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Abstract—In this paper, the problem of enhancing the virtual
reality (VR) experience for wireless users is investigated by
minimizing the occurrence of breaks in presence (BIP) that can
detach the users from their virtual world. To measure the BIP
for wireless VR users, a novel model that jointly considers the
VR application type, transmission delay, VR video quality, and
users’ awareness of the virtual environment is proposed. In the
developed model, the base stations (BSs) transmit VR videos to
the wireless VR users using directional transmission links so as
to provide high data rates for the VR users, thus, reducing the
number of BIP for each user. Since the body movements of a VR
user may result in a blockage of its wireless link, the location
and orientation of VR users must also be considered when
minimizing BIP. The BIP minimization problem is formulated as
an optimization problem which jointly considers the predictions
of users’ locations, orientations, and their BS association. To
predict the orientation and locations of VR users, a distributed
learning algorithm based on the machine learning framework of
deep (ESNs) is proposed. The proposed algorithm uses concept
from federated learning to enable multiple BSs to locally train
their deep ESNs using their collected data and cooperatively
build a learning model to predict the entire users’ locations and
orientations. Using these predictions, the user association policy
that minimizes BIP is derived. Simulation results demonstrate
that the developed algorithm reduces the users’ BIP by up to
16% and 26%, respectively, compared to centralized ESN and
deep learning algorithms.

I. INTRODUCTION

Deploying virtual reality (VR) applications over wireless
networks is an essential stepping stone towards flexible de-
ployment of pervasive VR applications [2]. However, to enable
a seamless and immersive wireless VR experience, it is nec-
essary to introduce novel wireless networking solutions that
can meet stringent quality-of-service (QoS) requirements of
VR applications [3]. In wireless VR, any sudden drops in the
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data rate or increase in the delay can negatively impact the
users’ VR experience (e.g., due to interruptions in VR video
streams). Due to such an interruption in the virtual world,
VR users will experience breaks in presence (BIP) events
that can be detrimental to their immersive VR experience.
While the fifth-generation (5G) new radio supports operation
at high frequency bands as well as flexible frame structure
to minimize latency, the performance of communication links
at high frequencies is highly prone to blockage. That is, if
an object blocks the wireless link between the BS and a
VR user, the data rate can drop significantly and lead to a
BIP. In addition to wireless factors such as delay and data
rate, behavioral metrics related to each VR user such as the
user’s awareness can also induce BIP. Awareness is defined
as each wireless VR user’s perceptions and actions in its
individual VR environment. Therefore, to minimize the BIP of
VR users, it is necessary to jointly consider all of the wireless
environment and user-specific metrics that cause BIP, such as
link blockage, user location, user orientation, user association,
and user awareness.

Recently, several works have studied a number of problems
related to wireless VR networks [4]-[11]. The work in [4]
developed a multipath cooperative route scheme to enable
VR wireless transmissions. In [5], the authors develop a
framework for mobile VR delivery by leveraging the caching
and computing capabilities of mobile VR devices. The authors
in [6] study the problem of supporting visual and haptic per-
ceptions over wireless cellular networks. A communications-
constrained mobile edge computing framework is proposed in
[7] to reduce wireless resource consumption. The work in [8]
proposes a concrete measure for the delay perception of VR
users. The authors in [9] present a scheme of proactive com-
puting and high-frequency, millimeter wave (mmWave) [12]
transmission for wireless VR networks. In [10], the authors
design several experiments for quantifying the performance of
tile-based 360° video streaming over a real cellular network.
Our previous work in [11] studied the problems of resource
allocation and 360° content transmission. However, most of
these existing works do not provide a comprehensive BIP
model that accounts for the transmission delay, the quality
of VR videos, VR application type, and user awareness.
Moreover, the prior art in [4]-[11] does not jointly consider the
impact of the users’ body movements when using mmWave
communications.

To address this challenge, machine learning techniques can
be used to predict the users’ movements and proactively
determine the user associations that can minimize BIP. How-
ever, in prior works on machine learning for user movement



predictions [13]-[16], the data for each user’s movement must
be collected by its associated BS. However, in real mobile
VR scenarios, users will move and change their association
and the data related to their movement is dispersed across
multiple BSs. In such scenarios, the BSs may not be able to
continuously share collected user data among each other, due
to the high overhead of data transmission. Moreover, sending
all the information to a centralized processing server will cause
very large delays that cannot be tolerated by VR applications.
Thus, centralized machine learning algorithms such as in [13]-
[16] will not be useful to predict real-time movements of the
VR users. To this end, a distributed learning framework that
can be trained by the collected data at each BS is needed.

