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Abstract

Data poisoning attacks aim to manipulate the model
produced by a learning algorithm by adversarially
modifying the training set. We consider differential
privacy as a defensive measure against this type of
attack. We show that private learners are resistant to
data poisoning attacks when the adversary is only
able to poison a small number of items. However,
this protection degrades as the adversary is allowed
to poison more data. We emprically evaluate this
protection by designing attack algorithms targeting
objective and output perturbation learners, two stan-
dard approaches to differentially-private machine
learning. Experiments show that our methods are
effective when the attacker is allowed to poison suf-
ficiently many training items.

1 Introduction

As machine learning is increasingly used for consequential de-
cisions in the real world, their security has received more and
more scrutiny. Most machine learning systems were originally
designed without much thought to security, but researchers
have since identified several kinds of attacks under the um-
brella of adversarial machine learning. The most well-known
example is adversarial examples [Szegedy et al., 2013], where
inputs are crafted to fool classifiers. More subtle methods aim
to recover training examples [Fredrikson et al., 20151, or even
extract the model itself [Tramer et al., 2016].

In data poisoning attacks [Biggio et al., 2012; Koh et al.,
2018; Mei and Zhu, 2015; Alfeld et al., 2016; Li et al., 2016;
Xiao et al., 2015; Mufoz-Gonzalez et al., 2017; Jun et al.,
2018; Zhao et al., 2017; Zhang and Zhu, 2019], the adver-
sary corrupts examples at training time to manipulate the
learned model. As is generally the case in adversarial ma-
chine learning, the rise of data poisoning attacks has outpaced
the development of robust defenses. While attacks are often
evaluated against specific target learning procedures, effec-
tive defenses should provide protection—ideally guaranteed—
against a broad class of attacks. In this paper, we study dif-
ferential privacy [Dwork et al., 2006; Dwork, 2011] as a
simple and general defensive technique against data poison-
ing. While the original motivation of differential privacy was
originally capture notions of privacy—the output should not

depend too much on any single individual’s (private) data—it
also provides a defense against data poisoning. Concretely,
we establish quantitative bounds on how much an adversary
can change the distribution over learned models by manipu-
lating a fixed number of training items. We are not the first
to design defenses to data poisoning [Steinhardt er al., 2017;
Raghunathan et al., 2018], but our proposal has several no-
table strengths compared to previous work. First, our defense
provides provable protection against a worst-case adversary.
Second, our defense is general. Differentially-private learning
procedures are known for a wide variety of tasks, and new
algorithms are continually being developed. These learners
are all resilient against data poisoning.

We complement our theoretical bounds with an empiri-
cal evaluation of data poisoning attacks against differentially
private learners. Concretely, we design an attack based on
stochastic gradient descent to search for effective training ex-
amples to corrupt against specific learning algorithms. We
evaluate our attack on two private learners: objective perturba-
tion [Kifer er al., 2012] and output perturbation [Chaudhuri ez
al., 2011]. Our evaluation confirms the theoretical prediction
that private learners are vulnerable to data poisoning attacks
when the adversary can poison sufficiently many examples. A
gap remains between the performance of attack and theoreti-
cal limit of data poisoning attacks—it seems like differential
privacy provides a substantially stronger defense in practice
than in theory. We discuss possible causes and leave further
investigation to future work.

2 Preliminaries

Let the data space be Z = X x ), where X is the feature
space and ) is the label space. We write D = U2 Z™ for
the space of all training sets, and write D € D for a particular
training set. A randomized learner M : D x R?  © maps a
training set D and noise b € R? drawn from a distribution v/
to a model in the model space ©.

Definition 1. (Differential Privacy) M is (¢, 0)-differentially-
private if VD, D € D that differ by one item, and ¥S C O,

P (M(D,b) € S) < P (M(D,b) c 3) 6 ()

where the probability is taken over b ~ v. When § = 0, we
say that M is e-differentially private.



