


Teaching a black-box learner

Under the strong assumption that H is known, teaching does

not need to be adaptive: the teacher merely serves up the

relevant examples beforehand, and does not need to see

what the learner does with them. We will call this oblivious

teaching. This paper studies two basic questions.

• How well can oblivious teachers perform in situations

where they are not aware of the learner’s concept class?

• Can interaction help in such cases?

1.1. Contributions

We begin with a negative result for oblivious teaching.

We show that an oblivious teacher who does not know the

learner’s concept class must, in general, provide labels on all

of X . This holds even if the teacher knows that the unknown

class H has low VC dimension and small teaching set size.

We then provide two positive results for interactive teaching.

We consider an interactive protocol in which the teacher

provides one teaching example at a time, and in the interim

is allowed to probe the predictions of the learner’s current

model, rather like giving the learner a quiz. We show that

without knowing H, such a teacher can efficiently pick a

teaching set of size at most O(t · log |X | · log |H|), where t
is the optimal teaching set size for H.

We also look at a setting in which the teacher not only probes

the learner’s prediction, but also the learner’s uncertainty

levels. We show bounds on the number of teaching examples

needed that depend only on the VC dimension of H and its

disagreement coefficient (Hanneke, 2011).

One interesting use of our teaching algorithm is in shrinking

a training set T : finding a subset S ⊂ T that yields the

same final classifier. This can be useful in situations where

the computational complexity of training scales poorly (e.g.

quadratically) with the number of training instances. Our

method can be used with any black-box learner. It con-

structs S incrementally by adding a few examples at a time,

assessing the resulting classifier, and then deciding whether

more examples are needed. In this way, it never needs to

train on more than |S| instances. We illustrate its behavior

in experiments with kernel machines and neural nets.

1.2. From finite to infinite

The notion of teaching set is defined for finite instance

spaces and concept classes. To see what this means for

more general spaces, suppose we have an arbitrary instance

space X o and that there is some distribution P on this space.

Suppose also that the possibly-infinite concept class Ho has

VC dimension d. Then, we can draw m = O(d/ǫ) examples

at random from P and treat these as a finite instance space

X ; by standard generalization bounds, with high probability

over the choice of examples, any h ∈ H that agrees with

the target concept h∗ on all of X will have error ≤ ǫ on

distribution P . Moreover, since |X | = m, we know by VC

bounds (Sauer, 1972) that the effective size of the hypothe-

sis class is at most N = O(md), and we can set H to this

finite set of candidate concepts.

These equivalences, |X | = O(d/ǫ) and H = O(|X |d), are

useful in interpreting the bounds we obtain. Our lower

bound then says that an oblivious teacher will need to use

a teaching set of size Ω(d/ǫ), which could be very large

for small ǫ. On the other hand, an interactive teacher can

find a teaching set of size O(td log2(d/ǫ)), which has only

a logarithmic dependence on 1/ǫ.

1.3. Related work: models of teaching

The literature on teaching can be organized along two main

dimensions: whether the learner is required to be consistent

with all teaching examples and whether the teacher has full

knowledge of the learner (Zhu et al., 2018).

Earlier theoretical work on teaching assumes both, such as

the classic teaching dimension (Goldman & Kearns, 1995;

Shinohara & Miyano, 1991), the recursive teaching dimen-

sion (Zilles et al., 2011; Hu et al., 2017) and the preference-

based teaching dimension (Gao et al., 2017). Recently, there

has been growing interest in settings where both dimensions

are negative: for instance, the learner is a convex empirical

risk minimizer (e.g., Liu & Zhu, 2016), or the teacher does

not target a specific learner (Zhu et al., 2017), or the teacher

does not know the learner’s hyper-parameters or hypothesis

space (Liu et al., 2017). Of particular relevance is recent

work by Liu et al. (2018), which assumes the teacher and

the learner use different linear feature spaces. The teacher

cannot fully observe the learner’s linear model but knows

the learner’s algorithm and can employ active querying to

learn the mapping between feature spaces.

In contrast, the present work assumes the learner is consis-

tent with teaching examples but does not require knowledge

of its concept class or learning algorithm. This setting is

closer to that of classical learning theory and offers a crisp

characterization of teaching black-box learners.

