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Figure 1: Using FacIt to interpret and scrutinize patterns based on tensor factorization from NBA shot data: (a) Model Inspection
View provides various metrics of model sensitivity for selecting a desirable setting of rank from different aspects. (b) Pattern
Projection View provides users high-lever overview of the entire pattern space. (c) Circular Bar Charts (c1) and Treemap view (c2)
allow for examining the detailed content of patterns. (d) Pattern Comparison Mode allows users to analyze pairs of common and
discriminative patterns and their associated items. (e) Pattern Query Mode enables users to retrieve most relevant patterns (e2) by
query (text) input (e1) and item bars (e3).

ABSTRACT

Tensor Factorization has been widely used in many fields to discover
latent patterns from multidimensional data. Interpreting or scrutiniz-
ing the tensor factorization results are, however, by no means easy.
We introduce FacIt , a generic visual analytic system that directly
factorizes tensor-formatted data into a visual representation of pat-
terns to facilitate result interpretation, scrutinization, information
query, as well as model selection. Our design consists of (i) a suite
of model scrutinizing and inspection tools that allows efficient tensor
model selection (commonly known as rank selection problem) and
(ii) an interactive visualization design that empowers users with both
characteristics- and content-driven pattern discovery. We demon-
strate the effectiveness of our system through usage scenarios with
policy adoption analysis.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics

1 INTRODUCTION

As a dimension reduction technique for the high-dimensional dataset,
tensor factorization has been widely used to identify the latent pat-
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terns from multi-aspect data. Similar to other methods, such as
singular value decomposition (SVD) [13] or latent Dirichlet alloca-
tion (LDA) [5], tensor factorization helps us to extract latent patterns
with the noise of raw data removed. Then, such patterns tend to
be more abstract, compressed, and in general, better describe the
correlations and interactions among the original set of dimensions.

Tensor factorization has been used to discover multi-aspect pat-
terns to jointly describe the underlying data phenomenons, in many
real-world applications, such as social network analysis [20], web
search [2],] brain data analysis [25], and health care [15,23]. Despite
its wide range of applications, identifying insightful patterns from
Tensor Factorization still poses the two challenges. (1) The mis-
match between human information need/interest and optimization
goals: Tensor Factorization is optimized towards minimizing the
discrepancy between data and model. However, human information
need can be more than this. For example, users may want to sacrifice
its fit with the increased sparseness in the representation, for the sake
of better interpretability. (2) The mismatch between factorization
results and human understandability: The factorization results are
not readily translated in a way that human see things clustered or
close to one another. While these challenges call for user-driven
pattern discovery from multi-aspect data, there have been a few
studies in understanding users’ information needs in the process of
Tensor Factorization. Viola [7] and TPFlow [22] are among the early
attempts to understand users’ need. However, their primary focus is
limited on applications within a spatio-temporal context.

To address the above challenges, we present FacIt (pronounced
as facet), a generic visual analytic system that factorizes tensor-
formatted data into a set of patterns that are visually represented, to
facilitate model selection, result interpretation, and pattern scruti-
nization. Specifically, our work has the following key contributions:
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• Task Analysis. We conduct interviews with the users of Ten-
sor Factorization from three different domains to understand
the information need based on their experience of tensor-based
analysis. We formalize a set of analytical tasks and require-
ments applicable to generic tensor-based analysis;

• System Design. We propose a system design that closely fol-
lows the design requirements distilled from the task analysis;

• Case Study. We demonstrate the effectiveness of the FacIt
with detailed usage scenarios with policy adoption analysis in
the United States.

2 RELATED WORK

Tensor-based methods have become popular to discover patterns
from the multi-way dataset in a variety of domains, ranging from
social network analysis [20], web search [2],] brain data analy-
sis [25], health care [23], event analytics [34, 35], sports analyt-
ics [26], etc. For example, Papalexakis and Pelechrinis construct
3-D tensor of the players, zones, and time of the game, from NBA
shot dataset [26]. One of the challenges for tensor factorization
technique is the rank estimation problem. Although studies have
used some quality metrics (e.g., core consistency diagnostic [6] to
determine the rank [19,26,28]), we argue that a single metric should
not form the sole basis upon the choice of rank. Tensor Factoriza-
tion serves not only to fit the tensor but also to provide a set of
meaningfully interpreted patterns.