Many standard machine learning tasks can be phrased as
optimization problems modeling empirical risk minimiza-
tion (ERM). Broadly speaking, there are two families of
techniques in the privacy literature for solving these prob-
lems. Objective perturbation injects noise into the objec-
tive function of a vanilla machine learner to train a ran-
domized model [Chaudhuri et al., 2011; Kifer et al., 2012;
Nozari et al., 2016]. In contrast, output perturbation runs the
vanilla learner but after training, it randomly perturbs the out-
put model [Chaudhuri et al., 2011]. We will consider data
poisoning attacks against both kinds of learners. We first fix
the adversarial attack setting.

Knowledge of the attacker: The attacker has full knowledge
of the full training set D and the differentially-private machine
learner M, including the noise distribution v. However, the
attacker does not know the realized noise b.

Ability of the attacker: The attacker is able to modify the
clean training set D by changing the features or labels, adding
additional items, or deleting existing items, but the attacker
can modify at most k items. Formally, the poisoned training
set D must lie in the ball B(D, k) C D, where the center is
the clean data D and the radius £ is the maximum number of
item changes.

Goal of the attacker: The attacker aims to drive the (stochas-
tic) model learned from the poisoned data § = M (D, b) to
achieve a certain goal. Formally, we define a cost function
C : © — R that measures how much the poisoned model 6
deviates from the attack target. Then the attack problem can
be formulated as minimizing an objective function J:

J(D) :=E, [C(M(D, b))} . ?)

_ min

DeB(D,k)
This formulation differs from previous works (e.g. [Biggio et
al., 2012; Mei and Zhu, 2015; Xiao et al., 2015]) because the
differentially-private learner produces a stochastic model, so
the objective takes the expected value of C.

Example 1. (Parameter-Targeting Attack) If the attacker
wants the output model to be close to a target model ¢, the
attacker can define C(0) = £||0 — 0'||>. Minimizing J(D)
pushes the poisoned model close to 0’ in expectation.

Example 2. (Label-Targeting Attack) If the attacker wants
small prediction error on an evaluation set {z] };c[m], the

attacker can define C(0) = Ly 00, z) where £(6, zF)
is the loss on item z} = (x},y}). Minimizing J(D) pushes
the prediction on x; towards the target label y .

Example 3. (Label-Aversion Attack) If the attacker wants to

induce large prediction error on an evaluation set {2} }icm),
the attacker can define C(0) = —L 3" 0(0,2}), a non-

- m
positive cost. Minimizing J(D) pushes the prediction on x}
away from the true label y;.

Now, we turn to our two main contributions: ¢) we show
that differentially-private learners have a degree of natural
immunity against data poisoning attacks. Specifically, in sec-
tion 3 we present a lower bound on how much the attacker
can reduce J(D) by manipulating up to k items; and ii) as k
increases, the attacker’s power grows and it becomes easier

to attack differentially-private learners. In section 4 we pro-
pose a stochastic gradient descent algorithm to solve the attack
problem (2). To our knowledge, this is the first data poisoning
attack targeting specifically differentially-private learners.

3 Differential Privacy Resists Data Poisoning

Fixing the number of poisoned items % and a differentially
private learner, can a powerful attacker achieve arbitrarily low
attack cost J(D)? We show that the answer is no: differen-
tial privacy implies a lower bound on how far J (D) can be
reduced, so private learners are inherently resistant to data
poisoning attacks. Previous work [Lecuyer er al., 2018] pro-
posed defenses based on differential privacy, but for test-time
attacks. While effective, these defenses require the classifier to
make randomized predictions. In contrast, our defense against
data poisoning only requires the learning algorithm, not the
classification process, to be randomized.

Our first result is for e-differentially private learners: if an
attacker can manipulate at most k items in the clean data, then
the attack cost is lower bounded.

