TICTAC: ACCELERATING DISTRIBUTED DEEP LEARNING WITH
COMMUNICATION SCHEDULING

Sayed Hadi Hashemi“! Sangeetha Abdu Jyothi“' Roy H Campbell !

ABSTRACT
State-of-the-art deep learning systems rely on iterative distributed training to tackle the increasing complexity
of models and input data. In this work, we identify an opportunity for accelerating distributed DNN training in
systems that rely on graph representation for computation, such as TensorFlow and PyTorch, through commu-
nication scheduling. We develop a system, TicTac, that reduces the iteration time by identifying and enforcing
parameter transfers in the order in which the parameters are consumed by the underlying computational model,
thereby guaranteeing near-optimal overlap of communication and computation. Our system is implemented over
TensorFlow and enforces the optimal ordering by prioritization of parameter transfers at the Parameter Server in
data parallel training. TicTac requires no changes to the model or developer inputs and improves the throughput
by up to 37.7% in inference and 19.2% in training, while also reducing straggler effect by up to 2.3x. Our code

is publicly available.

1 INTRODUCTION

Deep learning has grown significantly in the past decade,
fuelled by the flexibility of development offered by ma-
chine learning frameworks, availability of rich data, and
readily accessible distributed high-performance comput-
ing. The computational cost of training sophisticated deep
learning models has long outgrown the capabilities of a sin-
gle high-end machine, leading to distributed training being
the norm in a typical Al pipeline. Training a deep learning
model is an iterative job which may take days to weeks in
high-end clusters today.

Computational graphs are used to represent the training
jobs in state-of-the-art systems (Abadi et al., 2016; Chen
et al., 2015; Paszke et al., 2017). In the commonly-used
Model Replica or data parallel mode of training, the input
data is partitioned and processed at participating workers
using identical computational graphs. Each iteration typi-
cally lasts milliseconds to seconds. At the end of each it-
eration, servers exchange a relatively large amount of data
associated with parameter updates to aggregate the results
of the iteration. This communication overhead has a sub-
stantial impact on throughput of the system and also limits
its scalability (Sridharan et al., 2018; Alistarh et al., 2017).
Even a small improvement in communication overhead can

“Equal contribution 'Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL. Correspon-
dence to: Sayed Hadi Hashemi <hashemi3 @illinois.edu>.

Proceedings of the gnd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

improve the learning time by hours in these long-running
learning jobs.

The iteration time in deep learning systems depends on the
time taken by (i) computation, (ii) communication and (iii)
the overlap between the two. When workers receive the pa-
rameters from the parameter server at the beginning of each
iteration, all parameters are not used simultaneously; they
are consumed based on the dependencies in the underlying
DAG. While one particular schedule of parameter transfers
(over the complete set of parameters in a given model in a
single iteration) may facilitate faster computation, another
may cause blockage. Hence, identifying the best schedule
of parameter transfers is critical for reducing the blocking
on computation (determined by DAG dependencies), and
in turn improving the overlap and the iteration time.

We observe that the schedule of data transfers in current
systems (Abadi et al., 2016; Chen et al., 2015; Paszke et al.,
2017) is determined arbitrarily during execution without
considering the impact on overlap. We quantify the ob-
served combinations in TensorFlow and find that in a trial
with 1000 iterations on ResNet-V2-50, every iteration had
a unique order of received parameters which has not been
observed previously. This random order of parameter trans-
fers at workers has two performance implications. First,
the iteration time, and in turn throughput (number of sam-
ples processed per second), suffers significantly due to sub-
optimal overlap. Second, even in the same iteration, multi-
ple workers might follow different schedules of data trans-
fers, leading to stragglers during synchronized training.

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

Past work has attempted to address this issue by enforc-
ing the same order of parameter transfers at all workers.
However, these solutions are restricted to earlier systems
with layer-by-layer model representation (Arnold, 2016;
Cui et al., 2016; Zhang et al., 2017) where finding the opti-
mal order of execution is trivial (Cui et al., 2014). In mod-
ern systems with DAG representation (Abadi et al., 2016;
Paszke et al., 2017), this is a non-trivial challenge.

In this work, we devise a systematic methodology for deriv-
ing near-optimal schedules of parameter transfers through
critical path analysis on the underlying computational
graph. This allows maximal overlap of computation and
communication and prevents stragglers arising from ran-
dom order of parameter transfers at workers. We also
develop a lightweight resource-level enforcement mecha-
nism over TensorFlow (Abadi et al., 2016). These tech-
niques form the core of our system, TicTac, which achieves
substantial performance improvement while requiring no
changes in the model or developer inputs.

In summary, we make the following contributions:

e We identify an opportunity for improving performance
in state-of-the-art deep learning systems with Parameter
Server-based aggregation through prioritized parameter
transfers (§2).

e We define a metric to quantify the efficiency of a given
execution: the overlap coefficient (§3).

e We propose two heuristics, TIC and TAC, for near-
optimal scheduling of computation and communication
in Model Replica with Parameter Server.

e We implement our system over TensorFlow (§ 5). The
code is publicly available. '

e We extensively evaluate the performance of our system
in GPU and high-end CPU environments under training
and inference of DNN models and show that throughput
can be improved by up to 37% (§6).

2 BACKGROUND AND MOTIVATION

Our system focuses on network optimization in deep learn-
ing frameworks with DAG representation of computational
graphs (Abadi et al., 2016; Paszke et al., 2017), Model
Replica (MR) mode of distribution and Parameter Servers.
The performance improvement provided by TicTac is ben-
eficial in two key environments. First, it improves through-
put and iteration time in clud environment with commodity
hardware or on-demand clusters where high resiliency is
critical (workers may be preempted). Second, in online re-
inforcement learning with workers for training and separate
active agents for inference, enforced ordering can improve
the inference time. In this environment, the active agents

"https://github.com/x1drx/tictac

are reading parameters from the PS or decentralized work-
ers as shown in Figure 3. While decentralized aggrega-
tion techniques (such as all-reduce and Horovod (Sergeev
& Balso, 2018)) are gaining traction in high performance
networking, TicTac does not address such systems and is
focused on PS.