Existing high-dimensional visualization work mostly focuses on
various ways of visualizing the raw data. Multivariate visualization
simultaneously encodes multiple attributes in a single view with
a more compact manner, such as parallel coordinates [16], space-
time cube [3], ring maps [39]. On the other hand, some other
visualizations provide a set of separate views, which coordinate with
each other to describe the multidimensional information, such as
Smartadp [21], SRVis [36], StreamExplorer [38]. However, there
has not been much work in helping the analysis of the patterns
from the tensor factorization. Although several recent works, e.g.,
Viola [7], TPFlow [22], have presented the analysis on exploring
and interpreting Tensor Factorization results, their applications are
limited to the spatio-temporal context.

3 REQUIREMENT ANALYSIS

In this section, we present the preliminaries on tensor, and the proce-
dure and data for our requirement analysis, followed by the design
goals and analytical tasks to define the requirements of our system.

3.1 Tensor Preliminaries

Tensor. A tensor is a multidimensional array. Let x denote a scalar,
x a vector, X a matrix, and then X is the extension of these con-
cepts to higher dimensions. A tensor is called M-way tensor if it
has M-dimensions or modes. The dimensionality of each mode is
determined by the number of items in the corresponding mode.

CP Decomposition. The CANDECOMP/PARAFAC (CP) [8,14]
is one of the most popular tensor decomposition approaches. A CP
decomposition of an M-way tensor X ∈ RI1×...×IM finds a set of
factor matrices, U(1), . . . ,U(M), that approximates the tensor as the
sum of R vector outer products. It can be concisely expressed as:
X ≈ [[U(1), . . . ,U(M)]] ≡ ∑

R
r=1 λru(1)

r ◦ . . . ◦ u(M)
r , where the m-th

factor matrix Um =
[
u(m)

1 · · ·u(m)
R

]
is the combination of the vec-

tors, λr ∈ RR is often used to absorb the respective weights during
normalization of the factor matrices’ columns, “◦” represents outer
products, and R denotes the specified rank – the number of compo-
nents.

Descriptors and Patterns. We refer to each entry i for i =
1, . . . , Im, as an item of the m-th dimension in the tensor. We denote
the vector u(m)

r ∈RIm as a descriptor consisting of entries 〈u(m)
ir 〉 for

Table 1: Dataset and Tensor Modes Description.
Domain Dataset Tensor Setting Tensor Entry Size
Sports NBA shot data (2014-15) Period, Player, Zone #shots [5,15,14]

Business Ponpare Coupon Purchase Genre,Sex,Age, Price, Period #coupon [13,2,13,10,7]
Politics Policy Adoption in U.S. Subjct, Year, State, Keyword #adoption [16,26,50,18]

i = 1, . . . , Im from the m-th dimension that describes the contribution
of the i-th item i to the r-th component.

3.2 Procedure and Data

The design of FacIt follows the nested model described in [24],
which is an iterative analytic process with one expert from each
of the three different application domains – sports analytic, online
purchase, and public policy analysis. Despite the diverse application
domains, our experts all have extensive experience in computational
data analytics in their respective domain. Our domain experts are
further selected based on two criteria: 1) they have knowledge of
tensor factorization; 2) they are comfortable using off-the-shelf
package to run tensor factorization and have used it in their analytic
tasks in the past. We use three datasets from those applications as
motivating examples and use the last one to evaluate our system. The
first application is the analysis of NBA shots data in season 2014-
2015 [26]. The second application is the analysis of online coupon
purchase [17]. The third one is the analysis of policy adoption in the
United States. Table 1 summarizes the three datasets.

Over the course of six months, we held weekly meetings with our
experts. During our early meetings, the system design requirements
in experts’ respective domains were discussed. Then, system proto-
types were proposed and demonstrated to the experts for gathering
feedback, and improvements were made iteratively in this process.

3.3 Design Goals

Based on a thorough literature review and interviews with the experts,
we identify the following design goals for visual analytic systems to
assist their tensor-based analysis:

G1. Effectiveness: How can we assist users in evaluating the
effectiveness of model configuration? The result of tensor factor-
ization is highly dependent on the configuration of the rank. How-
ever, there is no trivial algorithm to determine the optimal rank.
Our experts suggest that the system should support the evidence on
which rank leads to the effective decomposition, by providing a set
of quality measurements and letting users inspect the patterns with a
specific rank.

G2. Efficiency: How can we assist users in exploring the pat-
terns more efficiently? Our experts mentioned that the process of
exploring the pattern is an iterative and time-consuming process to
examine all the patterns until discovering the meaningful ones. In
the regard, the system should present the high-level pattern summary
and allow users to locate patterns of their interests instantly.