Theorem 1. Let M be an e-differentially-private learner. Let
J(D) be the attack cost, where D € B(D, k), then

J(D) = e *J(D) (C>0),
J(D) > e Jg(D) (C<0).

Note that for C > 0, Theorem 1 shows that no attacker
can achieve the trivial lower bound J(D) = 0. For C < 0,
although .J (D) could be unbounded from below, Theorem 1
shows that no attacker can reduce J(D) arbitrarily. These
results follow from the differential privacy property of M.
Corollary 2 re-states the theorem in terms of the minimum
number of items an attacker has to modify in order to suffi-

ciently reduce the attack cost J(D).

3)

Corollary 2. Let M be an e-differentially-private learner.
Assume J(D) # 0. Let 7 > 1. Then the attacker has to
modify at least k > [1log 7] items in D in order to achieve

i). JD)<L1D) (C=>0).
ii). J(D)<7J(D) (C<0).

To generalize Theorem 1 to (e, §)-private learners, we need
an additional assumption that C' is bounded.

Theorem 3. Let M be (e, 6)-differentially-private and .J (D)
be the attack cost, where |C| < C and D € B(D, k). Then,

o) o)

J(D) = max{e™™(J(D) + ——) = ———7,0HC 2 0),
J(D) > max{e**(J(D) — 660—51) + %, -C}(C <0).
4)

As a corollary, we can lower-bound the minimum number
of modifications needed to reduce the attack cost to a certain
level.

Corollary 4. Let M be an (e, §)-differentially-private learner.
Assume J(D) # 0. Then



i). (0 <C < QC): inorder to achieve J(D) < L.J(D) for
T > 1, the attacker has to modify at least the following
number of items in D.

1 c—1)J(D ol
kZ[flog(e )J( )T+_C'7'
€ (e —1)J(D)+ Cot
ii). (—=C < C <0): inorder to achieve J(D) < 7.J(D) for
Tel - J(D)] the attacker has to modify at least the
following number of items in D.
1 c~1)J(D)r—C§
k> Flog(e ) (D)7 = ¢
€ (e = 1)J(D)—-Cé
Note that in (5), the lower bound on k is always finite even
if 7 = oo, which means an attacker might be able to reduce
the attack cost J(D) to 0. This is in contrast to e-differentially-
private learner, where J(D) = 0 can never be achieved. Thus,
the weaker (e, §)-differential privacy guarantee gives weaker
protection against attacks.

]. &)

] (6)

4 Data Poisoning Attacks on Private Learners

The results in the previous section provide a theoretical bound
on how effective a data poisoning attack can be against a
private learner. To evaluate how strong the protection is
in practice, we propose a range of attacks targeting general
differentially-private learners. Our adversary will modify (not
add or delete) any continuous features (for classification or re-
gression) and the continuous labels (for regression) on at most
k items in the training set. Restating the attack problem (2):
min  J(D) = B, [C(M(D,b))] ™
DCB(D,k)
This is a combinatorial problem—the attacker must pick &
items to modify. We propose a two-step attack procedure.
step I) use heuristic methods to select k items to poison.

step IT) apply stochastic gradient descent to reduce J ([))

Step II) could lead to poisoned items taking arbitrary features
or labels. However, differentially-private learners typically
assume training examples are bounded. To avoid trivially-
detectable poisoned examples, we project poisoned features
and labels back to a bounded space after each iteration of SGD.
We now detail step II), assuming that the attacker has fixed k
items to poison. We will return to step I) later.

4.1 SGD on Differentially-Private Victims (DPV)
Our attacker uses stochastic gradient descent to minimize the
cost J (D) We first show how to compute a stochastic gradient
with respect to a training item.

Proposition 5. Assume M(D,b) is a differentiable function
of D, then under certain conditions (details deferred to the
full paper), a stochastic gradient of J (ﬁ) with respect to a
particular item Z; is %;{D’b», where b ~ v(b).