1.4. Related work: sample compression

The notion of sample compression was introduced by Little-

stone & Warmuth (1986) and has been the subject of much

further work (e.g., Floyd & Warmuth, 1995; Moran & Yehu-

dayoff, 2016). It is centered on an intriguing question: for a

given concept class H, is it possible to design (1) a learning

algorithm A that operates on labeled samples of some fixed

size k, and (2) a procedure that, given any labeled data set,

chooses a subset of size k such that when A is applied to

this subset, it produces a classifier consistent with the full
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data set? A recent result of Moran & Yehudayoff (2016)

showed that if H has VC dimension d, then k = d2d is

always achievable. The results in our paper can be thought

of as a form of adaptive sample compression, where the

concept class H is unknown and the learning algorithm A
is fixed in advance and also unknown.

2. Lower bounds for oblivious teaching

Suppose the teacher knows only that the learner’s concept

class is one of H1, . . . ,Hk, but not which one. They all

contain the target h∗, and suppose they each have teaching

sets of size t. What can an oblivious teacher do?

One option is to provide a teaching set for the union of the

concept classes, H1 ∪ · · · ∪ Hk. This could have size up to

tk. We’ll see that, in general, an oblivious teacher can do

no better than this. Thus, if k is large, the teacher simply

has to provide labels for all of X .

We will demonstrate this lower bound through two examples

that illustrate different problems with oblivious teaching.

2.1. Example 1: Decision stumps

It might seem that, even without knowing H exactly, the

teacher would still be able to select examples near the true

decision boundary. We’ll see that this is not the case. The

different hypothesis classes could effectively deal with very

different representations of the data, so that the identities

of the “boundary examples” change dramatically from one

hypothesis class to the next.

The instance space will be a finite set X ⊂ R
k, to be spec-

ified shortly. The concept classes H1, . . . ,Hk consist of

thresholds along individual coordinates: Hi consists of all

functions hi,w : X → {0, 1} of the form

hi,w(x) =

{

1 if xi > w;
0 otherwise.

where w ∈ R. That is, the hypotheses in Hi only use the ith
coordinate of the data. Each Hi has VC dimension 1 and

has a teaching set of size 2.

We select X so that every point in it has either all positive

coordinates or all negative coordinates. The target concept

h∗ is 1 if the coordinates are all positive and 0 if all negative.

Thus h∗ lies in every Hi: in particular, h∗ = hi,0 for all i.

Set X = {x(1), x(2), . . . , x(k),−x(1), . . . ,−x(k)}, where

the x(i) ∈ R
k
+ are defined as follows:

• The values of the k features of x(i) are 2, 3, 4, . . . , k,

in that order, with a 1 inserted in the ith position.

• Thus x(1) = (1, 2, 3, . . . , k), x(2) = (2, 1, 3, . . . , k),
x(3) = (2, 3, 1, . . . , k), and x(k) = (2, 3, 4, . . . , k, 1).

Along any coordinate i, the correct threshold is 0, and the

minimal teaching set consists of the two examples closest

to 0, on either side of it. These are −x(i), x(i), whose ith
coordinates have values −1, 1 respectively. In other words:

for Hi, the optimal teaching set consists of −x(i) and x(i).

However, the only teaching set that works for every Hi

simultaneously is all of X .

Theorem 1 In the construction above, the concept classes

H1, . . . ,Hk each have VC dimension 1 and teaching set

size 2. If an oblivious teacher does not know which of these

concept classes is being used by the learner, the smallest

possible teaching set it can provide is all of X , of size 2k.

PROOF: Consider any teaching set that leaves out some

point in X , say x(i). Then, if the learner happens to have

concept class Hi, it can consistently set the threshold to

be 1.5 along the ith coordinate, since the k − 1 positive

instances it has seen all have ith coordinate ≥ 2. Thus it

will get x(i) wrong. �

Thus in this situation, the minimal teaching set has size tk,

where t is the teaching set size of each individual Hi.

2.2. Example 2: All-but-one rules

In the previous example, the different concept classes Hi

dealt with different representations of the input, and the

resulting differences in boundary regions created problems

for the teacher. But even if the different hypothesis classes

work with the same representation of the input, they might

focus on different regions of the input space, in the sense of

allowing a more detailed boundary in those regions. In such

cases, a teaching set would need to provide the necessary

level of detail in all of these regions.

To see a situation of this type, let X be a finite instance

space. Define the target hypothesis h∗ to be identically zero.

For any x′ ∈ X , define hypothesis hx′ : X → {0, 1} to be

zero everywhere except x′, that is,

hx′(x) =

{

1 if x = x′;
0 otherwise.

For any subset S ⊆ X , define hypothesis class H(S) =
{h∗} ∪ {hx : x ∈ S}. Now, partition X into k subsets

S1, . . . , Sk of size |X |/k and define Hj = H(Sj).