In this section, we give a brief overview of deep learning
systems, prior techniques proposed in these systems to mit-
igate network overhead, and opportunities for further opti-
mization.

2.1 Network Optimization in DNN training

In deep learning systems, high GPU utilization can be
achieved in two ways: (i) when total communication time is
less than or equal to the computation time and (ii) with effi-
cient overlap of communication and computation. Several
techniques have been proposed to improve GPU utilization.

Increasing computation time: The fraction of com-
putation time relative to communication time can be in-
creased by increasing the batch size (Iandola et al., 2016).
However, this approach suffers from decreased accu-
racy (Keskar et al., 2016) and may not be generally appli-
cable under resource constraints. (Goyal et al., 2017; Cho
etal., 2017; You et al., 2017; Akiba et al., 2017).

Decreasing communication time: Solutions for reducing
network communication have taken multiple approaches —
modifying the machine learning algorithm to reduce com-
munication cost (Alistarh et al., 2017; Wen et al., 2017,
Zhang et al., 2017), reducing the precision of parameter
representation (Vanhoucke et al., 2011; Courbariaux et al.,
2015; Gupta et al., 2015), changing the network primitives
to collective (e.g. all reduce) (Goyal et al., 2017; Cho et al.,
2017; Amodei et al., 2015; You et al., 2017; Akiba et al.,
2017) or broadcast (Zhang et al., 2017).

Smarter interleaving of computation and communica-
tion: Several layer-by-layer systems (Arnold, 2016; Cui
et al., 2016; Zhang et al., 2017), where the models are se-
quential and obtaining the order is trivial (Cui et al., 2014),
adopt this approach. These solutions are not applicable
to current DAG-based systems such as TensorFlow (Abadi
et al., 2016) and PyTorch (Paszke et al., 2017). The inter-
resource dependency considered in (Cui et al., 2016) (with
GPU memory) and in (Zhang et al., 2017) (with network)
is constrained to layer-by-layer models.

In this work, we focus on improving the iteration time
through better and predictable overlap of communication
and computation. Techniques for optimizing communica-
tion and communication time are orthogonal to our system
and may be used in parallel with TicTac.

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

Partition

recv2

recvi

(a) Toy Computational
Graph

Processor

(c) Bad Execution Order

Figure 1: Impact of multi-resource operation ordering on perfor-
mance

2.2 Opportunity for Optimization

We demonstrate the opportunity for accelerating DNN
training through a better understanding of the internal
computational model in TensorFlow which is a Directed
Acyclic Graph (DAG). The parameter transfers are denoted
by send and recv operations in the DAG. In MR, each
worker has an identical copy of the computational DAG.
In the worker DAG, all recv ops are roots and send ops
are leaves. Thus recv ops can block the initialization of
a computation branch in the DAG. Since the activation of
various branches of computation in the DAG is dependent
on the recv at the root of the branch, the ordering in MR
can be reduced to the ordering of recv ops in workers.
DAG at the PS is different from that at workers. PS DAG
has five ops per parameter: aggregation, send, recv, read,
and update. Since send and recv at the PS are not blocked
by computation, our focus is on the worker DAG.

In the simple DAG shown in Figure 1a, a sample worker
DAG, there are two possible schedules for parameter trans-
fers. If recv; (parameter 1 transfer from PS to the worker)
happens before recv, (parameter 2 transfer), it reduces the
blocking on computation time and improves the overlap.
The reverse order results in increased iteration time due to
blocking on computation. Thus, in a distributed environ-
ment, network can block computation based on dependen-
cies in the DAG. This can lead to under-utilization of com-
putational capacity, in turn resulting in sub-optimal perfor-
mance. In addition, variation in iteration time caused by
random order of parameter transfers across multiple work-
ers can lead to straggling effect.

The impact of poor overlap can be significant in DNN train-
ing due to complexity of state-of-the-art models. For in-
stance, ResNet-v2-152 (He et al., 2016) has 363 param-
eters with an aggregate size of 229.5MB. The computa-
tional graph associated with this neural network has 4655
operations in the TensorFlow framework. Finding the op-
timal schedule in this complex DAG involves evaluating
363! combinations. We run 1000 iterations of learning over

Worker: 0

Figure 2: Distributed execution of Model-Replica with Parame-
ter Server

Parameter Servers

EICINEIE

Input Data

Observations

Inference Training

Figure 3: A general reinforcement learning setup

ResNet-v2-50, Inception-v3 and VGG-16 networks and ob-
serve the order of network transfers at a single worker. The
observed order of parameter transfer is unique in ResNet-
v2-50 and Inception-v3 networks across the 1000 runs. In
VGG-16, we observe 493 unique combinations across 1000
runs.

2.3 Comparison with Other Distributed Systems

It is worth noting that deep learning systems with computa-
tional graphs are fundamentally different from graph pro-
cessing systems (Malewicz et al., 2010; Hoque & Gupta,
2013; Xin et al., 2013). In deep learning, the graph is a rep-
resentation of the computation to be done on the input data.
In graph processing systems, the graph itself is the input to
the computation. As a result, graphs in DNN frameworks
are a few orders of magnitude smaller than a typical large-
scale graph processing system. Iterations in DNN frame-
works are identical, and network communication pattern is
fixed. This may not be true for graph processing systems.

In stream processing systems, the relationship between pro-
cessing elements are represented using graphs. These sys-
tems allow pipelining, with different partitions of input data
being processed in different elements along the pipeline at
the same time. In contrast, DNN frameworks process the
entire batch of input at a processing element at a worker.
Pipelining is not employed in this environment. Hence, op-
timizations proposed for stream processing cannot be bor-
rowed here.

