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Abstract. Opioid overdose is a growing public health crisis in the United States.
This crisis, recognized as “opioid epidemic,” has widespread societal consequences
including the degradation of health, and the increase in crime rates and family
problems. To improve the overdose surveillance and to identify the areas in need
of prevention effort, in this work, we focus on forecasting opioid overdose using
real-time crime dynamics. Previous work identified various types of links be-
tween opioid use and criminal activities, such as financial motives and common
causes. Motivated by these observations, we propose a novel spatio-temporal pre-
dictive model for opioid overdose forecasting by leveraging the spatio-temporal
patterns of crime incidents. Our proposed model incorporates multi-head atten-
tional networks to learn different representation subspaces of features. Such deep
learning architecture, called “community-attentive” networks, allows the predic-
tion for a given location to be optimized by a mixture of groups (i.e., commu-
nities) of regions. In addition, our proposed model allows for interpreting what
features, from what communities, have more contributions to predicting local in-
cidents as well as how these communities are captured through forecasting. Our
results on two real-world overdose datasets indicate that our model achieves su-
perior forecasting performance and provides meaningful interpretations in terms
of spatio-temporal relationships between the dynamics of crime and that of opioid
overdose.

Keywords: Forecasting opioid overdose · Spatio-temporal networks ·Multi-head
attentional networks · Crime dynamics.

1 Introduction
Opioid use disorders and overdose rates in the United States have increased at an

alarming rate since the past decade [25]. Overdose deaths have risen since the 1990s,
and the number of heroin overdose deaths has risen sharply since 2010 [21]. Mortalities
caused by drug overdose are the main cause of injury-related death in the U.S. [3]. The
growth rate of opioid overdose together with the number of impacted individuals in the
U.S., has led many to classify this as an “opioid epidemic” [16]. Enhanced understand-
ing of the dynamics of the overdose epidemic may help policy-makers to develop more
effective epidemic prevention mechanisms and control strategies [13].

The opioid epidemic is a complex social phenomenon involving and interacting
with various social, spatial and temporal factors [2]. Highlighting the links between
opioid use and various factors has drawn significant attention. Among those, studies

yu-ru lin
This is the author's version of the following paper:

Ertugrul, A., Lin, Y.-R., Temizel, T. (2019). CASTNet: Community-Attentive Spatio-Temporal Networks for Opioid Overdose Forecasting. In Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019) 

The final publication is available at www.springerlink.com.�



2 A. M. Ertugrul et al.

have identified relationships between opioid use and crime incidences, including cause
(that opioid use leads to criminal activities [1]), effect (that involvement in criminal
behavior leads to drug use [10]), and common causes (that crime and drug tend to co-
occur [23]). Crime occurrences also have non-trivial spatio-temporal characteristics –
for example, routine activity theory suggested that crimes may exhibit spatio-temporal
lags as the likely offenders of one place may reach suitable targets in other places.
Therefore, how to unveil the complicated relationship between opioid use and crime
incidences is challenging.

In seeking data for investigation, detailed assessments of opioid use disorders and
overdose growth require systematically collected well-resolved spatio-temporal data
[9]. However, the amount of systematically monitored data either at a regional or local
level in the U.S. is very limited. In addition, there is no common reporting mechanism
for incidents. For instance, the incident categories and the organization of categories
vary significantly across the databases. On the other hand, crime data is meticulously
collected, organized and stored, at a finer-grained level. Given the plausible relationship
between the crime dynamics and opioid use as well as the availability of real-time crime
data for various locations, in this study, we seek to explore the capability of forecasting
opioid overdose using real-time crime data.

Recent works in predictive modeling has shown significant improvement in spatio-
temporal event forecasting and time series prediction [20, 26]. However, these studies
suffer from two main concerns. First, most of them overlook the complex interactions
between local (observed from within a region) and global (observed from all regions)
activities across time and space. Only a few have paid attention to this problem, yet
they model the global activities as a single universal representation [6, 5], which is
either irrespective of the event location or is reweighed based on a pre-defined fixed
proximity matrix [17]. In other words, none of the existing works learns to differen-
tiate the pairwise activity relationships between a particular event location and other
locations. Second, most of the spatio-temporal forecasting studies mainly focus on pre-
diction performance and lack interpretability to uncover the underlying spatio-temporal
characteristics of the activities, such as (1) what local and global activity features are
more predictive for the subsequent events? (2) what are the locations that have more
salient contribution to predicting opioid overdose with respect to the target location?
Inspired by the idea of multi-head attentional networks [24], in this work, we propose
a novel deep learning architecture, called “CASTNet,” for opioid overdose forecast-
ing using spatio-temporal characteristics of crime incidents, which seeks to address the
aforementioned problems. Assuming that different locations could share similar dy-
namics, our approach aims to learn different representation subspaces of cross-regional
dynamics, where each subspace involves a set of locations called “community” that
share similar behaviors. The proposed architecture is called “community-attentive” as
it allows the prediction for a given location to be individually optimized by the features
contributed by a mixture of communities. Specifically, combining the features of the
given target location and features from the communities (referred to as local and global
dynamics), the model learns to forecast the number of opioid overdoses in the target lo-
cation. Meanwhile, by leveraging a Lasso regularization [22] and hierarchical attention
mechanism, our method allows for interpreting what local and global features are more



CASTNet 3

predictive, what communities contribute more to predicting incidences at a location,
and what locations contribute more to each community.