Theorem 2 In the construction above, each Hj has VC

dimension 1 and teaching set size t = |X |/k. If an oblivious

teacher does not know which of these concept classes is

being used by the learner, the smallest teaching set it can

provide is all of X , of size tk.

PROOF: Each hypothesis class Hj = H(Sj) has a teaching

set of size t = |Sj |, consisting of {(x, 0) : x ∈ Sj}. There
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is no smaller teaching set: if x ∈ Sj is left out of the set,

then the concepts h∗ and hx will both be consistent.

Likewise, if the teacher does not know which of H1, . . . ,Hk

is being used by the learner, its minimal teaching set must

consist of all points in X . Suppose, on the contrary, that it

leaves out a particular x, and that x ∈ Sj . Then a learner

using Hj could choose hx as a consistent hypothesis. �

3. Teaching by probing the learner’s

predictions

We now consider scenarios in which the teacher has no

knowledge of the learner’s concept class other than an upper

bound on its size or VC dimension. It does not, for instance,

have a shortlist of possibilities H1, . . . ,Hk, as in the pre-

vious section. Nevertheless, if the teacher is allowed to

interact with the learner, it can come up with a teaching set

that is provably within a factor log |X | · log |H| of optimal.

Here is a model in which the teacher and learner communi-

cate in rounds of interaction.

On each round,

• The teacher supplies one or more teaching exam-

ples (x, y) ∈ X × {0, 1} to the learner.

• The learner gives the teacher a black-box classifier

h : X → {0, 1} that is consistent with all the

teaching examples it has seen so far.

The idea here is that the teacher cannot look inside the black

box classifier, but can test it on examples to get a sense of

where its mistakes lie.

If the learner is a machine, this is a natural setup. If the

learner is a human, probing the black box corresponds to

giving the learner a quiz. In either case, we distinguish

teaching examples from probes to the black box. It is of

primary interest to keep the former small: they constitute a

summary of what is important, and the learner is required

to be consistent with them. But we also want the number of

probes to be polynomially bounded.

We will say that an interactive teaching strategy of the type

above is a (t, p)-protocol if it ultimately yields a teaching

set of size t after making at most p probes.

3.1. A generic interactive teaching procedure

Suppose the learner’s hypothesis class H has optimal teach-

ing set size t. The teacher has no information about H,

except that it contains h∗. We will see that there is an ef-

ficient interactive protocol of the type above in which the

teacher needs to provide at most O(t · log |X | · log |H|)
teaching examples before the learner converges to h∗.

The key idea is as follows. Teaching is essentially a set

cover problem: each teaching example eliminates some sub-

optimal hypotheses in H, and a teaching set is a collection

of examples that eliminate, or “cover”, all sub-optimal hy-

potheses. By this view, optimal teaching is equivalent to

minimum set cover. However, in our setting, the set to be

covered—the set of sub-optimal hypotheses—is unknown,

since H is unknown, and this would seem to be a major prob-

lem. But there is an alternative online formulation of the

set cover problem, in which the elements to be covered are

not provided beforehand but appear one at a time, and must

be covered immediately. An elegant algorithm is known for

online set cover (Alon et al., 2009), and we will see that it

can be simulated in our setting.

The resulting learning algorithm is shown in Figure 1. It is

a randomized procedure that begins by drawing values Tx,

one for each x ∈ X , from a suitable exponential distribution.

Then the interaction loop begins. A key quantity computed

by the algorithm, for any learner-supplied black-box classi-

fier h, is the set of misclassified points,

∆(h) = {x ∈ X : h(x) 6= h∗(x)}.

Roughly speaking, the points x that are most likely to be

chosen as teaching examples are those that have been mis-

classified multiple times by the learner’s models, and for

which Tx happens to be small.

Theorem 3 Let t be the size of an optimal teaching set for

H. Pick any 0 < δ < 1. With probability at least 1 − δ,

the algorithm of Figure 1 halts after at most t log(2|X |)
iterations. The number of teaching examples it provides is

in expectation at most

(1 + t lg(2|X |)) ·

(

ln |H|+ ln
1

δ

)

.

The algorithm of Figure 1 is efficient and yields a teaching

set of size O(t · log |X | · log |H|), despite having no knowl-

edge of the concept class H. This can be significantly better

than a teaching set of all |X | points, as we have seen would

be needed by an oblivious teacher.

