

dθ̃
= θ̃ − θ′. Next we focus on deriving ∂θ̃

∂z̃i
.

Since (8) is convex, the learned model θ̃ must satisfy the
following Karush-Kuhn-Tucker (KKT) condition:

f(θ̃, z̃i) :=

n
∑

j=1

∂ℓ(θ̃, z̃j)

∂θ̃
+ λ

dΩ(θ̃)

dθ̃
+ b = 0. (10)

By using the derivative of implicit function, we have ∂θ̃
∂z̃i

=

−(∂f
∂θ̃

)−1 ∂f
∂z̃i

. We now give two examples where the base

learner is logistic regression and ridge regression, respectively.
In the case ℓ(θ, z̃) = log(1 + exp(−ỹθ⊤x̃)) and Ω(θ) =

1
2‖θ‖

2, learner (8) is objective-perturbed logistic regression:

M(D̃, b) = argmin
θ∈Θ

n
∑

i=1

log(1+exp(−ỹiθ
⊤x̃i))+

λ

2
‖θ‖2+b⊤θ,

(11)
where Θ = R

d. Our attacker will only modify the features,
thus ỹi = yi. We now derive stochastic gradient for x̃i. Define

sj = exp(yj θ̃
⊤x̃j). By (9), one can verify that

∂C(θ̃)
∂x̃i

=

(

yi

1 + si
I −

siθ̃x̃
⊤
i

(1 + si)2

)



λI +

n
∑

j=1

sj x̃j x̃
⊤
j

(1 + sj)2





−1

(θ̃−θ′).

Note that the noise b enters into stochastic gradient through

θ̃ = M(D̃, b).
In the case ℓ(θ, z̃) = 1

2 (ỹ − x̃⊤θ)2 and Ω(θ) = 1
2‖θ‖

2,
learner (8) is the objective-perturbed ridge regression:

M(D̃, b) = argmin
θ∈Θ

1

2
‖X̃θ − ỹ‖2 +

λ

2
‖θ‖2 + b⊤θ, (12)

where Θ = {θ ∈ R
d : ‖θ‖2 ≤ ρ}, X̃ ∈ R

n×d is the feature
matrix, and ỹ ∈ R

n is the label vector. Unlike logistic re-
gression, the objective-perturbed ridge regression requires the
model space to be bounded (see e.g. [Kifer et al., 2012]). The
attacker can modify both the features and the labels. By (9),

the stochastic gradient of x̃i is
∂C(θ̃)
∂x̃i

=

(

θ̃x̃⊤
i + (x̃⊤

i θ̃ − ỹi)I
)(

X̃⊤X̃ + (λ+ µ)I
)−1

(θ′ − θ̃),



where µ is the dual variable of constraint 1
2‖θ‖

2 ≤ ρ2

2 when
solving (12). The stochastic gradient of ỹi is

∂C(θ̃)

∂ỹi
= x̃⊤

i

(

X̃⊤X̃ + (λ+ µ)I
)−1

(θ̃ − θ′).

Note that the noise b enters into the stochastic gradient through

θ̃ = M(D̃, b).

Instantiating Attack on Output Perturbation

We now consider the output perturbation mechanism:

M(D̃, b) = b+ argmin
θ∈Θ

{

n
∑

i=1

ℓ(θ, z̃i) + λΩ(θ)

}

. (13)

The stochastic gradients for this target are similar to those for
objective perturbation. Again, we instantiate on two exam-
ples where the base learner is logistic regression and ridge
regression, respectively.

The output-perturbed logistic regression takes the following
form:

M(D̃, b) = b+argmin
θ∈Rd

n
∑

i=1

log(1+exp(−ỹiθ
⊤x̃i))+

λ

2
‖θ‖2,

(14)

Let sj = exp(yj(θ̃ − b)⊤x̃j), then we have
∂C(θ̃)
∂x̃i

=

(

yi

1 + si
I −

si(θ̃ − b)x̃⊤
i

(1 + si)2

)



λI +

n
∑

j=1

sj x̃j x̃
⊤
j

(1 + sj)2





−1

(θ̃−θ′).

The output-perturbed ridge regression takes the following
form

M(D̃, b) = b+ argmin
θ∈Θ

1

2
‖X̃θ − ỹ‖2 +

λ

2
‖θ‖2, (15)

where Θ = {θ : ‖θ‖2 ≤ ρ}. Let µ be the dual variable for

the constraint 1
2‖θ‖

2 ≤ ρ2
2 when solving the argmin in (15).