Overall, our contributions include: (1) A community-attentive spatio-temporal net-
work: We propose a multi-head attention based architecture that learns different repre-
sentation subspaces of global dynamics (communities) to effectively forecast the opi-
oid overdoses for different target locations. (2) Interpretability in hierarchical attention
and features: First, CASTNet incorporates a hierarchical attention mechanism which al-
lows for interpreting community memberships (which locations form the communities),
community contributions for forecasting local incidents and informative time steps in
both local and global for the prediction. Second, CASTNet incorporates Group Lasso
(GL) [22] to select informative features which succinctly capture what activity types at
both local- and global-level are more associated with the future opioid overdoses. (3)
Extensive experiments: We performed extensive experiments using real-world datasets
from City of Cincinnati and City of Chicago. The results indicate a significant im-
provement in forecasting performance with greater interpretability compared to several
baselines and state-of-the-art methods.

2 Related Work
The existing works have investigated the links between opioid use and various so-

cial phenomena as well as contextual factors including crime and economic stressors.
Among them, Hammersley et al. [10] stated that opportunities for drug use increase
with involvement in criminal behavior. The people dependent on opiates are dispro-
portionately involved in criminal activities [1] especially for the crimes committed for
financial gain [19]. Seddon et al. [23] revealed that crime and drug use share common
set of causes and they co-occur together. Most of the existing works studying the re-
lationship between opioid use and social phenomena have employed basic statistical
analysis, and focused on current situation and trends rather than predicting/forecasting
overdose. Moreover, these studies overlooked the interactions among spatio-temporal
dynamics of the locations. Among the studies predicting/forecasting opioid overdose,
regression-based approaches have been applied in individual-level [8] and state-level
[14]. Also, a neural network-based approach has been proposed [6] to forecast heroin
overdose from crime data, which identifies the predictive hot-spots. However, the effect
of these hot-spots is universal and irrespective of event locations on the prediction.

Furthermore, there have been studies that utilized spatial and temporal dependencies
for event forecasting and time series prediction. With the success of neural network-
based models, several studies employed neural models to forecast/detect events related
to anomalies [4], crime [12] and social movements [5]. Additionally, several studies
utilized deep neural models for times series prediction. Among them, Ghaderi et al.
[7] proposed a recurrent neural network (RNN) based model to forecast wind speeds.
Qin et al. [20] presented a dual-stage attention-based RNN model to make time se-
ries prediction. Similarly, Liang et al. [17] proposed multi-level attention networks for
geo-sensory time series prediction. A few of the studies considered the complex rela-
tionships between local and global activities, yet they modeled the global activities as
a universal representation, which either does not change from event location to loca-
tion or is adjusted by a pre-defined fixed proximity matrix. Most of these works simply
employed a single temporal model to model various local and global spatio-temporal
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activities, which is insufficient to capture the complex spatio-temporal patterns at both
local and global levels. Moreover, existing methods primarily focus on forecasting per-
formance, yet they provide no or limited interpretability capability to unveil the under-
lying spatio-temporal characteristics of the local and global activities.

3 Method
3.1 Problem Definition

Suppose there are L locations-of-interest (e.g. neighborhoods, districts) and each
location l can be represented as a collection of its static and dynamic features. While
the static features (e.g. demographics, economical indicators) remain same or change
slowly over a longer period of time, the dynamic features are the updates for each time
interval t (e.g. day, week). Let Xstat

l be the static features of location l, and Xdyn
t,l the

set of dynamic features for location l at time t. We are also given a continuous vari-
able yt∗,l ∈ N that indicates the number of opioid overdose incidents (e.g. emergency
medical services (EMS) calls, deaths) at location l at future time t∗. The collection of
dynamic features from all locations-of-interest within an observing time window with
size w up to time t can be represented as X dyn

t−w+1:t = {X dyn
t−w+1, . . . ,X

dyn
t }, where

X dyn
t′ = {Xdyn

t′,1 , . . . , X
dyn
t′,L}.