Along the way, the teacher makes O(t · |X | · log |X |) probes

to intermediate classifiers provided by the learner. This is

polynomial, but is nonetheless significant, and consequently

this algorithm is better for teaching machines than humans.

In fact, we will later see (Section 5) that probing all of X is

inevitable when the teacher does not know H.
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1. Let S = ∅ (teaching set)

2. For each x ∈ X :

• Initialize weight w(x) = 1/m

• Choose threshold Tx from an exponential distribution with rate λ = ln(N/δ)

3. Repeat until done:

• Learner provides some h : X → {0, 1} as a black box

• By probing the black box, determine ∆(h) = {x ∈ X : h(x) 6= h∗(x)}

• If ∆(h) = ∅: halt and accept h

• While w(∆(h)) < 1:

– Double each w(x), for x ∈ ∆(h)

– If this doubling causes w(x) to exceed Tx for the first time, add x to S and provide (x, h∗(x)) as a

teaching example to the learner

Figure 1. The teacher’s algorithm. Here m = |X | and N = |H|. For S ⊂ X , we define w(S) =
∑

x∈S
w(x).

3.2. Proof of Theorem 3

The proof of Theorem 3 follows that of the original online

set cover algorithm (Alon et al., 2009). We provide it here

for reference and because it differs on several small details.

Lemma 4 Let t be the size of an optimal teaching set for

H. Then the total number of doubling steps performed by

the algorithm is at most t · lg(2m), and at any point in time,

∑

x∈X

w(x) ≤ 1 + t · lg(2m).

PROOF: First, w(x) ≤ 2 for all x, always. This is because

w(x) increases only during a doubling step, which happens

only if x belongs to a subset of X of total weight < 1.

Let T ∗ ⊂ X denote an optimal teaching set, of size t. By

definition, T ∗ must intersect ∆(h) for all h 6= h∗. Now,

a doubling step doubles the weight of each x ∈ ∆(h),
and thus some element of T ∗. And since the weight of an

individual point begins at 1/m and never exceeds 2, the

total number of doubling steps cannot exceed t · lg(2m).

During each doubling step, w(∆(h)), and thus
∑

x w(x),
increases by at most 1. The lemma follows by noting that

the initial value of this summation is 1, and there are at most

t · lg(2m) doubling steps. �

Lemma 5 With probability at least 1− δ, at the end of any

iteration of the main loop, any hypothesis h 6= h∗ with

w(∆(h)) ≥ 1 is invalidated by the teaching examples.

PROOF: Fix any h 6= h∗ and consider the first point in

time at which w(∆(h)) ≥ 1. Recall that the thresholds

Tx are drawn from an exponential distribution with rate

λ = ln(N/δ). Thus the probability, over the random choice

of thresholds, that no point in ∆(h) is chosen as a teaching

example is
∏

x∈∆(h)

Pr(w(x) ≤ Tx) =
∏

x∈∆(h)

exp(−λw(x))

= exp(−λw(∆(h)))

≤ exp(−λ) =
δ

N
.

Now take a union bound over all N hypotheses in H. �

Lemma 6 The expected total number of teaching examples

provided is at most (1 + t lg(2m)) ln(N/δ).

PROOF: The probability that any particular x ∈ X is even-

tually provided as a teaching example is

Pr(final value of w(x) exceeds Tx)

= 1− Pr(Tx > w(x))

= 1− exp(−λw(x)) ≤ λw(x)

where λ = ln(N/δ) is the rate parameter of the exponential

distribution from which Tx is chosen. Thus

E[|S|] ≤
∑

x∈X

λw(x) ≤ λ(1 + t lg(2m)),

where the last inequality invokes Lemma 4. �

4. Teaching by probing the learner’s

uncertainty

Suppose that the learner communicates not just a classifier

but also its uncertainty. We model this by allowing the
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teacher two forms of communication with the learner:

• Teaching example. The teacher provides a labeled

example (x, h∗(x)). The learner must subsequently

adopt this as a hard constraint.

• Uncertainty-rated probe. The teacher makes a query x,

and the learner answers according to its current version

space:

– 0 or 1 if everything in the version space agrees on

this label

– ? if there is disagreement within the version space

We will use the notation (t, p)-protocol if a teaching set of

size t is produced after at most p uncertainty-rated probes.

To make the notion of disagreement precise, let V de-

note the current version space of the learner: that is, the

set of hypotheses in H that are consistent with all teach-

ing examples seen so far. We define DIS(V ) = {x ∈
X : there exist h, h′ ∈ V for which h(x) 6= h′(x)}. The

uncertainty-rated probe then returns ? if x ∈ DIS(V ).