3 QUANTIFYING PERFORMANCE

In this section, we explore methods for quantitatively com-
paring the efficiency of multiple schedules. Towards this
goal, we formally define the scheduling problem and inves-
tigate the feasibility of finding an optimal solution. Finally,

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

we define a metric that is used to quantify the efficiency of
a schedule.

3.1 Scheduling Problem

The objective is to find the optimal schedule of network
transfers that minimizes the iteration time by improving the
communication/computation overlap. The network trans-
fers of parameters (recv ops) are roots in the computational
graph at the worker. The branch of computation ops depen-
dent on a recv op can be executed only after the network
transfer is completed. Thus, the order of network transfers
can determine the order of computation as well as the ex-
tent of overlap. We focus on improving the overlap, and in
turn the iteration time, by choosing a near-optimal schedule
of parameter transfers.

The inputs to this optimization problem are: (a) the worker
DAG, and (b) a time oracle. The time oracle (T'ime(op))
predicts the execution time of a given op. For computa-
tion ops, this indicates the elapsed time on a computation
resource. For communication ops, this represents the trans-
fer time on the communication medium. We compute the
time assuming that the resource is dedicated to the op under
consideration.

The output of the scheduling algorithm is a feasible sched-
ule of ops in the DAG tagger by priorities. Ops in a com-
putational DAG may have multiple feasible topological or-
ders. However, some of them may result in a bad iteration
time (as explained in Figure 1). We want to limit the exe-
cution path to take the one that improves the training per-
formance. We achieve this with priority numbers. Priority
number is a positive integer assigned to an op in the DAG.
A higher priority op is given a lower priority number. An
op may not be assigned a priority if it need not be ordered.
Multiple ops may be assigned the same priority if their rel-
ative order is insignificant.

The order is enforced in the following manner. When we
need to select a new op from the ready-to-execute queue,
we randomly choose from among the set of ops that con-
tain the lowest priority number and those without any pri-
ority number. It is worth noting that priority only specifies
relative order among candidate ops in the ready-to-execute
queue at a given resource, and the resulting order will still
respect the topological order specified by the DAG.

The problem of finding the optimal schedule is NP-hard.
A simpler version of the optimal execution problem with
homogeneous hardware can be formally defined as follow
(Using notion in (Pinedo, 2008)): P,,|M;, prec|Cax

In this formulation, P,, represents multiple parallel re-
sources with identical performance. M; assigns the opera-
tions to specific resources, i.e., computation ops vs. com-
munication. prec describes the dependency relation of ops

in the DAG. The C,, ., represents the goal of scheduling is
to minimize the last node completion time.

This problem is still open (Brucker & Knust, 2007) and
simpler cases are proven to be NP-Hard. While there exist
approximations for relaxed versions of this problem, to the
best of our knowledge, there is no solution or approxima-
tion with guaranteed bounds for our original problem.

3.2 Defining Overlap Coefficient

The two major contributors to total DNN iteration time (1)
are network transfer time or the communication time (V)
and the computation time (C). Since the computation and
communication may overlap, the total time 7" < N + C.
Given a GPU/CPU/TPU environment, we assume the com-
putation time, C, to be constant. We ignore the case of
computation stragglers and focus on communication.

We define two metrics that define the DNN iteration time:
(a) the communication/computation ratio, p and (b) the
overlap coefficient, .. The ratio of communication to com-
putation, denoted by p, determines the extent of benefits
achievable. When p < 1, communication time is smaller
than the total computation time, providing ample opportu-
nity for running GPUs at high utilization.

The second factor affecting the GPU utilization is the over-
lap coefficient, @ = % N + C is the iteration
time when there is no overlap, and 7' is the actual itera-
tion time. The difference between these quantities is the
extent of overlap. The maximum overlap possible is given
by min(N, C), which is achieved when the smaller quan-
tity completely overlaps with the large quantity. The dif-
ference is normalized by this factor to obtain the overlap

coefficient, @ € [0, 1].

The GPU utilization (U = %) can be represented in terms
of these coefficients:

c 1

U= =
N+ C —axmin(N,C) 1+ p—axmin(p,1)

The goal of our scheduling algorithms is to achieve high
GPU efficiency by maximizing «, i.e., increasing the over-
lap of communication and computation. The impact of our
scheduling algorithm on «, and in turn the GPU utilization
is plotted in Figure 4 using Inception v3 with 2 workers and
1 PS as an example.

4 SCHEDULING ALGORITHMS

In this section, we present two heuristics to derive the opti-
mal schedule of recv ops using a given worker DAG (§3).
The intuition behind our heuristics is to prioritize trans-
fers that speed up the critical path in the DAG by reducing
blocking on computation caused by parameter transfers.

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

-~
~X oo ® o

o
¥

Overlap Coefficient (a)

o
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Communication to Computation Ratio (0)

1.4

Figure 4: Improvement in GPU utilization with TicTac

Timing-Independent = Communication scheduling
(TIC): In TIC, we assign priorities based only on vertex
dependencies in the DAG (ignoring the execution time of
each op). Higher priorities are given to transfers which
are least blocking on computation. In this algorithm, we
ignore the time oracle, Time, and assume all ops have
equal cost.

Timing-Aware Communication scheduling (TAC): In
this algorithm, we prioritize transfers that maximize o by
using information on (a) vertex dependencies among ops
specified by the computational DAG, and (b) execution
time of each op estimated with time oracle.

4.1 Op properties

Before delving into the algorithms, we define properties
associated with ops that are used in the scheduling algo-
rithms. The inputs are the worker dataflow DAG (G),
a time oracle (1'ime), available communication channels
on a device (C) and a set of outstanding (to-be-activated)
recvs ops (R). We assume that recv ops not in R have
their corresponding transfers completed. These properties
are updated using the algorithm 1.

Communication Dependency (op.dep): This is the set
of recv ops that an op is directly or transitively dependent
on. For example, in figure 1a, ops.dep = {recvy,recvy}.
We extract the communication dependencies using a depth-
first post-fix graph traversal on the DAG.