Our goal is to predict the number of future opioid overdose incidents yt∗,l at spe-
cific location l at a future time t∗ = t + τ , where τ is called the lead time for fore-
casting. The forecasting is based on the static and dynamic features of the target loca-
tion itself, as well as the dynamic features in the environment (from all locations-of-
interest). Therefore, the forecasting problem can be formulated as learning a function
f(Xstat

d ,X dyn
t−w+1:t) → yt∗,d that maps the static and dynamic features to the number

of opioid overdose incidents at the future time t∗ at a target location d.
To facilitate spatio-temporal interpretation of the forecasting, we seek to develop

a model that can differentiate contribution of the features, the locality (local features
vs. global features) and the importance of latent communities when contributing to
the prediction of other locations. Therefore, we further organize the dynamic features
X dyn

t−w+1:t into two sets: the local features, {Xdyn
t−w+1,d . . . , Xdyn

t,d } represent dynamic
features for the target location d, and the global features, {Xdyn

t−w+1,l . . . , X
dyn
t,l } for

l ∈ {1, 2, . . . , L}, contain the sequences of dynamic features for all locations of interest.
3.2 Architecture

In this work, we propose an interpretable, community-attentive, spatio-temporal
predictive model, named CASTNet. As shown in Fig. 1, our proposed architecture
consists of three primary components, local component (Fig. 1a), static component
(Fig. 1b) and global component (Fig. 1c). The global component is designed to model
the global contribution of dynamic features for all-locations-of-interest by learning
different representation subspaces of global dynamics, and to output target location-
specific global contribution. On the other hand, the local component is designed to
model the contribution of local dynamic features for the target location. Finally, the
static component models location-specific static information about the target location.
Global Component. This component produces the target location-specific global con-
tribution (from all locations) to forecast the number of incidents at the target location d
at future time t∗. It consists ofK number of community blocks, where each community
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Fig. 1: Overview of our proposed CASTNet architecture. The local component (a)
models local dynamics of the locations, and the static component (b) models the static
features. The global component (c) summarizes different representation subspaces (i.e.
communities) of global dynamics, learned by community blocks (d), by querying these
multi-subspace representations through the embedding of the target location (embd).
Spatial Att. Block (e) reweights the global dynamics of locations. Checkered rectangles
on top of the inputs represent GL regularization. Red arrows indicate the queries for the
corresponding attentions. “FC”: fully-connected layer; “embed”: embedding layer.

block learns a different representation subspace of the global dynamic features, which
is inspired by the idea of multi-head attention [24]. A community block (Fig. 1d) mod-
els the global dynamic features through a hierarchical attention network which consists
of a spatial attention block (Fig. 1e), a recurrent unit and a temporal attention. For the
sake of clarity, we explain the internal mechanism of global component in a bottom-up
manner by following the order (Fig. 1e→ 1d→ 1c):

Spatial Attention Block is used to reweight the contribution of dynamic features
of each location i at time t. More specifically, the attention weight, α(i)

k,t, represents
the contribution of the location i at time t to the community k. Since higher spatial
attention weight for a location indicates the involvement of its dynamic features in
this community, we call this community membership. ck,t is the context vector, which
summarizes the aggregated contribution of all locations as follows:

ek,t = (vspk )ᵀtanh(W sp
k X

dyn
t + bspk ) (1)

α
(i)
k,t =

exp(e
(i)
k,t)∑L

l=1 exp(e
(l)
k,t)

; ck,t =
L∑

l=1

α
(l)
k,tX

dyn
t,l (2)

where W sp
k ∈ Rn×n, bspk ∈ Rn and vspk ∈ Rn are the parameters to be learned, and n

is the dynamic feature size of any location. After the context vector ck,t is computed, it
is fed to the recurrent unit.

Recurrent unit is used to capture the temporal relationships among the reweighted
global dynamic features for the community k as follows:

hk,t = fk(hk,t−1, ck,t) (3)
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where fk(.) is LSTM [11] for community k, and hk,t is the t-th hidden state of k-th
community. We use LSTM in our model (in each community block) since it addresses
the vanishing and exploding gradient problems of basic RNNs.

Temporal Attention is applied on top of LSTMs to differentiate the contribution
of latent representations of global dynamic features at each time point and for each
community. To make the output specific to the target location, we incorporate a query
scheme based on a time-dependent community membership (i.e., contribution of each
location to the community) where the membership is further weighted based on the lo-
cation’s spatial proximity to target location (with nearby locations getting larger weights).
Specifically, let β(i)

k denotes the attention weight over the hidden state (hk,i) of commu-
nity k at time i. The context vector νk, which is aggregate contribution from community
k, can be learned through the proximity-based weighting scheme, as follows:

q
(t)
k = xproxd � αk,t, (4)

β
(i)
k =

exp(q
(i)
k )∑w

t=1 exp(q
(t)
k )

, νk =

w∑
t=1

β
(t)
k hk,t, (5)

where xproxd ∈ RL is a vector encoding the proximity of the target location d to all
locations. Here, the proximity of two locations is calculated based on the inverse of
geographic distance (haversine):

prox(l1, l2) =
1√

1 + dist(l1, l2)
. (6)

Community Attention aims to produce a global contribution with respect to the
target location d by combining different representation subspaces for each of the com-
munities {ν1, ν2, . . . , νK}. A soft-attention approach is then employed to combine the
contributions from all K communities. Here, to make the prediction specific to the tar-
get location, we incorporate a query scheme, which takes each community vector {νk}
as a key and the embedding of the target location as a query, as follows:

uk = rᵀtanh(V νk + embd), (7)