The concrete form of the stochastic gradient depends on
the target private learner M, as well as the attack cost (which
encodes the type of attack). In the following, we derive the
stochastic gradient for objective perturbation and output per-
turbation in the context of parameter-targeting attack with cost
function C'(6) = %Hé — 0'||%, where 6 is the target model.

Instantiating Attack on Objective Perturbation
We first consider objective-perturbed private learners:

M(D,b) = argmanE (0,%) +AQ0)+b'0, (8)
SIC —

where / is some convex learning loss, € is a regularization,
and O is the model space. Note that the noise b enters the
objective via linear product with the model 6. By Proposition 5,

ac(/\g@,b)) _ 360@ where 0 =

the stochastic gradient is
M(D, b) is the poisoned model. By the chain rule, we have

ac(h) _ <aé> dc ().

0%; 0%; df 2

Note that dC(G)

Since (8) is convex, the learned model 6 must satisfy the
following Karush-Kuhn-Tucker (KKT) condition:

= 0 — 0. Next we focus on deriving gg.

- "L 000,%) . d6)
0,%;) = L A—~2 +b=0. (10)
K ) ; 00 do
By using the derivative of implicit function, we have 5959; =

—(%)_1 ngL . We now give two examples where the base

learner is logistic regression and ridge regression, respectively.
In the case £(f, 2) = log(1 + exp(—g6 ")) and Q(0) =

3

n

A

M(D,b) = argmin ) +2110]12+b "6,
geo * 2
=1
(11)
where © = R?. Our attacker will only modify the features,
thus y; = y;. We now derive stochastic gradient for Z;. Define

80(9

log(lJrexp(fgiGTi"i))

s; = exp(y;0 &;). By (9), one can verify that

Yi I széaﬁ;—
1+s; (1 + Si)Q

Note that the noise b enters into stochastic gradient through
0 = M(D,b).
In the case £(6,2) = (7 — 2760)* and Q(0) = 1|0|%

learner (8) is the objective-perturbed ridge regression:

M(D,b) = argmin1||X9 -7l + é||t9||2 +b70, (12)
geo 2 2

where © = {# € RY : ||0]|2 < p}, X € R"*9 s the feature

matrix, and y € R” is the label vector. Unlike logistic re-

gression, the objective-perturbed ridge regression requires the

model space to be bounded (see e.g. [Kifer et al., 2012]). The

attacker can modify both the features and the labels. By (9),

the stochastic gradient of z; is ag{(é)

(627 + @10 —3)1) (XX + (0 u)z)_l @ — ),



2
where 4 is the dual variable of constraint (|0||> < £- when

solving (12). The stochastic gradient of y; 1s
aC (0)
09;
Note that the noise b enters into the stochastic gradient through
0 = M(D,b).

Instantiating Attack on Output Perturbation
‘We now consider the output perturbation mechanism:

=i (XTX + (A + N)I)_l 0 —0).

vee i

M(D,b) = b+argm1n{2£ (0, 2 +/\Q(9)}. (13)

The stochastic gradients for this target are similar to those for
objective perturbation. Again, we instantiate on two exam-
ples where the base learner is logistic regression and ridge
regression, respectively.

The output-perturbed logistic regression takes the following

form:
n

M(f), b) = b+argmin log(1+exp(—gi9Ti‘i))+%H¢9||2,

(2SS —
) (14)
Let s; = exp(y;(0 — b) T #;), then we have 65’;? =
1+ S; (1 + Si 2 1 + Sj '

The output-perturbed ridge regression takes the following
form

~ R . A
M(D,b) = b+ argmin | X0 — g[* + S[l6[*, (15
beo 2 2
where © = {0 : ||f]|> < p}. Let u be the dual variable for
the constraint 3|62 < &2 2 when solving the argmin in (15).
Then the stochastlc gradlents of z; and yj; are

aC (0)
o = ((e D&l + & (0 — b)I — y,f)
: (XTX + (A + u)D)fl (0" —0).
8;;?) =i (XTX + (A + /L)I>_1 0-6).