Communication Time (Op.M): Communication time of
an op is the total network transfer time required to complete
that op. For a recv op, this is the time required to complete
its corresponding transfer, given by Time(recvOp). For
other ops, this is the total time to complete all outstanding
dependent transfers, given by

> rcop.depnr Lime(r). For example, in Figure la,
op1.M = Time(recvy) and ops.M = Time(recvy) +
Time(recvs).

For recv ops, we define two additional properties.

Algorithm 1: Property Update Algorithm

// Update properties for the given the set of
outstanding read ops R
Function UpdateProperties(G, Time, R):
foreach op € G do
‘ op-M < 32y, cop depnr Time(r);
end
foreach op € R do
op.P + 0;
op‘M‘*’ <+ +o0;
end
foreach op € G — R do
D <+ op.dep N R;
if |D| = 1 then
‘ Vr € D : rP < rP + Time(op),
end
if |D| > 1 then
Vr € D:r.MT « min{r.M*, op.M};
end

end

Directly-Dependent Compute Load (recvOp.P): This
property represents the computational benefit of complet-
ing a recv op. More specifically, it is the total Time(op)
for all ops that can be activated only by completing this
recvOp, but not without it. These ops are those whose
communication dependencies contain only this outstanding
recvOp (it is admissible to have communication dependen-
cies on other completed recv operations). For example, in
Figure 1a, recvi.P = Time(opy) and recvy.P = 0 since
no op can execute with completion of only recvs.

Impending Communication Load (recvOp.M™): This
property helps us to identify candidate recv ops to be acti-
vated, given the current recv is completed. In more detail,
it is the minimum communication cost to activate a compu-
tation op which has multiple recv dependencies including
the one under consideration. For example, in Figure la,
ready. M+ = reads. M = Cost(read;) + Cost(reads).
Please note that recvOp.M ™ includes the communication
time of that recvOp.

4.2 Timing-Independent Communication Scheduling
(TIC)

The goal of this algorithm is to prioritize those transfers
which reduces blocking on network transfers. Our intuition
is that information on DAG structure alone can provide sig-
nificant improvement.

To achieve this goal, we define a generic time function
which only uses the number of communication ops instead
of time taken by an op. We use this simple cost function to
generate the schedule in Timing-Independent Communica-
tion scheduling (TIC).

General Time Oracle: We define a simple universal time

[N N

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

recvA

recv B
/

(a) Case 1

(b) Case 2
Figure 5: Sample DAG

oracle as follows:

0 if op is not recv

TimeGeneml(Op) = { 1

1 if op is recv

The complete solution is given in Algorithm 2.

Algorithm 2: Timing-Independent Communication Scheduling (TIC)

Function 7/C(G)
FindDependencies(G) ;
UpdateProperties(G,R, Time:{Computation: 0, Communication: 1 })

Yop in G, if op is recv : op.priority < op.M™T;
end

4.3 Timing-Aware Communication Scheduling (TAC)

The goal of this algorithm is to prioritize those transfers
which reduces the blocking of computation, i.e., speeding
up transfers on the critical path. To achieve this goal, the
algorithm focuses on two cases. First, it considers the op-
portunity for overlapping communication and computation.
Second, in the case of equal overlap or absence of it, it
looks at the impending transfers to choose one which elim-
inates the computation block sooner.

To better describe the logic, we begin with an example for
each case.

Case 1: In Figure 5a, when deciding between two read
ops, A and B, A should precede B iff:

A<B < T(A— B)<T(B— A)
<= Ma + max{Pa,Mp}+ P < Mp + max{Pg,Ma} + Pa
< MA+PA+IV137min{PA,MB}+PB<
Mp + Pg + Ma —min{PB,MA}+PA
<= min{Pp, Ma} < min{P4,Mp}

Therefore:

A< B — min{Pp,Ma} <min{Ps, Mg} (2)

Case 2: In Figure 5b, when all recv ops are out-
standing, their P is 0, making them equivalent under the
comparison in Equation 2. Obviously, recv4 and recvp
should precede other recvs. Hence, we use M * to break
the ties: recva.M™ recvg.MT = Time(recvs) +
Time(recvg) < recve.M™ < recvp.M™.

21

Comparator: We combine results from the two cases to
make a comparator that extends to multiple read ops. This
is an approximate induction, which may not be correct in
general. The result is the Comparator function in algo-
rithm 3. It is easy to prove that this function is transitive
and can be used for partial ordering.

The ordering algorithm takes a partition graph on a worker,
calculates the communication dependencies, then while
there is an outstanding recv op, it updates properties, finds
the smallest recv op with respect to the comparator and
then removes the recv from the outstanding set and assign
it a higher priority relative to others.

Algorlthm 3: Timing-Aware Communication Scheduling (TAC)

// Compare two given recv ops

Function Comparator(Op 4,0pp): Bool

A <+ min(Ps, Mp);

B «+ I‘ﬂin(PB7 MA);

if A # B then

| return A < B
else
| return M} < M}

end

end

Function TAC(G,T'ime)

FindDependencies(G) ;

R < {op|Vopin G, op is recv};

count < 0;

while R is not empty do
UpdateProperties(G,R, Time);
Find the minimum op from R wrt Comparator;
Remove op from R;
op.priority < count;
count < count + 1;

end

end

5 SYSTEM DESIGN

In this section, we provide a brief overview of the system
design and implementation.

The system has four main components: the tracing mod-
ule, the time oracle estimator, the ordering wizard, and the
enforcement module (shown in Figure 6).

Tracing Module: This module collects runtime stats from
an execution, which is later fed to the time oracle estimator.

Time Oracle: The time oracle is responsible for estimat-
ing the runtime of each op in the system based on the exe-
cution timing stats. Note that the runtime may vary depend-
ing on the platform, device characteristics, input data and
even across iterations on the same hardware/software. We
execute each operation 5 times and measure the time taken
in each run. Our Time Oracle implementation chooses the
minimum of all measured runs for a given op as the time
for that op.