If the learner is a machine, it can easily return a black box

that computes uncertainty probes. This is no harder than

learning: if S is the set of labeled teaching examples so far,

an uncertainty probe on x ∈ X can be performed efficiently,

as follows:

• Let S0 = S ∪ {(x, 0)}. Check if there is a hypothesis

in H that perfectly fits S0.

• Let S1 = S ∪ {(x, 1)}. Check if there is a hypothesis

in H that perfectly fits S1.

• If both succeed: return ?. If only S0 succeeds: return

0. If only S1 succeeds: return 1.

If the learner is human, the uncertainty probe model is less

reasonable, and it would make sense to consider a version

with weaker requirements, for instance where the learner

answers ? if there is a substantial amount of disagreement on

the label, with respect to its (unknown) prior over concepts.

4.1. Teaching by simulating the Cohn-Atlas-Ladner

active learner

Uncertainty-rated probes permit a teaching strategy that

simulates the active learning algorithm of Cohn et al. (1994):

1. Teacher randomly permutes instance space X

2. For each x ∈ X , in this order:

• Teacher probes the learner on x

• If learner returns ?: teacher provides (x, h∗(x))
as a teaching example.

Using an analysis by Hanneke (2011), we show that

this method constructs a teaching set of expected size

θ · (log2 |X |+ log |X | · log |H|), where

θ = sup
r>0

∣

∣

⋃

h∈H:|∆(h)|≤r ∆(h)
∣

∣

r

is the disagreement coefficient of h∗ within H. (Recall

∆(h) = {x ∈ X : h(x) 6= h∗(x)}.)

Hanneke introduced the disagreement coefficient to bound

the label complexity of active learning. To get some intu-

ition for it in our context, consider k hypotheses h1, . . . , hk

that all differ from h∗ on the same number of points, and sup-

pose the hypothesis class is just H = {h1, . . . , hk, h
∗}. If

∆(hi)∩∆(hj) = ∅ for all i 6= j (so θ = k), then a teaching

set must contain at least one point from each ∆(hi). If, on

the other hand, the ∆(hi) overlap substantially (so θ ≪ k),

then just a few random points in ∆(h1) ∪ · · · ∪∆(hk) are

likely to constitute a teaching set.

In many cases, θ has a bound that is independent of the

cardinality of X ; see Hanneke (2014) for several examples.

For instance, for thresholds on the line, θ = 2.

Theorem 7 The teaching strategy that simulates the Cohn-

Atlas-Ladner algorithm constructs a teaching set for (h∗,H)
with expected cardinality O(θ·(log2 |X |+log |X |·log |H|)).

Thus, a (θ · (log2 |X |+ log |X | · log |H|), |X |)-protocol is

always achievable. A more careful analysis of Hanneke

(2011) replaces the log2 |X | with log |X | · log log |X |.

4.2. Proof of Theorem 7

Let x1, x2, . . . , xm be the random ordering of X used by

the teacher (with m = |X |), and for any 1 ≤ k ≤ m,

let Hk = {h ∈ H : ∆(h) ∩ {x1, . . . , xk} 6= ∅} be the

hypotheses in H that disagree with h∗ on at least one of the

first k points.

Lemma 8 The set of teaching examples provided through

time k is a teaching set for (h∗,Hk).

PROOF: Take any h ∈ Hk, and consider the first xi ∈
∆(h) ∩ {x1, . . . , xk}. When the teacher probes the learner

on xi, the learner must return ?, as h(xi) 6= h∗(xi). So

(xi, h
∗(xi)) is provided as a teaching example. �

Lemma 8 implies that the final set of teaching examples is

indeed a teaching set for (h∗,H). It remains to bound the

(expected) number of teaching examples.

Define rk,δ = (m/k) ln(|H|/δ).
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Lemma 9 Pick any δ ∈ (0, 1) and any 1 ≤ k ≤ m. With

probability at least 1 − δ, every hypothesis h ∈ H that

agrees with h∗ on x1, . . . , xk has |∆(h)| ≤ rk,δ .

PROOF: Pick a h ∈ H with |∆(h)| > rk,δ . The probability

that it agrees with x1, . . . , xk is at most (1−|∆(h)|/m)k ≤
exp(−|∆(h)|k/m) < δ/|H|. Now apply a union bound

over all such h. �

Lemma 10 The expected number of teaching examples is

at most 2 + θ · ln(m) · ln(|H|m).