4.2 SGD on Surrogate Victims (SV)

We also consider an alternative, simpler way to perform step
II). When b = 0, the differentially-private learning algorithms
revert to the base learner which returns a deterministic model
M(D, 0). The adversary can simply attack the base learner
(without b) as a surrogate for the differentially-private learner
M (with b) by solving the following problem:

min C(M(D,0)). (16)
D

Since the objective is deterministic, we can work with its
gradient rather than its stochastic gradient, plugging in b = 0
into all derivations in section 4.1. Note that the attack found
by (16) will still be evaluated with respect to differentially-
private learners in our experiments.

4.3 Selecting Items to Poison

Now, we return to step I) of our attack: how can we select
the k items for poisoning? We give two heuristic methods:
shallow and deep selection.

Shallow selection selects the & items with the largest ini-

tial gradient norm || = BJ(D) |5—p . Modifying these items

will reduce the attack cost the most, at least initially. The
precise gradients to use during selection depend on the attack
in step II). When targeting differentially-private learners di-
rectly, computing the gradient of J(D) is difficult. We use
Monte-Carlo sampling to approximate the gradient g; of item

Ly 6z C(M(D,bs)) | p—p» where by are ran-
dom samples of privacy parameters. Then, the attacker picks
the k items with the largest ||g;|| to poison. When targeting
surrogate victim, the objective is C(M (D, 0)), thus the at-
tacker computes the gradient of C(M(D, 0)) of each clean
item z;: g; = d%iC’(.M([), 0)) |5_p» and then picks the &
items with the largest ||g;|.

Deep selection selects items by estimating the influence of
an item on the final attack cost. When targeting a differentially-
private victim directly, the attacker first solves the following
relaxed attack problem: minp J(D) 4+ aR(D). Importantly,
here D allows changes to all training items, not just k of
them. R(D) is a regularizer penalizing data modification with
weight @ > 0. We take R(D) = Y"1, r(Z;), where (%) is
the distance between the poisoned item Zz; and the clean item
2;. We define 7(Z;) = 3||&; — 2;|* for logistic regression and
r(%) = 3||&; — 2| + 2 (9 — v:)? for ridge regression. After
solving the relaxed attack problem with SGD, the attacker
evaluates the amount of change 7(Z;) for all training items
and pick the top k to poison. When targeting a surrogate
victim, the attacker can solve the following relaxed attack first:
minz C(M(D,0))+aR(D), and then select the k top items.

In summary, we have four attack algorithms based on com-
binations of methods used in step 1) and step II): shallow-SV,
shallow-DPV, deep-SV and deep-DPV. In the following, we
evaluate the performance of these four algorithms.

5 Experiments

We now evaluate our attack with experiments, taking objective-
perturbed learners [Kifer et al., 2012] and output-perturbed
learners [Chaudhuri et al., 2011] as our victims. Throughout,
we use & = 10~* for deep selection and fix a constant step size
n = 1 for (stochastic) gradient descent. After each iteration of
SGD, we project poisoned items to ensure feature norms are
at most 1 and labels are in [—1, 1].

5.1 Attacks Intelligently Modify Data

As a first example, we use label-aversion attack to illustrate
that our attack modifies data intelligently. The victim is an
objective-perturbed learner for e-differentially private logistic
regression, with e = 0.1 and regularizer A = 10. The training
set contains n = 21 items uniformly sampled in the interval
[—1, 1] with labels y; = 1 [z; > 0], see Figure 1(a). To gen-
erate the evaluation set, we construct m = 21 evenly-spaced
items in the interval [—1,1], i.e., 27 = 0.13,—10 < ¢ < 10



and labeled as y; = 1 [z} > 0]. The cost function is defined
as C(0) = —L 1" log(1 + exp(—y;a} ' )). To achieve
small attack cost J, a negative model 0 < 0 is desired.! We
run deep-DPV with k = n (attacker can modify all items) for
T = 300 iterations. In Figure 1(a), we show the position of
the poisoned items on the vertical axis as the SGD iteration, ¢,
grows. As expected, the attacker flips the positions of positive
(blue) items and negative (red) items. As a result, our attack
causes the learner to find a model with 6 < 0.