Ordering Wizard: This module is responsible for assign-

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

Base Model

Ordering
Wizard

Model
Priority
List

TensorFlow

Execution Enforcement
N <>
Engine Module

Tracing Timing
Module Stats

Figure 6: System Design. Components of our system are in
blue sharp-edged rectangles.

Time
Oracle

Time Oracle
Estimator

ing priorities to recv ops on a single worker. The sched-
ule may be computed based on TIC or TAC. In TAC, the
ordering module relies on the time estimated by the time
oracle. In TIC, the order is determined based on the DAG
alone. The estimated priorities are sent to the enforcement
module. The priority list is calculated offline before the
execution; all iterations follow the same order.

Enforcement Module: This module takes as input the
priority list computed by the ordering module and enforces
this order on the network transfers per worker.

5.1 Implementation

We implement our system over TensorFlow 1.8. We de-
scribe our implementation in detail.

Time Oracle: We use the TensorFlow internal tracer to
measure the time of computation ops. We extend the capa-
bility (115 LOC C++) of this tracer to collect information
on network transfer at all workers. Our code is publicly
available (https://github.com/xldrx/tictac).

Ordering Wizard: We implement TIC and TAC as offline
analyzers (250 LOC in Python). The implementation takes
time oracle and base model in the TensorFlow DAG format
and generates the priority of recv ops.

Enforcing: The enforcement module is implemented over
the gRPC submodule of TensorFlow (40LOC in C++).

gRPC provides one channel per worker-PS pair with all
transfers between the pair sent to the same queue. Only
one transfer can be active at a given moment for each chan-
nel. A network transfer over gRPC in TensorFlow involves
multiple stages as shown in Figure 7. When a recv op is
activated at the receiver, it sends a request for transfer to

Receiver RPC RPC Sender
Application Framework |Network| Framework Application

Request
Send
Request
Transfer
Request
Receive
Request
Receive
Request
Prepare
Response
Send ¢
Response
Transfer
Response
Receive
Response
Process
Response

Figure 7: Life time of a network transfer.

the sender. If the send op is also active at the sender, the
transfer may be initiated by gRPC. In this dataflow, there
are three possible candidate locations for enforcing order-
ing — at the receiver before the request is initiated, at the
sender before the send op is activated or at the sender be-
fore the transfer is sent to gRPC. Alternatively, this may
also be enforced as a direct dependency in the DAG.

We implement the enforcement module at the sender, i.e.
the PS, before the transfer is sent to gRPC. This choice
is guided by several practical concerns. Enforcing di-
rectly on the DAG is conservative since each transfer has
to wait for the completion of the previous transfer. This
prevents pipelining and drastically reduces the communi-
cation throughput. Ordering the activation of recv or send
ops is not sufficient since it could change throughout the
data flow. For example, a larger transfer request may take
longer to reach the response state on the sender side. Dur-
ing this interval, a smaller transfer with lower priority may
catch up.

For the purpose of enforcement, the priorities are sequen-
tially assigned to an integer in the range of [0,n). Thus,
the priority number of a transfer represents the number
of transfers that have to complete before it. The sender
(PS server) maintains a counter for each worker per itera-
tion which is incremented when a corresponding transfer
is handed to the gRPC. Before a transfer is handed to the
gRPC, it is blocked until the corresponding counter reaches
the normalized priority number.

During experiments, we notice that gRPC may not always
process transfers in the order they are queued. This affects
the performance of our ordering in some cases. However,
the number of such occurrences at the gRPC level are very
few. In Inception model (one of the tested models), this
error was 0.5% in TIC and 0.4% in TAC.

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

6 RESULTS

In this section, we evaluate TicTac under a wide range of in-
puts/system parameters to answer the following questions:

e How does TicTac perform with scale out of workers?

e How is TicTac affected by the number of parameter
servers?

e How does the benefits accrued with TicTac change with
the communication and computation cost?

o How well do the proposed heuristics perform in terms of
consistency and straggler mitigation?

Setup: We use in-graph replication for Distributed Ten-
sorFlow (Google) with synchronized training and synthetic
input data.

We test TicTac under two environments. (a) Cloud GPU
environment(envg): We use Standard NC6 virtual ma-
chines (6 cores, 56 GB memory, 1 X Nvidia K80 GPU with
12GB memory) on Azure cloud environment. For parame-
ter servers we used Standard F64s v2 (CPU Only, 64 cores,
128 GB memory). (b) High-end CPU cluster (envc): We
use a commodity cluster (32 core, 64GB memory, 1GbE
network). In both environments, we test 2 to 16 workers
and 1 to 4 PS. For understanding the impact of batch size,
we test the networks with the standard batch size multiplied
by factors [0.5, 1, 2]. We tested our method on 10 well-
known models (details of models in Table 1 in Appendix).

We evaluate the performance under two workloads: train-
ing and inference. In training, we use Stochastic Gradi-
ent Descent (SGD) as optimizer. The training workload is
identical to the training jobs used in practice. We emulate
the inference workload of agents in reinforcement learning
with online training. In this environment, parameter servers
store the parameters which are updated by a set of training
worker nodes (which we do not consider in the inference
workload). The inference agents are responsible for read-
ing the parameters from the PS and running the inference
(this is the phase we evaluate in this workload).

In each test, we discard the first 2 iterations to limit the
warm-up effect (initialization of GPUs, cache etc). This is
necessary since the first iteration takes much longer com-
pared to the rest. We record the next 10 iterations. For
throughput, we report the mean across 10 iterations; for
straggler effect and overlap coefficient we report the max-
imum. Computing the TIC and TAC heuristics takes ap-
proximately 10 seconds. Note that these heuristics are com-
puted before the training/inference begins. Hence, this will
not add overhead during the execution.