γ(i) =
exp(ui)∑K

k=1 exp(uk)
, ν =

K∑
k=1

γ(k)νk, (8)

where V ∈ Rm×m, and r ∈ Rm are the parameters to be learned, where m is the
number of hidden units in LSTMs in the community blocks, and ν is the output of the
global component.
Local Component. This component is designed to model the contribution of the local
dynamic features for any target location d (Fig. 1a). It basically includes a recurrent
unit and a temporal attention that focuses on the most informative time instants. The
dynamic features of target location are fed to the recurrent unit to model local dynamics.

st = g(st−1, X
dyn
t,d ), (9)

where g(.) is LSTM, as in the global component, and st is the t-th hidden state of
LSTM. Then, we also employ a temporal attention on top of the LSTM in this compo-
nent, which can select the most informative hidden states (time instants) with respect
to the dynamic features of target location d. We only provide the calculation of output
vector of the local component to be succinct as: ξd =

∑w
t=1 δ

(t)st where δ(t) is the at-
tention weight for the hidden state at time t, and ξd is the output of the local component.
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Static Component. This component models the static information specific to the target
location (Fig. 1b). The input incorporates the static features, Xstat

d , and a one-hot en-
coding vector xidd ∈ RL that represents the target location. We apply a fully connected
layer (FC) to separately learn a latent representation for each of the two types of infor-
mation. In particular, the one-hot location vector will be converted into an embedding
embd and will be utilized in the aforementioned query component (see Eq. (7)). Ψd is
the output of this component, which is concatenation of learned embeddings and latent
representation of static features.
Objective Function. The objective function consists of three terms: prediction loss,
orthogonality loss and Group Lasso (GL) regularization as follows:

Loverall = Lpredict + λLortho + ηLGL, (10)

where λ and η are the tuning parameters for the penalty terms, andLpredict =
1

N

N∑
i=1

(ŷi−

yi)
2, is the mean squared error (MSE), ŷi and yi are the predicted and actual number

of opioid overdose incidents for sample i, respectively. A penalty term, Lortho is added
to avoid learning redundant memberships across communities, i.e., multiple commu-
nities may consist of a similar group of locations. To encourage community mem-
berships to be distinguishable as much as possible, we incorporate this orthogonality
loss term into the objective function. Let ᾱk be the community membership vector de-
noting how each location contributes to the community k, averaging over time, and
∆ =

[
ᾱ1, ᾱ2, . . . , ᾱK

]
∈ RK×L is a matrix consisting of such membership vectors for

all communities, the orthogonality loss is given by:
Lortho = ||∆ ·∆ᵀ − I||2F , (11)

where I ∈ RK×K is the identity matrix. This loss term encourages different commu-
nities to have non-identical locations as members as much as possible, which helps
reduce the redundancy across communities. Lastly, we incorporate GL regularization
into objective function, which imposes sparsity on a group level [22], and which has
been found effective in several domains ([27, 18]) to select informative features. Our
main motivation to employ GL is to select community-level and local-level informa-
tive features. It enables us to interpret and differentiate which features are important for
opioid overdose incidents. It is defined as:

LGL =
K∑

k=1

‖Zglob
k ‖2,1 + ‖Zlocal‖2,1 + ‖Zstat‖2,1, (12)

‖Z‖2,1 =
∑
g∈G

√
| g |‖g‖2, (13)

where Zglob
k denotes input weight matrix in the kth community block in the global

component. Zlocal and Zstat represent input weight matrices in the local and the static
components, respectively. g is vector of outgoing connections (weights) from an input
neuron, G denotes a set of input neurons, and |g| indicates the dimension of g.
3.3 Features

We employ two types of features namely static features and dynamic features.
Static features include economical status, housing status, educational level of neigh-
borhoods and demographics such as population, gender diversity index and race diver-
sity index, which are obtained from census data. The diversity index is calculated using
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normalized entropy. Furthermore, we employ median household income, per capita in-
come and poverty (%) as the economical indicators. We utilize percentage of the vacant
houses (housing occupancy) and percentage of owner occupied houses (housing tenure)
as the housing-related static features. We also consider percentage of high school grad-
uation and below as the educational attainment indicator as an another static feature. As
a result, we obtain a total of nine static features. Note that we apply z-score normaliza-
tion for median household income and per capita income, and log-transformation for
population while preparing the feature vectors.
Dynamic features are to capture the crime dynamics of the locations that may be pre-
dictive for opioid overdose. We extract the dynamic features from public safety data
portals of the cities. Each crime incident is identified by a unique crime incident num-
ber and has a certain type which shows a hierarchical structure. The crime data gathered
from different cities may have very different categories. For example, the dataset from
the City of Chicago includes much more categories than that from the City of Cincin-
nati. Here, we only consider the highest level, “primary crime types” and eliminate rare
categories. The full list of crime categories used in this work can be found in Fig. 4. In
addition to these features, we also utilize the number of total crimes and the number of
total opioid overdose incidents as additional dynamic features. For each neighborhood
and each time unit, the feature vector contains the total number of crimes, the total
number of incidents for each primary crime type and the number of opioid overdose.
We apply z-score normalization to all dynamic features.