Then the stochastic gradients of x̃i and ỹi are

∂C(θ̃)

∂x̃i

=
(

(θ̃ − b)x̃⊤
i + x̃⊤

i (θ̃ − b)I − ỹiI
)

·
(

X̃⊤X̃ + (λ+ µ)I)
)−1

(θ′ − θ̃).

∂C(θ̃)

∂ỹi
= x̃⊤

i

(

X̃⊤X̃ + (λ+ µ)I
)−1

(θ̃ − θ′).

4.2 SGD on Surrogate Victims (SV)

We also consider an alternative, simpler way to perform step
II). When b = 0, the differentially-private learning algorithms
revert to the base learner which returns a deterministic model
M(D̃,0). The adversary can simply attack the base learner
(without b) as a surrogate for the differentially-private learner
M (with b) by solving the following problem:

min
D̃

C(M(D̃,0)). (16)

Since the objective is deterministic, we can work with its
gradient rather than its stochastic gradient, plugging in b = 0

into all derivations in section 4.1. Note that the attack found
by (16) will still be evaluated with respect to differentially-
private learners in our experiments.

4.3 Selecting Items to Poison

Now, we return to step I) of our attack: how can we select
the k items for poisoning? We give two heuristic methods:
shallow and deep selection.

Shallow selection selects the k items with the largest ini-

tial gradient norm ‖∂J(D̃)
∂z̃i

|D̃=D ‖. Modifying these items

will reduce the attack cost the most, at least initially. The
precise gradients to use during selection depend on the attack
in step II). When targeting differentially-private learners di-

rectly, computing the gradient of J(D̃) is difficult. We use
Monte-Carlo sampling to approximate the gradient gi of item

zi: gi ≈
1
m

∑m
s=1

∂
∂z̃i

C(M(D̃, bs)) |D̃=D, where bs are ran-

dom samples of privacy parameters. Then, the attacker picks
the k items with the largest ‖gi‖ to poison. When targeting

surrogate victim, the objective is C(M(D̃,0)), thus the at-

tacker computes the gradient of C(M(D̃,0)) of each clean

item zi: gi = d
dz̃i

C(M(D̃,0)) |D̃=D, and then picks the k

items with the largest ‖gi‖.
Deep selection selects items by estimating the influence of

an item on the final attack cost. When targeting a differentially-
private victim directly, the attacker first solves the following

relaxed attack problem: minD̃ J(D̃) + αR(D̃). Importantly,

here D̃ allows changes to all training items, not just k of

them. R(D̃) is a regularizer penalizing data modification with

weight α > 0. We take R(D̃) =
∑n

i=1 r(z̃i), where r(z̃i) is
the distance between the poisoned item z̃i and the clean item
zi. We define r(z̃i) =

1
2‖x̃i − xi‖

2 for logistic regression and

r(z̃i) =
1
2‖x̃i−xi‖

2+ 1
2 (ỹi−yi)

2 for ridge regression. After
solving the relaxed attack problem with SGD, the attacker
evaluates the amount of change r(z̃i) for all training items
and pick the top k to poison. When targeting a surrogate
victim, the attacker can solve the following relaxed attack first:

minD̃ C(M(D̃,0))+αR(D̃), and then select the k top items.
In summary, we have four attack algorithms based on com-

binations of methods used in step I) and step II): shallow-SV,
shallow-DPV, deep-SV and deep-DPV. In the following, we
evaluate the performance of these four algorithms.

5 Experiments

We now evaluate our attack with experiments, taking objective-
perturbed learners [Kifer et al., 2012] and output-perturbed
learners [Chaudhuri et al., 2011] as our victims. Throughout,
we use α = 10−4 for deep selection and fix a constant step size
η = 1 for (stochastic) gradient descent. After each iteration of
SGD, we project poisoned items to ensure feature norms are
at most 1 and labels are in [−1, 1].

5.1 Attacks Intelligently Modify Data

As a first example, we use label-aversion attack to illustrate
that our attack modifies data intelligently. The victim is an
objective-perturbed learner for ǫ-differentially private logistic
regression, with ǫ = 0.1 and regularizer λ = 10. The training
set contains n = 21 items uniformly sampled in the interval
[−1, 1] with labels yi = 1 [xi ≥ 0], see Figure 1(a). To gen-
erate the evaluation set, we construct m = 21 evenly-spaced
items in the interval [−1, 1], i.e., x∗

i = 0.1i,−10 ≤ i ≤ 10
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