We use Imagenet Dataset for our experiments. We eval-
uated both synthetic and real data and observed less than

3% difference in iteration time on a single machine. The
data is read in the TFRecord format from a shared NFS-
connected Azure storage, samples are resized, augmented,
and prefetched during training. TicTac does not alter the
computational flow of the model; it only chooses one of
the feasible orders of network transfers. Hence, it does not
affect the accuracy of training (shown in Figure 8).

3x10! Method
No Ordering
210 — TIC
=
8
|
|0I]
0 200 400
Iteration

Figure 8: Loss value throughout the first 500 iterations of train-
ing InceptionV3 on ImageNet.

Next, we compare the performance metrics across various
heuristics. Specifically, we evaluate throughput, overlap
coefficient, and prevalence of stragglers (slow workers that
force others to wait, thereby increasing the iteration time).
Performance of TIC is only marginally worse compared to
TAC (shown in Figure 15 in Appendix). This indicates that,
for current models, DAG-level information is sufficient for
obtaining a near-optimal scheduling. However, we expect
the gap between TIC and TAC to increase as complexity of
models increases.

We attempted to compare TicTac with Poseidon (Zhang
et al., 2017). However, only the binaries of Poseidon are
publicly available. In our experiments, Poseidon performed
extremely poorly compared to TicTac, and even vanilla
TensorFlow 1.8. Since Poseidon is based on older version
of TensorFlow (TensorFlow 1.0) and CUDA (8.0), we were
unable to account the poor performance to their methodol-
ogy. Hence, we exclude the results since the comparison is
inconclusive. Additionally, since order extraction is not ex-
plained in their paper, we were unable to reimplement their
strategy.

6.1 Throughput

Scaling the number of workers: In Figure 9, we evaluate
the impact of scaling the number of workers with the num-
ber of PS to workers fixed to the ratio 1:4. We obtain up
to 37.7% of speed up in throughput across networks. The
gains are measured relative to the baseline — no schedul-
ing. Larger networks have higher performance gains. The
speed up depends on two factors — communication load
and extent of overlap. As the number of workers increases,
the communication load increases in PS. When the com-

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

number_of_workers = | number_of_workers =2

Inception vl
VGG-19
Inception v2
AlexNet v2
VGG-16
ResNet-50 vi
ResNet-50 v2
Inception v3
ResNet-101 vI

i
s

o

20

o

20

number_of_workers =4 number_of_workers = 8
Inception vl
VGG-19
Inception v2
AlexNet v2
VGG-16
ResNet-50 vi
ResNet-50 v2
Inception v3
ResNet-101 vI

mer

Model

T

o

20

o

20
speedup
number_of_workers = |6

: 1

IncectGloGn-‘I/; I inference
Inception v2
AlexNet v2
VGG-16
ResNet-50 v
ResNet-50 v2
Inception v3
ResNet-101 vI

Model

i

o

20
speedup

Figure 9: Impact of scaling the number of workers on through-
put. The gains are measure with respect to the baseline (no
scheduling). Measured on envg with PS:Workers in the ratio 1:4.

munication load increases, scheduling can provide benefits
through better overlap until a threshold. When the commu-
nication load is much higher than the computation load, the
impact of overlap diminishes. Hence, beyond this thresh-
old, the benefits accrued with scheduling reduces. This
threshold varies across models. Also, the gains are mea-
sured with respect to the baseline which chooses a random
schedule, leading to variations in performance. Hence,
we observe varying trends across networks based on the
network-specific characteristics. In small networks, with
small number of workers and parameter servers, the over-
head associated with scheduling may overshadow the ben-
efits of better overlap. In such rare cases, we observe a
slow down of up to 4.2%. This shows that scheduling net-
work transfers may be disabled in small networks at small
training and inference sizes.

Scaling the number of Parameter Servers: In Figure 10,
we evaluate the impact of scaling the number of parameter
servers with 8 workers in envg (Cloud with GPU) across
various networks. In general, we obtain higher gains in
the inference phase than training. Even in the presence of

task = inference task = train
Inception v/ A
VGG-16+
VGG-19+
Inception v3 A
AlexNet v2
Inception v2 A
ResNet-50 v2 A
ResNet-50 v/ A
ResNet-101 vl A

|
. 2
[

Model

"
JyErY

o

20 40
Throughput (Sample/Second) Throughput (Sample/Second)
Speed Up (%) Speed Up (%)
Figure 10: Impact of scaling the number of Parameter Servers
on envg cloud GPU environment with 8 workers.

20 40

task = inference

Inception v2
ResNet-50 v
AlexNet v2
VGG-191
VGG-16
Inception v
ResNet-50 v2
Inception v3
ResNet-101 vl A

"I
X

Model
X X
N = NI=

1°Fr

i

o

20
Throughput (Sample/Second)
. Speed Up (%)
Figure 11: Impact of scaling the computational load on envg
cloud GPU environment with 4 workers.

multiple parameter servers, enforcing ordering with TicTac
provides significant performance improvement.

Scaling the computational load: In Figure 11, we show
the impact of varying computational load by testing each
model with the prescribed batch size multiplied by three
factors — 0.5, 1, 2. There are two factors affecting the
scaling of computation load — computation time and op-
portunity for overlap. The relative ratio of communication
and computation determines the opportunity for overlap.
As the batch size increases, the computation time increases.
If the communication time is higher (compared to the com-
putation time), increase in computation time increases the
opportunity for overlap. If communication time is smaller
than computation time, scaling will reduce throughput as
the opportunity for overlap reduces.

Scalability with network size:: We show the improve-
ment in throughput (samples/second) achieved with TIC
compared to the baseline with no scheduling in Figure 12.
We observe that larger networks obtain higher gains. This
can be attributed to larger variance in parameter transfer
orders in larger DAGs in the absence of scheduling.