5.2 Attacks Can Achieve Different Goals

We now study a 2D example to show that our attack is ef-
fective for different attack goals. The victim is the same as
in section 5.1. The clean training set in Figure 1(b) contains
n = 317 items uniformly sampled in a unit sphere with labels
y; = 1 [z 0% > 0] where 6* = (1,1). We now describe the
attack settings for different attack goals.

Label-aversion attack. We generate an evaluation set con-
taining m = 317 grid points (z}, y) lying in a unit sphere and
labeled by a vertical decision boundary, see Figure 1(c). The
cost function is C(0) = —= 3" log(1 + exp(—y;at ' 0)).
Label-targeting attack. The evaluation set remains the
same as in the label-aversion attack. The cost function is
c(0) = % ZZl log(1 + exp(—y;‘x;‘TG)).

Parameter-targeting attack. We first train vanilla logistic
regression on the evaluation set to obtain the target model

0" = (2.6,0), then define cost function as C(9) = 3||6 — 6'||2.

(a) poisoning trajectory

(b) training set ~ (c) evaluation set

Figure 1: (a) 1D example (b, c) 2D example

We run deep-DPV with k = n for T = 5 x 103 iterations.
In Figure 2(a)-(c), we show the poisoning trajectories for the
three attack goals respectively. Each translucent point is an
original training point, and the connected solid point is its final
position after attack. The curve connecting them shows the
trajectory as the attack algorithm gradually poisons the data.

In label-aversion attack the attacker aims to maximize the
logistic loss on the evaluation set. It ends up moving positive
(negative) items to the left (right), so that the poisoned data
deviates from the evaluation set.

In contrast, the label-targeting attack tries to minimize the
logistic loss, thus items are moved to produce a poisoned data
aligned with the evaluation set. However, the attack does not
produce exactly the evaluation set. To understand that, we
compute the model learnt by vanilla logistic regression on
the evaluation set and the poisoned data, which are (2.60,0)

'Differentially-private machine learning typically considers ho-
mogeneous learners, thus the 1D model is just a scalar.
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Figure 2: poisoning trajectories in 2D.

and (2.94,0.01). Note that both models are aligned with the
evaluation set, but the latter has larger norm, which leads to
smaller attack cost, thus our result is a better attack.

In parameter-targeting attack, we compute the model learnt
by vanilla logistic regression on the clean data and poisoned
data, which are (1.86,1.85) and (2.21,0.04). Note that the
attack pushes the model closer to the target model (2.6,0).

To quantify the attack performance, we evaluate the attack
cost .J(D) via Monte-Carlo sampling. We run private learners
T. = 103 times, each time with a random b, to produce a cost
C, = C(M(D,b,)). Then we average to obtain an estimate

of the cost J(f)) = T% ZZ;I Cs. In Figure 2(d)-(f), we show

the attack cost J(D) and its 95% confidence interval (green,

+2xstderr) up to t = 103 iterations. .J(D) decreases in all
plots, showing that our attack is effective for all attack goals.

5.3 Attacks Become More Effective as k Increases

The theoretical protection provided by differential privacy
weakens as the adversary is allowed to poison more train-
ing items. We can show empirically that our attacks indeed
become more effective as the number of poisoned items &
increases. The data set is the same as in section 5.2. We
consider k£ from 20 to 100 in steps of 20. For each k, we
run our four attack algorithms for 7' = 5 x 103 iterations
and estimate the attack cost J(D) on T, = 2 x 103 samples.