4 Experiments
4.1 Datasets

We apply our method to forecast opioid overdose on two cities, namely City of
Chicago and City of Cincinnati. The neighborhood boundaries officially recognized by
the City of Cincinnati and the City of Chicago are called “Statistical Neighborhood Ap-
proximations (SNAs)” and “community areas”, respectively. Hereafter, we use “neigh-
borhoods” to refer to both. There are 77 neighborhoods in Chicago whereas Cincinnati
consists of 50 neighborhoods. While we select 47 neighborhoods from Chicago (where
∼ 80% of opioid overdose deaths occur), we use all neighborhoods of Cincinnati in our
experiments. Table 1 shows descriptive information about both datasets. For each city,
we collect three types of data related to crime, opioid overdose and census as follows:
Crime data: We collect crime incident information (geo-location, time and primary
type of the crimes) from the open data portals of the cities. We use Public Safety Crime
dataset? ? ? and Police Data Initiative (PDI) Crime Incidents dataset† to extract such
information for City of Chicago and City of Cincinnati, respectively. We extract 14
crime-related dynamic features for Chicago, and 9 dynamic features for Cincinnati.
Opioid overdose data: We collect different types of opioid overdose data for each city
since there is no systematic monitoring of drug abuse at either a regional or state level
in the U.S. For Chicago, we collect opioid overdose death records (geo-location and

? ? ? https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
† https://data.cincinnati-oh.gov/Safer-Streets/PDI-Police-Data-Initiative-Crime-Incidents/k59e-

2pvf
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Table 1: Descriptive information about our datasets.

#NBHDs #Dynamic
Features

#Static
Features #Crimes #Opioid ODs Incident

Type
Time

Interval
Time
Span

Chicago 47 15 9 573207 1468 deaths 1 week 08/03/15
08/26/18

Cincinnati 50 10 9 75779 5401 EMS calls 1 week 08/01/15
06/01/18

time) from Opioid Mapping Initiative Open Datasets‡. On the other hand, we utilize the
EMS response data§ for heroin overdoses in Cincinnati.
Census data: We use the 2010 Census data to extract the features related to demograph-
ics, economical status, housing status and educational status of the neighborhoods.
4.2 Baselines

We compare our model with a number of baselines as follows:
– HA: Historical average.
– ARIMA: is a well-known method for predicting future values for time series.
– VAR: captures the linear inter-dependencies among multiple time series and forecasts

future values.
– SVR: is Support Vector Regression. We use its two variants, SVRind (trained sepa-

rate models for each location) and SVRall (trained a single model for all locations).
– LSTM: We train an LSTM network in which dynamic features are fed to LSTM,

then the latent representations are concatenated with static features for prediction.
– DA-RNN [20]: is a dual-staged attention-based RNN model for spatio-temporal time

series prediction.
– GeoMAN [17]: is a multi-level attention-based RNN model for spatio-temporal pre-

diction, which shows state-of-the-art performance in the air quality prediction task.
– ActAttn [5]: is a hierarchical spatio-temporal predictive framework for social move-

ments. We replace the final classification layer with regression layer to configure it
to regression task to use it as another baseline.

Furthermore, to evaluate the effectiveness of individual components of our model, we
also include its several variants for the comparison as follows:
– CASTNet-noGL: GL regularization is not incorporated into the loss function.
– CASTNet-noOrtho: Orthogonality penalty is not applied so that differentiation of

the communities is not encouraged.
– CASTNet-noSA: The spatial attentions are removed from the community blocks.

Instead, the feature vectors of all locations are concatenated.
– CASTNet-noTA: The temporal attentions in both local and global components are

removed from the architecture.
– CASTNet-noCA: The community attention is removed from the architecture. In-

stead, the context vectors of the communities are concatenated.
– CASTNet-noSC: The static features are excluded from the architecture, yet the

location-ID is still embedded.
Settings: We used ‘week’ as time unit and ‘neighborhood’ as location unit. We divided
datasets into training, validation and test sets with ratio of 75%, 10% and 15%, respec-

‡ https://opioidmappinginitiative-opioidepidemic.opendata.arcgis.com/
§ https://insights.cincinnati-oh.gov/stories/s/Heroin/dm3s-ep3u/
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Table 2: Performance Results.
Chicago Cincinnati

MAE RMSE MAE RMSE

HA 0.2329 0.3385 0.5728 0.8727
ARIMA 0.2272 0.3396 0.5717 0.8952
VAR 0.2242 0.3386 0.5606 0.8712
SVRind 0.2112 0.3321 0.5153 0.8609
SVRall 0.1984 0.3063 0.4886 0.8602
LSTM 0.2024 0.3134 0.5235 0.8267
DA-RNN [20] 0.1726 0.3051 0.4817 0.8225
GeoMAN [17] 0.1679 0.2829 0.5034 0.8453
ActAttn [5] 0.1693 0.2937 0.4827 0.8326