PROOF: Let Ek be the 1− δ probability event of Lemma 9,

and let Qk be the event that the learner returns ? when

probed on xk. We’ll show that Pr(Qk) is at most the prob-

ability that: either Ek−1 does not happen, or xk ∈ Xk,δ =
∪h∈H:|∆(h)|≤rk−1,δ

∆(h). Indeed, if Qk happens, then by

Lemma 8, there is some h ∈ H that agrees with h∗ on

x1, . . . , xk−1, but h(xk) 6= h∗(xk). If Ek−1 holds, then

any such hypothesis h ∈ H must have |∆(h)| ≤ rk−1,δ.

This line of reasoning gives the bound

Pr(Qk) ≤ Pr(¬Ek−1 ∨ xk ∈ Xk,δ)

≤ Pr(¬Ek−1) +
|Xk,δ|

m
≤ δ + θ ·

rk−1,δ

m
.

Summing Pr(Qk) from k = 1, . . . ,m and choosing δ =
1/m proves the claim. �

5. A lower bound on the number of probes

In both our teaching procedures, all of X is probed. To see

why this is necessary, recall the hypothesis classes H(S) of

Section 2.2 and consider |X | classes of the form H({x}) =
{h∗, hx}, where x is a single element of X . Each such class

has a teaching set of size 1, consisting of the labeled example

(x, 0). If the teacher does not know which of these concept

classes is used by the learner, then every x must either be

probed or supplied as a teaching example; otherwise, the

teacher cannot be sure that the learner is not using hx.

6. Experimental illustration

In this section, we use Algorithm 1 to shrink several syn-

thetic and real datasets, that is, to find subsets (teaching sets)

of the data that yield the same final classifier. This can be

useful for reducing storage/transmission costs of training

data, or in situations where the computational complexity

of training scales poorly with the number of samples.

Suppose the learning algorithm has running time T (n),
where n is the size of the training set. Algorithm 1 builds a

teaching set incrementally, in iterations that involve adding

a few points, invoking the learning algorithm, and evaluat-

ing the classifier that results. If the teaching set sizes along

the way are t1 < t2 < · · · < tk, the total training time is

T (t1)+ · · ·+T (tk), which can be much smaller than T (n).

Synthetic data We looked at synthetic data in the form of

moons, circles, and mixtures. For each, we generated two-

dimensional separable and non-separable datasets of 4000

points each, by varying the level of noise. We then tested

Algorithm 1 using SVM learners with linear, quadratic, and

RBF kernels. For each simulation we report: (1) the support

vectors (SVs) of each learner; (2) the teaching points (TPs),

as decided by the algorithm; (3) the points that are both

support vectors and teaching points (TPs AND SVs); and

(4) teaching curves.

For a support vector machine, it is always possible to create

a teaching set of size two by choosing the points so that

their perpendicular bisector is the boundary; the maximum-

margin objective function will then yield exactly the target

classifier. However, any given data set is unlikely to contain

such a pair of points. Thus in our examples, the size of the

optimal teaching set is not known, although it is certainly

upper-bounded by the number of support vectors.

Some of the results are shown in Figure 2. For instance,

the top left-hand panel shows the result of the teaching

algorithm on the moon-shaped data. There are 123 support

vectors in the full data set, but a teaching set of just 19

points is found. As can be seen on the right, these points

are picked in five batches: the first batch has two points

and already brings the accuracy above 75%. Overall, the

learning algorithm is called five times, on data sets of size

2, 10, 13, 17, 19; and we get the same effect as calling it on

the entire set of 4000 points.

The full range of experiments on synthetic data can be seen

in Figures ?? to ?? in the appendix.

Real datasets We also looked at the MNIST and fashion

MNIST (Xiao et al., 2017) datasets, both with 60K points.

1. On MNIST, we used an SVM with a quadratic kernel.

This data has 32,320 support vectors, and a teaching set

of 4,445 points is found (almost all support vectors).

2. On fashion MNIST, we used a convolutional network

with 4 different layers of 2d convolutions (32, 64, 128,

128) each followed by a ReLU and a max pooling layer.

The bottom panel of Figure 2 shows the teaching curves for

these two data sets. In either case, the accuracy achieved on

the full training set is below 100%.

For all experiments we used the same termination criterion:

the algorithm terminated when it got within .01 of the ac-

curacy of the learner that was trained using the full data.

Also, to initialize the weight Tx of each data point we set

the confidence parameter δ of Algorithm 1 to .1.
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