G3. Interpretability: How can we better understand a pat-
tern? As mentioned by our experts, it is usually a time-consuming
task to interpret the pattern through examining multiple charts of
descriptors all together. To complement the existing approaches,
which typically present the descriptors side-by-side [7, 22, 30], the
system should provide a space-efficient and well-balanced visual
representation to explain multiple aspects of a pattern rather than
displaying descriptors in a real-valued manner.

G4. Comparison: How can we compare patterns? While
previous studies have addressed the issue of comparing multiple
patterns (e.g., [1, 9–11, 18, 27, 29–32, 37]). experts were interested
in selecting a pattern of their interests, and identifying other similar
patterns in terms of a certain dimension or a combination of several
aspects. Therefore, the system should intuitively represent patterns
based on how they are similar to each other.

3.4 Analytical Tasks

To meet the design goals mentioned above, we summarize the ana-
lytical tasks as follows:



T.1: Present a comprehensive model statistics. The system
should provide a comprehensive set of essential metrics (T.1.1) asso-
ciated with the quality of tensor factorization. Besides, the system
should allow users to configure the rank settings based on their
preferences and facilitate the understanding of the trade-offs (T.1.2).
Then the system should immediately present the patterns as the
output of selected ranks to enable the quick fidelity check (T.1.3).
(G1)

T.2: Present the overview of the patterns. The system should
provide users with an overview of the patterns (T.2.1). Users should
be able to explore patterns having a varying degree of contribution
to the model (T.2.2). (G2).

T.3: Multi-facet pattern query. The system should provide an
interaction mechanism allowing the users to query for the patterns
that match with their specific items of interest (T.3.1). Upon issuing
of such queries, the system should present a ranked list of patterns
that are most relevant to the query (T.3.2). As a query may consist
of a combination of multiple items, the system should support users
to keep track of querying history (T.3.3). (G2)

T.4: Encode the multi-aspect characteristics of patterns in
multiple scales. To deal with the multi-aspect patterns, the system
should allow users to effectively grasp the overall distribution and
high-level statistic of the patterns (T.4.1). The low-level displays
present on-demand details of the patterns from both quantitative
distributions (T.4.2) and qualitative narratives (T.4.3). (G3)

T.5: Encode the multi-scale comparison between patterns.
The system should first summarize the similarity between each
pattern’s same kind of descriptors across the patterns (T.5.1). More-
over, the system should highlight the similar and discriminative
items between patterns on demand so that users can immediately
spot how two patterns differ from and concur to each other in each
descriptor (T.5.2). (G4)

4 SYSTEM DESIGN

Based on the design requirements and analytical needs, we designed
and developed FacIt , an interactive visual analytic to facilitate the
interpretation and exploration of the results from tensor factorization.

4.1 Model Inspection View: Setting the Proper Rank

The model inspection view visualizes the summary statistics of a
tensor factorization model varying by the selection of the rank with
a set of line charts (Fig. 1a). We present five model quality measure-
ments with respect to: the degree of fit (normalized reconstruction
error and model fit), the model sensitivity to the initialization (model
stability [37]), and the interpretability of the model (normalized en-
tropy and sparsity). To increase the robustness of the measurements,
for each rank, we performed five runs of Tensor Factorization with
the mean and standard deviation reported in the line charts. In the
system, users can set the weights on different metrics to enable the
rank suggestion based on their interest.

4.2 Pattern Projection View: Pattern-Level Exploration

The pattern projection view provides an overview of the patterns.
Each pattern is presented in a novel form of flower glyph to encap-
sulate key information related to the patterns.

Projection View. This view provides an overview of the rela-
tionships between the patterns in the two-dimensional space (Fig.
1(b)). Since each pattern is jointly described by multiple descrip-
tors, we use a multi-view extension of Multi-Dimensional Scal-
ing (MDS) [33] to map the patterns to 2-D space. As a result,
the pattern projection view offers the pairwise relationship of the
patterns (i.e., similar patterns are located close to each other).

Pattern Glyph. We present the design of pattern glyph that
effectively summarize the following information (Fig. 1(b1)):

• Pattern Dominance. Analogous to PCA, where each compo-
nent is associated with an amount of variance explained, we

can also rescale the columns of each factor matrices to be unit
length, and absorb the scalings into λr for each pattern r.

• Descriptor Informativeness. Given a descriptor ur
(m) with mi

set of items, we first compute entropy entrm
r of u(m)

r and use it
as a proxy of its informativeness.

• Descriptor Similarity. We use the ū(m) to denote the distri-
bution of the m-th descriptor averaged over R components.
Then, the similarity between the m-th descriptor of the r-th
component to ū(m) is calculated based on a Spearman rank.