CASTNet-noGL 0.1662 0.3129 0.4703 0.8311
CASTNet-noOrtho 0.1649 0.2948 0.4716 0.8109
CASTNet-noSA 0.1608 0.2893 0.4579 0.8152
CASTNet-noTA 0.1641 0.2876 0.4700 0.8141
CASTNet-noCA 0.1631 0.3069 0.4730 0.8225
CASTNet-noSC 0.1693 0.2980 0.4692 0.8291

CASTNet 0.1391 0.2679 0.4516 0.8032

tively. We set τ = 1 to make short-term predictions. For RNN-based methods, hidden
unit size of LSTMs was selected from {8, 16, 32, 64}. The networks were trained us-
ing Adam optimizer with a learning rate of 0.001. For each LSTM layer, dropout of 0.1
was applied to prevent overfitting. In our models, the regularization factors λ and η were
optimized from the small sets {0.001, 0.005, . . . , 0.05} and {0.001, 0.0015, . . . , 0.01},
respectively using grid search. For ARIMA and VAR, the orders of the autoregressive
and moving average components were optimized for the time lags between 1 and 11.
For RNN-based methods, we performed experiments with different window sizes w ∈
{5, 10, 15, 20}, and shared the results for w = 10 (the best setting for all models). Our
code and data are available at https://github.com/picsolab/castnet.

5 Results
5.1 Performance Comparison

Table 2 shows that CASTNet achieves the best performance in terms of both mean
absolute error (MAE) and root mean squared error (RMSE) on both datasets. Our model
shows 17.2% and 5.3% improvement in terms of MAE and RMSE, respectively, on
Chicago dataset compared to state-of-the-art approach GeoMAN. Similarly, CASTNet
enhances the performance 6.3% and 2.4% on Cincinnati dataset in terms of MAE and
RMSE, respectively, compared to DA-RNN which shows best performance among the
other baselines. Furthermore, we observe that mostly spatio-temporal RNN-based mod-
els outperform other baselines, which indicates they better learn the complex spatio-
temporal relationships between crime and opioid overdose dynamics.

We further evaluate the effectiveness of each individual component of CASTNet
with an ablation study. As described in Section 4.2, each variant is different from the
proposed CASTNet by removing one tested component (with others kept identical as
much as possible). Table 2 shows that the removal of GL in the model results in a sig-
nificantly lower performance compared to the others. In addition, CASTNet-noGL can
no longer be able to select informative features. Similarly, excluding orthogonality term
(CASTNet-noOrtho) loses the ability to learn distinguishable communities or represen-
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Fig. 2: MAE and RMSE results w.r.t change in the number of communities.

tation subspaces and reduces the performances as well. Moreover, comparing CASTNet
with CASTNet-noCA shows that employing community attention has a great impact on
the performance, which indicates that learning pairwise activity relationships between
a particular event location and communities is crucial. Location-specific static features
are also informative since their exclusion (CASTNet-noSC) degrades the performance
in both cases. The individual component that provides the least performance gain is
spatial attention for both cases. However, its removal (CASTNet-noSA) results in loss
of interpretability capability of community memberships. These results reflect that each
individual component has important contribution to forecasting performance.

Moreover, we evaluate the performance of the CASTNet with respect to the change
in number of communities K. We conduct experiments with different values of K se-
lected from {0, 1, . . . , 6} and the results are given in Fig. 2. Note that the model does not
consider global contribution whenK = 0. Also, whenK = 1, the model yields a single
universal representation of global activities which is irrespective of the event locations.
The best performances are obtained whenK = 4 for Chicago andK = 3 for Cincinnati
datasets. We observe that while K increases until the optimum value, the performance
increases, and some communities are decomposed to form new communities. However,
as long as K continues to increase after its optimum value, the performance starts to
decrease slightly or remains stable, and the semantic subspaces of some communities
become similar. With this experiment, we indicate that learning different representa-
tions of global activities significantly improves the forecasting performance.
5.2 Analysis of Community Memberships and Community Contributions

We analyze the community memberships of the neighborhoods and community con-
tributions on forecasting future opioid overdose by answering the following questions.
How do locations contribute to communities? CASTNet learns different representa-
tion subspaces (communities) of global dynamics unlike the previous work [17, 5], and
each community consists of a group of different members due to orthogonality penalty.
We represent the learned communities and their memberships (i.e., the spatial attention
weights α in Eq. (2), averaged over time for ease of interpretation) on the left side of
Fig. 3a and 3b for Chicago and Cincinnati, respectively, where the line thickness rep-
resents the degree at which a location contributes to the corresponding communities.
Note that neighborhoods on the left side of Fig. 3a and Fig. 3b are ordered by the num-
ber of crimes. As shown in Fig. 3, most locations have dedicated to one community.
For Chicago model (Fig. 3a), Austin (25), which has the highest number of crime in-
cidents and opioid overdose deaths, formed a separate community C4 by itself. While
North Lawndale (29) and Humboldt Park (23) together formed the communityC1, West
Garfield Park (26), East Garfield Park (27) and North Lawndale (29) formed an another
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(a) Chicago (b) Cincinnati
Fig. 3: Community memberships and community contributions on forecasting. For
each community, left side represents community memberships (how each location con-
tributes to the community), and right side represents the average community contri-
bution (how the community contribute to predicting a target location). Edge thickness
indicates the weight of community membership (left side) and community contribution
(right side). Node size denotes overall community membership of a location (left side)
and overall community contribution to forecasting overdose (right side) in the target
neighborhood. Edge color shows the input and output of a specific community. Node
color of a neighborhood indicates the community for which the corresponding neigh-
borhood has the highest membership (left side). Node color of a neighborhood denotes
the community from which the neighborhood takes the largest contribution (right side).
Edges whose weights are above a certain threshold are shown.