Figure 3(a)-(c) show that the attack cost J(D) decreases as
k grows, indicating better attack performance. We also show
the poisoning trajectory produced by deep-DPV with & = 10
in Figure 3(d)-(f). The corresponding attack costs J(D) are
—0.60, 0.49 and 3.43 respectively. Compared to that of &k = n,
—1.79, 0.32 and 1.20, we see that poisoning only 10 items

is not enough to reduce the attack cost J(D) significantly,
although the attacker is having some effect.

5.4 Attacks Effective on Both Privacy Mechanisms

We now show experiments on real data to illustrate that our
attacks are effective on both objective and output perturbation
mechanisms. We focus on label-targeting attack.
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Figure 3: (a-c) the attack cost J(D) decreases as k grows. (d-f) the
sparse attack trajectories for k = 10.

The first real data set is vertebral column from the UCI Ma-
chine Learning Repository [Dua and Karra Taniskidou, 2017].
The data set contains 6 features of 310 orthopaedic patients,
and the task is to predict if the vertebra of any patient is abnor-
mal (positive class) or not (negative class). We normalize the
features so that the norm of any item is at most 1. Since this
is a classification task, we use private logistic regression with
e = 0.1 and A = 10 as the victim. To generate the evaluation
set {(z}, y;)}, we randomly pick one positive item and find its
10 nearest neighbors within the positive class, and sety; = —1
for all 10. Intuitively, this attack targets a small cluster of ab-
normal patients and the goal is to mislead the learner to classify
them as normal. The other experimental parameters remain the
same as in section 5.2. Note that in order to push the prediction
on z; toward y;, the attacker requires y; x; 0> 0, which
indicates C(0) = log(1 + exp(—yiz: ' 0)) < log2 ~ 0.69,
so should J(D). As shown in Figure 4, the attacker indeed

reduces the attack cost J (l~)) below 0.69 for both privacy
mechanisms, thus our attack is successful.

o e \\\
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Figure 4: attack on objective and output-perturbed logistic regression.

The second data set is red wine quality from UCI. The data
set contains 11 features of 1598 wine samples, and the task
is predict the wine quality, a number between 0 and 10. We
normalize the features so that the norm of any item is at most
1. Labels are also normalized to ensure the value is in [—1, 1].
The victim is private ridge regression with e = 1, A = 10,
and bound on model space p = 2. To generate the evaluation
set, we pick an item z] with the smallest quality value, and

set the target label to y; = 1. The cost function is defined as

C(0) = 3(x; 76 — y¥)2. The other experimental parameters
are the same as in section 5.2. This attack aims to force the
learner to predict a low-quality wine as having a high quality.
Figure 5 shows the result. Note that the attack cost can be
significantly reduced for both privacy mechanisms even if the

attacker poisons only 100/1598 ~ 6.3% items of the data set.
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Figure 5: attack on objective and output-perturbed ridge regression.

We make two overall observations. First, deep-DPV is in
general the most effective method among our four attacks.
Second, there remains a gap between the performance of deep-
DPV and the theoretical bound, leaving space to design more
efficient attacks or to tighten the theoretical bound.

5.5 Attack Is Easier with Weaker Privacy

Finally, we show that the attack is more effective as the privacy
guarantee becomes weaker, i.e., as we increase €. To illustrate,
we run experiments on the data set in section 5.2, where we fix
k = 100 and vary € from 0.1 to 0.5. In Figure 6, the attack cost
approaches the lower bound as € grows. This means weaker
privacy guarantees (smaller €) lead to easier attacks.
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Figure 6: attacker can reduce cost J (D) mOore as € grows.

6 Conclusion and Future Work

We showed that differentially private learners are resistant to
data poisoning attacks, with the protection degrading as the
attacker poisons more items. We proposed attack algorithms
and demonstrated that our attacks are effective on different pri-
vacy mechanisms and machine learners. There remains a gap
between the theoretical limit and the empirical performance
of our attacks; closing the gap remains future work.
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