6.2 Overlap Coefficient

To validate the overlap coefficient metric, we run train-
ing of Inception v2 1000 times each with and without the
scheduling algorithm, TAC in envc. The overlap coeffi-

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

~ 60 .
= inference
] train
a
40
g s
£3
gt
> 920
&
¥
o
E 0
0 1000 2000

Number of Ops

Figure 12: Throughput speedup with training and inference as a
function of DAG size represented in number of ops

© No Ordering @ TAC mm = LR (R? = 0.98)

Normalized Step Time
=)
~

L L L
0 0.20.40.60.8 1 0.40.50.60.70.80.9 1

Overlap Coefficient (cx) Normalized Step Time

Figure 13: In envc, on Inception v2, (a) Regression test of
Scheduling Efficiency and Normalized Step Time, (b) Step Time
Comparison across Scheduling Mechanisms.

cient can predict step time accurately, with a high R? score
of 0.98, as seen in Figure 13 (a). This proves that most of
the variation in iteration time arises from random schedules
in parameter transfers. We also observe that in the absence
of enforced scheduling, the step time and overlap coeffi-
cient have a large variance. With scheduling, the step time
is reduced and the variance is minimal. Moreover, most
runs have an overlap coefficient approaching 1, indicating
near-optimal scheduling in TAC.

6.3 Performance Consistency

In Figure 13 (b), we compare the consistency in perfor-
mance obtained with and without scheduling (TAC) in in-
ference on InceptionV2 with 1000 runs in envc. We see
that TAC has consistent performance, denoted by a sharp
curve in the CDF. The baseline (no scheduling), on the
other hand, has a large variance. For comparison, 95 per-
centile of normalized step time in the baseline and TAC are
respectively 0.63403 and 0.99825.

Straggler Effect: Performance inconsistency creates
straggling worker effect when multiple workers have dif-
ferent makespan. As a result, all workers have to wait for
the slowest one. We quantify the straggler time as the max-
imum time spent by any worker in waiting to the total iter-
ation time (represented in percentage).

baseline
50)
. tic
2
% 40
£ .
30 e .
o .
Fao o7
& S B
10 &
0
0 1000 2000
Number of Ops

Figure 14: Effect of stragglers with TIC in the GPU enviorn-
ment, envg.

In Figure 14, we show the impact of stragglers. Straggler
effect is caused by two factors: system-level performance
variations and efficiency of scheduling on individual work-
ers. In the baseline, workers follow arbitrary scheduling.
Hence, a worker with a bad order forces other workers into
a long wait, more than 50% of the total iteration time in
some cases. On average, scheduling limits straggler ef-
fect with larger benefits in bigger DNNs (higher number
of ops). Enforcing any order reduces straggler effect re-
gardless of the quality of the chosen order.

7 CONCLUSION

In this work, we elucidate the importance of communica-
tion scheduling in distributed deep learning systems. We
devised a metric for quantifying the efficiency of a given
schedule of data transfers and developed two heuristics for
efficient scheduling. Through extensive testing of these
heuristics across a variety of workloads, we demonstrated
that significant gains are achievable through communica-
tion scheduling. For a typical DNN training which runs for
days to weeks, 20% improvement in iteration time can save
significant compute power.

Our study encourages further research in network schedul-
ing for parameter server as well as other unexplored ag-
gregation techniques such as all reduce. In future, we can
also take into account additional metrics such as congestion
from the network fabric for better network performance.
These results also provide motivation for extending the
scheduling to additional resources types such as memory
and storage.

8 ACKNOWLEDGEMENT

We thank Paul Barham and Brighten Godfrey for their feed-
back. This material is based on work supported by the
National Science Foundation under Grant No. 1725729.
Azure Cloud resources used in this paper is provided
through Microsoft Azure Sponsorship.

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. Tensor-
Flow: A System for Large-Scale Machine Learning. In OSDI,
volume 16, pp. 265-283, 2016.

Akiba, T., Suzuki, S., and Fukuda, K. Extremely Large Minibatch
SGD: Training ResNet-50 on ImageNet in 15 Minutes. CoRR,
abs/1711.04325, 2017. URL http://arxiv.org/abs/
1711.04325.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M.
QSGD: Communication-Efficient SGD via Gradient Quantiza-
tion and Encoding. In Advances in Neural Information Pro-
cessing Systems, pp. 1707-1718, 2017.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J.,
Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A., Diamos,
G., Elsen, E., Engel, J., Fan, L., Fougner, C., Han, T., Han-
nun, A. Y., Jun, B., LeGresley, P, Lin, L., Narang, S., Ng,
A. Y., Ozair, S., Prenger, R., Raiman, J., Satheesh, S., Seeta-
pun, D., Sengupta, S., Wang, Y., Wang, Z., Wang, C., Xiao,
B., Yogatama, D., Zhan, J., and Zhu, Z. Deep Speech 2: End-
to-End Speech Recognition in English and Mandarin. CoRR,
abs/1512.02595, 2015. URL http://arxiv.org/abs/
1512.02595.

Arnold, S. An Introduction to Distributed Deep Learning.
https://sebal5ll.com/dist_blog/, 2016.

Brucker, P. and Knust, S. Complexity results for scheduling prob-
lems, 2007.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

Cho, M., Finkler, U., Kumar, S., Kung, D., Saxena, V., and Sreed-
har, D. PowerAl DDL. arXiv preprint arXiv:1708.02188,
2017.

Courbariaux, M., Bengio, Y., and David, J.-P. Binaryconnect:
Training deep neural networks with binary weights during
propagations. In Advances in neural information processing
systems, pp. 3123-3131, 2015.

Cui, H., Tumanov, A., Wei, J., Xu, L., Dai, W., Haber-Kucharsky,
J., Ho, Q., Ganger, G. R., Gibbons, P. B., Gibson, G. A., et al.
Exploiting iterative-ness for parallel ML computations. In Pro-
ceedings of the ACM Symposium on Cloud Computing, pp. 1—
14. ACM, 2014.

Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and Xing,
E. P. GeePS: Scalable deep learning on distributed GPUs with
a GPU-specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Systems, pp. 4.
ACM, 2016.

Google. Distributed tensorflow. https://www.
tensorflow.org/deploy/distributed.

Goyal, P., Dolldr, P., Girshick, R., Noordhuis, P., Wesolowski, L.,
Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677,2017.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P.
Deep learning with limited numerical precision. In Interna-
tional Conference on Machine Learning, pp. 1737-1746, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL
http://arxiv.org/abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. CoRR, abs/1603.05027, 2016. URL
http://arxiv.org/abs/1603.05027.

Hoque, I. and Gupta, I. LFGraph: Simple and fast distributed
graph analytics. In Proceedings of the First ACM SIGOPS Con-
ference on Timely Results in Operating Systems, pp. 9. ACM,
2013.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: near-linear acceleration of deep neural network
training on compute clusters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
2592-2600, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015. URL http://arxiv.org/abs/
1502.03167.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Krizhevsky, A. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997, 2014.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn,
L, Leiser, N., and Czajkowski, G. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data, pp.
135-146. ACM, 2010.

Paszke, A., Gross, S., Chintala, S., and Chanan, G. PyTorch:
Tensors and dynamic neural networks in Python with strong
GPU acceleration, 2017.

Pinedo, M. L. Scheduling: Theory, Algorithms, and Systems.
Springer Publishing Company, Incorporated, 3rd edition, 2008.
ISBN 0387789340, 9780387789347.

Sergeev, A. and Balso, M. D. Horovod: fast and easy distributed
deep learning in tensorflow. CoRR, abs/1802.05799, 2018.
URL http://arxiv.org/abs/1802.05799.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Sridharan, S., Vaidyanathan, K., Kalamkar, D., Das, D.,
Smorkalov, M. E., Shiryaev, M., Mudigere, D., Mellem-
pudi, N., Avancha, S., Kaul, B., et al. On Scale-out
Deep Learning Training for Cloud and HPC. arXiv preprint
arXiv:1801.08030, 2018.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov,
D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going
deeper with convolutions. CoRR, abs/1409.4842, 2014. URL
http://arxiv.org/abs/1409.4842.

http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1711.04325
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
https://seba1511.com/dist_blog/
https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.4842

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015. URL http://arxiv.org/
abs/1512.00567.

Vanhoucke, V., Senior, A., and Mao, M. Z. Improving the speed
of neural networks on CPUs. In Proc. Deep Learning and Un-
supervised Feature Learning NIPS Workshop, volume 1, pp. 4.
Citeseer, 2011.

Wen, W, Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li,
H. Terngrad: Ternary gradients to reduce communication in
distributed deep learning. In Advances in Neural Information
Processing Systems, pp. 1508-1518, 2017.

Xin, R. S., Gonzalez, J. E., Franklin, M. J., and Stoica, . Graphx:
A resilient distributed graph system on spark. In First Interna-
tional Workshop on Graph Data Management Experiences and
Systems, pp. 2. ACM, 2013.

You, Y., Zhang, Z., Hsieh, C., and Demmel, J. 100-epoch
ImageNet Training with AlexNet in 24 Minutes. CoRR,
abs/1709.05011, 2017. URL http://arxiv.org/abs/
1709.05011.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An Efficient
Communication Architecture for Distributed Deep Learning
on GPU Clusters. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pp. 181-193, Santa Clara, CA,
2017. USENIX Association. ISBN 978-1-931971-38-6. URL
https://www.usenix.org/conference/atcl7/
technical-sessions/presentation/zhang.

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1709.05011
http://arxiv.org/abs/1709.05011
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang

TicTac: Accelerating Distributed Deep Learning with Communication Scheduling

APPENDIX
A DNN MODELS

In Table 1, we present the model characteristics of 10 deep
learning models used in our evaluation. The number of pa-
rameters, total size of all parameters, number of computa-
tional operations in inference mode and training mode, and
the standard batch size are given below.

#Ops
Neural Network #Par Total Par Batch
Inference/
Model Size (MiB) Size
Training
AlexNet v2 (Krizhevsky, 2014) 16 191.89 235/483 512
Inception v1 (Szegedy et al., 2014) 116 25.24 1114/2246 128
Inception v2 (Ioffe & Szegedy, 2015) 141 42.64 1369/2706 128
Inception v3 (Szegedy et al., 2015) 196 103.54 1904/3672 32
ResNet-50 v1 (He et al., 2015) 108 97.39 1114/2096 32
ResNet-101 v1 (He et al., 2015) 210 169.74 2083/3898 64
ResNet-50 v2 (He et al., 2016) 125 97.45 1423/2813 64
ResNet-101 v2 (He et al., 2016) 244 169.86 2749/5380 32
VGG-16 (Simonyan & Zisserman, 2014) 32 527.79 388/758 32
VGG-19 (Simonyan & Zisserman, 2014) 38 548.05 442/857 32

Table 1: DNN model characteristics

B TICvs. TAC

In Figure 15, we plot the increase in throughput achieved
with scheduling in enveo with and without the scheduling

schemes (TIC and TAC). We observe that both TIC and
TAC offer significant speedup compared to the baseline (no
scheduling). Performance of TIC is comparable to that of
TAC indicating that we can achieve improved performance
without relying on runtime statistics in current models.

Due to the simplicity of TIC algorithm, we use it as the
representative algorithm for scheduling in the cloud GPU
environment (envg).

task = inference task = train

Inception v2
o
8 VGG-16
=

TIC
AlexNet v2 B TAC
0 25 50 75 0 25 50 75

Throughput (Sample/Second)
Speed Up (%)

Throughput (Sample/Second)
Speed Up (%)

Figure 15: Increase in throughput with the scheduling schemes
(TIC and TAC) compared to the baseline (no scheduling). Mea-
sured on envc (CPU-Only).