community C3. Note that neighborhoods of C1 and C3 have the highest opioid over-
dose death rate after Austin (25). On the other hand, the community C2 is formed by the
neighborhoods having low crime and overdose death rates including Fuller Park (37),
McKinley Park (59) and West Elsdon (62). Furthermore, for Cincinnati model (Fig. 3b),
Westwood (49), where the highest number of crimes were committed, formed a separate
communityC3 by itself. It shows a similar behavior to the Chicago case. East Price Hill
(13), West Price Hill (48), Avondale (1) and Over-The-Rhine (34) formed the commu-
nity C2 where these neighborhoods have the highest crime rate after Westwood (49) and
the highest opioid overdose rate. On the other hand, the community C1 is formed by
rest of the neighborhoods (with low and moderate crime rates) and their memberships
of that community are almost equal.
How do the communities contribute to forecasting? CASTNet is capable of mod-
eling the pairwise activity relationships between a particular event location and the
communities. It allows the target location to attend the communities to select location-
specific global contributions. We analyze how these communities contribute to forecast-



CASTNet 13

 0
 0.005
 0.01
 0.015

      0
      0.1
      0.2
      0.3

      0
      0.2
      0.4
      0.6
      0.8

      0

      0.1

      0.2

      0.3

To
tal 
Cri
me
s
Th
eft

Ba
tter
y

Cri
mi
nal
 Da
ma
gin
g
As
sau
lt

De
cep
tiv
e P
rac
tice

Oth
er 
Of
fen
ses

Na
rco
tics

Bu
rgl
ary

Ro
bbe
ry

Mo
tor
 V.
 Th
eft

Cri
mi
nal
 Tr
esp
ass

We
apo
ns 
Vio
lati
on

Ho
mi
cid
e

Op
ioi
d O
D D

eat
hs

    0

    0.01

    0.02

  0
  0.02
  0.04
  0.06
  0.08

   0
   0.05
   0.1
   0.15
   0.2

    0
    0.1
    0.2
    0.3
    0.4

To
tal 
Cri
me
s

Par
t 2
 M
ino
r
Th
eft

Bu
rgl
ary
/Br
kng

 En
t.

Ro
bbe
ry

Ag
g. A

ssa
ult
s
Ra
pe

Un
aut
hor
ize
d U
se

Ho
mi
cid
e

Op
ioi
d O
D O

cc.
  0

  0.05
  0.1
  0.15
  0.2

Lo
ca
l

C
  1

Lo
ca
l

C
  2

C
  1

C
  3 C
  2

C
  4 C
  3

(a) Chicago (b) Cincinnati

Fig. 4: Importance of dynamic features. Mean absolute values of input weights of
local and global components.

ing by visualizing the community attention weights (i.e., γ in Eq. (8) averaged over test
samples for each neighborhood) in Fig. 3a and Fig. 3b for Chicago and Cincinnati, re-
spectively. While the left side of the figures represents the community memberships, the
right side indicates the average community contributions for each neighborhood. Note
that neighborhoods on the right side of Fig. 3a and Fig. 3b are ordered by the number of
opioid overdoses. For Chicago case, C1 and C2 have more contributions than the other
communities on forecasting overdose. While C2 contributes more to neighborhoods
with low or moderate opioid overdose death rate, C1 contributes more to the neighbor-
hoods where the death rate is higher. C3 also contributes more to the neighborhoods
with the highest death rate (e.g. Austin (25), Humboldt Park (23)). This means that
any particular neighborhood attends more to the community, which is formed by the
similar neighborhoods. On the other hand, C4 does not significantly contribute to any
neighborhood although it is formed by a crime hot-spot (Austin (25)). For Cincinnati
case, C2 is a very dominant community, which makes the largest global contribution to
most of the neighborhoods. The neighborhoods that formed C2 and C3 (e.g. East Price
Hill (13), West Price Hill (48), Westwood (49)) are very predictive, and the change in
their dynamics have greater impact on forecasting future overdoses in the target neigh-
borhoods. On the other hand, C1 has larger contribution to neighborhoods where the
overdose rate is the highest. This indicates that the crimes committed in the members
of C1 are also informative for forecasting future overdoses in opioid hot-spots.
5.3 Feature Analysis