To effectively visualize and summarize the multi-dimensional
nature of the pattern, we adopt the shape of a flower (=pattern)
with its petals (=descriptors). We encode each petal by using an
ellipse and rotate the ellipses so that all petals take up the entire
circle (360◦) as shown in Fig. 1(b1). We also encode the pattern
dominance λr with the saturation of the outer circle surrounding the
glyph, indicating larger variance with more vivid color. The height
of the ellipse represents the entropy entrm of the m-th descriptor,
where a petal with narrow ellipse represents a large entropy of that
descriptor (i.e., balanced distribution over the entire set of items).
We encode how each descriptor is similar to the average distribution
using the color saturation of the petal. In this way, a petal with darker
saturation indicates its similarity to the average of all the patterns.

Design Alternatives. Over the course of the interviews with our
experts, we have proposed alternative designs, such as Fig. 1(b2)
and Fig. 1(b3). In Fig. 1(b2), the curvature of the petal represents the
informativeness, where a curved petal indicates a more focused dis-
tribution while a round petal indicates more balanced distributions.
The similarity in this design is double-coded by the size and color
saturation of petal. However, it turned out that the curvature is not ef-
fectively differentiating the entropy values, according to the experts.
In Fig. 1(b3), the circles represent the descriptors where the radius
indicates the level of informativeness and the color saturation for the
similarity. While the effectiveness of the design was appealing to
our expert, the circle of descriptors with small informativeness, is
likely to become extremely small for experts to read.

4.3 Pattern Detail Examination: Interpreting the pattern

Pattern Detail Examination is designed to contain two coordinated
views, one for the quantitative distribution and one for the qualitative
narrative of the pattern.

First, we provide a design of a circular bar chart to present the
quantitative details of each pattern (Fig.1(c1)). This view consists of
multiple circular bar charts, each of which indicates one descriptor.
Each item in a descriptor is represented as a bar corresponding to
its value. We use circular design for three considerations: 1) to
enable the space-efficiency by allocating the pattern projection view
inside its circular layout; 2) to match the design between the visual
representation of high-level (patterns as glyph) and low-level (items
as bars in the circular pattern descriptor details), where the color
and orientation of each dimension’s visual encoding accord to each
other; 3) to expedite the exploration process, such that users can
transition between the Pattern Overview and Pattern Detail View.

Second, we provide a Treemap View for users to qualitatively
examine the pattern narratives (Fig. 1(c2)). Treemap provides
its compact and space-filling displays of hierarchical information,
which summarizes the nested nature of the patterns (patterns→
descriptors→ items). Each small rectangle of the Treemap repre-
sents an item having the value as its size, and the membership of
descriptor as its color.

4.4 Pattern Query Mode

Pattern Query Mode allows the users to efficiently locate the patterns
that match with the items of their explicit interest. Fig. 1(e1) and
(e3) presents two alternatives venues to support the users in issuing
their queries. We develop the Query Panel which contains the query
input box for each of the descriptors, allowing users to input the
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Figure 2: Policy Adoption: Pattern Scrutinization. a© Yvonne first
queries the “Health” category to detect the most relevant patterns.
b© She found that the topic dimension decomposes patterns health-
related pattern into different political agendas, two of which fit into her
interest. c© When she selected and compared those two patterns,
they had different distributions of topic and state. She especially
noticed that states with the opposite ideology are dominant actors in
the patterns. d© She further explored the relationship between the
most conservative and liberal states by querying each of them. The
system showed her the difference in terms of most relevant categories.

item of their interest. Once a query is submitted, the most relevant
patterns are retrieved and ranked based on their relevance to the
user query. Given a query Q = {q1,q2, . . .} that consists of multiple
queried items, the relevance of a pattern r to the query Q is given as:
rel(r) = ∏m∈MQ ∏i∈I(m)

Q
u(m)

ir , where MQ are all modes (dimensions)

involved in the query, and I(m)
Q are the set of items involved in the

query from the m-th dimension, and u(m)
ir is the value for the i-th

item from the m-th dimension with respect to the r-th component.
We also present the query bars as the inner ring of the circular bar in
alignment with item circular bar chart. Users can trigger the query
by clicking on items of their interests. To keep track of queries that
users have performed, we add the support of query book for users to
bookmark queries that they would like to quickly retrieve later.