We investigate the importance of dynamic features by analyzing the mean absolute
input weights of local and global components as shown in Fig. 4. For Chicago case, GL
selects Narcotics and Assault as the most important features for future opioid overdose
deaths in the same location. Moreover, Theft, Deceptive Practice, Narcotics, Burglary
and Motor V. Theft are the predictive features fromC1 while Weapons Violation, Decep-
tive Practice (e.g. Fraud) and Criminal Trespass are significant from C2. Recall that,
C1 and C2 are the most contributing communities to forecasting (see Fig. 3a). This
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Fig. 5: Importance of static features. Mean absolute values of input weights of FC
layer in static component.

shows that property crimes (e.g. Theft, Burglary, Deceptive Practice) are more signifi-
cant predictors than the violent crimes for Chicago. Such crimes previously committed
in the members of C1 and C2 may be a significant indicator of future opioid overdose
deaths in Chicago. On the other hand, Battery, Narcotics, Burglary, and Motor V. Theft
are predictive features from C3 while Battery, Total Crimes and Other Offenses (e.g. of-
fenses against family) are significant fromC4. However,C3 has larger contribution than
other communities for only Austin (25). C4 does not provide a significant contribution
to any neighborhood as much as the other communities. For Cincinnati case, Opioid
Overdose Occ. is the most predictive feature for forecasting future opioid overdose
in the same location, which means the local component behaves as an autoregressive
module unlike the Chicago case. Furthermore, both violent crimes including Agg. As-
saults, Rape, Homicide, Part 2 Minor (e.g. Menacing) and property crimes including
Burglary/Breaking Ent., Theft, Part 2 Minor (e.g. Fraud) are significant features from
C1. On the other hand, Theft and Part 2 Minor from C2, and Theft and Burglary from
C3 are predictive features for future opioid overdose in the target locations. Recall that
C2 and C3 have more salient contribution on most of the neighborhoods, which im-
plies that commitment of previous property crimes (especially Theft) in the members of
those communities may be one of the potential indicators of future opioid overdose in
the other neighborhoods. Note that our findings are also consistent with the literature
that highlighted the connection between crime and drug use, and suggested the property
crimes such as theft, burglary might be committed to raise funds to purchase drugs [1].

We explore the importance of static features by analyzing mean absolute input
weights of FC in static component (see Fig. 5). For Chicago case, demographic fea-
tures (Population, Gender Div. and Race Div.) are significant. We observe that Owner
Occupied H. units, Poverty and Educational Att. are also informative. For Cincinnati
case, Gender Div. and Population are important features for forecasting as well as the
Educational Att. and Per Capita Income. Based on these results, the neighborhoods
with higher population, and lower or moderate gender diversity may require additional
resources to prevent opioid overdose in both cities. Also, economic status is important
for neighborhoods of both cities, which is consistent with the previous work that sug-
gested communities with a higher concentration of economic stressors (e.g. low income,
poverty) may be vulnerable to abuse of opioids as a way to manage chronic stress and
mood disorders [15]. Although there exist three economic status indicators, GL selects
only one, Poverty for Chicago and Per Capita Income for Cincinnati.

6 Discussion and Future Work
In this work, we presented a community-attentive spatio-temporal predictive model

to forecast opioid overdose from crime dynamics. We developed a novel deep learn-
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ing architecture based on multi-head attentional networks that learns different repre-
sentation subspaces of features (communities) and allows the target locations to select
location-specific community contributions for forecasting local incidents. At the same
time, our proposed model allows for interpreting predictive features in both local-level
and community-level, as well as the community memberships and the community con-
tributions to forecasting local incidents. We demonstrated the strength of our method
through the extensive experiments. Our method achieved superior forecasting perfor-
mance on two real-world opioid overdose datasets compared to the baseline methods.

The experiment results suggest different spatio-temporal crime-overdose potential
links. The overdose deaths at a target neighborhood in Chicago appear to be better pre-
dicted by crime incidents at neighborhoods that share the same community with the
target neighborhood. Also, change in crime incidences in those neighborhoods with
low crime rates is an important indicator of future overdose deaths in most of the
other neighborhoods. On the other hand, in Cincinnati, the crime incidents occurred
in communities comprising those crime hot-spots seem to well predict the overdose
events in most of the neighborhoods. Furthermore, the predictive local activities are
different in two cases. While the local crime incidents, in particularly Narcotics and
Assault, are predictive for local overdose deaths in Chicago, previous overdose occur-
rences are informative for future overdose incidents in Cincinnati. On the other hand,
the global contributions to forecasting local overdose incidents show similar patterns
in both cities. Change in property crimes, in particular Theft, Deceptive Practice, Bur-
glary and Weapons Violation (crime against to society) in Chicago, Theft and Burglary
in Cincinnati, can be significant indicators for future local overdose incidents as well
as certain type of violent crimes (Battery for Chicago and Agg. Assault for Cincinnati).
Last but not the least, demographic characteristics, economic status and educational
attainment of the neighborhoods in both cities may help forecasting future local inci-
dents. Our findings support the hypothesis that criminal activities and opioid overdose
incidents may reveal spatio-temporal lag effects, and are consistent with the literature.
As future work, we plan to investigate the link between opioid use (or overdose) and
other social phenomena using our method. We also plan to extend our model to consider
multi-resolution spatio-temporal dynamics for prediction.
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