4.5 Pattern Comparison Mode

The system provides both the high-level comparisons as well as
details-on-demand comparison in the Pattern Projection View and
Detail View. Once a pattern is selected, the system updates the
petals’ color saturation from the rest of the patterns, according to
the similarity between the selected pattern and each pattern. When
users select any two patterns, the two bar charts are lined up in a
way that 1) each item bar from two charts are adjacent to each other,
and 2) items are re-ordered based on the difference between the two
patterns by manipulating superposition and explicit encoding [12],
to move discriminative items to both sides of the circular bar chart,
and common item to the middle to ease the comparison.
5 CASE STUDY: POLICY ADOPTION ANALYSIS

We use policy adoption analysis to showcase the effectiveness of
FacIt , through discussing the pattern analysis of policy adoption
data in US state politics since the 1990s. Yvonne is a policymaker
in the department of public health in Pennsylvania state government.
She is now working on proposing legislation of national health
insurance, with three questions to address in the system: (1) What are
the dominant adoption patterns of health-related policies? (2) Can
we further decompose the dimension of those patterns into health-
related specific topics? How are the dominant patterns different from
each other? (3) Are the political interests of states different? How
are they related to state characteristics (e.g., liberal or conservative)?

Model Selection. In Model Inspection View, she found that
all rank metrics are improved as rank became larger but began to

converge around R = 50 (T.1.1). Since she expected that it would
be more insightful to have patterns to be decomposed into smaller
patterns, it also fits into her interest to set the model with a larger
rank (T.1.2). After clicking on the dots that represent different ranks
and reviewing the corresponding outputs (T.1.3), she decided to
further explore the patterns with the setting of R = 50.

Content-driven Pattern Exploration. She started with query-
ing health policy. After selecting “Health” in the subject query
box (T.3.1), she found that the system highlighted a set of patterns
that are related to “Health” policy using the color saturation in the
pattern glyph in the Pattern Projection View (T.3.2). She focused
on exploring the four most relevant patterns with greater relevance
scores (Fig. 2 a©). When she looked at the dominant topics of those
patterns, she noticed that they were characterized by different sub-
topics (Fig. 2 b©). Among them, Pattern 25 and Pattern 26 were
of her interest for two reasons: (1) The dominant topic of two pat-
terns is “prescription, patient, provider”, which directly relates to
her current interest (Health insurance policy), and (2) The topical
distributions were different in that Pattern 25 was dominant by a few
topics and pattern 26 spread out through multiple topics (T.5.1).

Comparative Pattern Exploration. She began to explore two
patterns in detail (Fig. 2 c©). In terms of the dimension of states, she
noticed that Pattern 26 was mainly driven by liberal states, as com-
pared to Pattern 25 driven by the conservative states in the Treemap
View (T.4.3 and T.5.2). She also found that PA was the second dom-
inant in Pattern 25 among other dominant states in the conservative
side. For the topical dimension, Pattern 26 was all about “pre-
scription, provider, patient” while Pattern 25 was distributed across
multiple items with two dominant topics, “prescription, provider, pa-
tient” and “organ, screening, donation”. While she was exploring the
patterns, those ideological difference between two health-related top-
ics made her come up with another question: ”How the liberal and
conservative states concern the different topic of policy agendas?”.

Relationship-driven Pattern Exploration. At this time, she
was interested in querying states by their ideology and analyzing
relevant patterns. First, she started by identifying the most liberal
and conservative states. According to [4], the latest state ideology
score in 2017 indicated that CA, RI, HI, NY were the most liberal
states, and SC, AZ, GA, UT were the most conservative states.
Since FacIt was able to issue multiple items in a query, she made
two separate queries that consisted of each of four states (T.3.1)
and saved them to the query book (T.3.3). Interestingly, the two
queries of liberal and conservative states resulted in different policy
topics from different patterns (Fig. 2 d©). For liberal states, health-
dominant Pattern 26 was the most relevant one. On the other hand,
Pattern 12, mainly driven by “Law and crime”, was the most relevant
pattern topic of conservative states.

Throughout all these analyses combined, she was able to learn
health-related policies in detail, and figure out which states she can
better communicate with.
6 CONCLUSION
In this paper, we present FacIt , a visual analytic system for Tensor
Factorization. The system is built to meet the requirements, such
as model selection, results scrutinization, and interpretation, in its
real-world applications. We provide an interactive design that caters
to experts’ different exploration strategy. The effectiveness and
usefulness of FacIt have been evaluated through usage scenarios
in the application of policy adoption analysis. In our next step,
we would like to invite a panel of domain experts for in-depth
interviews to evaluate the design, interaction, usability, and potential
improvements of FacIt . Besides, we also would like to involve
domain experts in the factorization and have them to be able to
iteratively fine-tune the patterns so that the patterns can be more
aligned to their domain knowledge.
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