Recently, a number of existing works such as in [17]-[20]
studied important problems related to the implementation of
distributed learning over wireless networks. While interesting,
these prior works [17]-[20] that focus on the optimization
of the performance of distributed learning algorithms such
as federated learning do not consider the use of distributed
learning to optimize the performance of wireless networks.
In particular, these existing works [17]-[20] do not consider
the use of distributed learning algorithms to predict users’
orientations and locations to reduce the BIP of wireless
VR users. Note that, in [1], we have studied the use of a
single-layer echo state network (ESN) model with federated
learning for orientation and location predictions. However, the
federated learning algorithm of [1] cannot be used to analyze
a large dataset. Meanwhile, the work in [1] does not analyze
the prediction accuracy or memory capacity of the introduced
learning algorithm.

The key contribution of this work is to develop a novel
framework for minimizing BIP within VR applications that
operate over wireless networks. To our best knowledge, this
paper is the first to analyze how a wireless network with
distributed learning can minimize BIP for VR users and
enhance their virtual world experience. The key contributions
therefore include:

o For wireless VR users, we mathematically model a new
BIP metric that jointly considers VR application type, the
delay of VR video and tracking information transmission,
VR video quality, and the users’ awareness.

« To minimize the BIP of wireless VR users, we develop a
federated ESN [21] learning algorithm that enables BSs to
locally train their machine learning algorithms using the
data collected from the users’ locations and orientations.
Then, the BSs can cooperatively build a learning model
by sharing their trained models to predict the users’
locations and orientations. Based on these predictions,
we perform fundamental analysis to find an efficient user
association for each VR user that minimizes the BIP.

o To analyze the prediction accuracy of the federated ESN
learning algorithm, we study the memory capacity of
federated ESNs. The memory capacity characterizes the
ability of the ESN model to record historical locations and
orientations of each VR user. As the memory capacity
increases, the prediction accuracy will improve. Since
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Fig. 1. The architecture of a wireless VR network. In this architecture, the
Sub-6 GHz uplink is used to transmit tracking information and the mmWave
downlink is used to transmit VR videos.

the BSs determine the user association based on these
predictions, better prediction accuracy will lead to a more
effective user association scheme that will minimize the
number of BIP. The analytical results show that the
memory capacity of ESNs depends on the number of
neurons in each ESN model and the values of matrices
that are used to generate the ESN model.

o Simulation results demonstrate that our proposed algo-
rithm can achieve significant improvements in the statis-
tics of BIP that occur within a wireless VR network.

The rest of this paper is organized as follows. The problem
formulation is presented in Section II. The federated ESN
learning algorithm for the predictions is proposed in Section
III. In Section IV, the memory capacity of various ESN models
are analyzed. The user association is found in Section V. In
Section VI, simulation results are presented and conclusions
are drawn in Section VIIL

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network that consists of a set 5 of B BSs
that service a set &/ of U VR users. In this model, BSs act as
VR controllers that can collect the tracking information related
to the users’ movements via VR sensors and use the collected
data to generate the VR videos for their associated users, as
shown in Fig. 1. In particular, the uplink is used to transmit
tracking information such as users’ locations and orientations
from the VR devices to the BSs, while the downlink is
used to transmit VR videos from BSs to VR users. For user
association, the VR users can associate with different BSs
for uplink and downlink data transmissions. Different from
prior works such as in [3], [S]-[11] that assume the VR users
to be static, we consider a practical scenario in which the
locations and orientations of the VR users will impact the VR
application performance.

A. Transmission Model

We consider both uplink and downlink transmission links
between BSs and VR users. The VR users can operate at
both mmWave and sub-6 GHz frequencies [22]-[24]. The VR
videos are transmitted from BSs to VR users over the 28
GHz band. Meanwhile, the tracking information is transmitted
from VR devices to their associated BSs over a sub-6 GHz
frequency band. This is due to the fact that sub-6 GHz
frequencies with limited bandwidth cannot support the large



data rates required for VR video transmissions. However, it
can provide reliable communications for sending small data
sized users’ tracking information.

1) Uplink Transmissions of User Tracking Information:
Let (x;,yi:) be the Cartesian coordinates for the location of
user ¢ at time ¢ and S be the data size of each user’s tracking
information, including location and orientation. S depends on
the VR system (i.e., HTC Vive [25] or Oculus [26]). The data
rate for transmitting the tracking information from VR user @
to BS j is given by:
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where FU is the bandwidth of each subcarrier, U]l-JL is the
number of VR users associated with BS j over uplink, U; is
the set of VR users that use the same subcarriers with user 7,
P, is the transmit power of each VR user (assumed equal for
all users), g;; is the Rayleigh channel gain, d;; is the distance
between VR user i and BS j, and p? is the noise power.

2) Downlink VR Video Transmission: In the downlink,
antenna arrays are deployed at BSs to perform directional
beamforming over the mmWave frequency band. For sim-
plicity, a sectored antenna model [27] is used to approximate
the actual array beam patterns. This simplified antenna model
consists of four parameters: the half-power beamwidth ¢, the
boresight direction 6, the antenna gain of the mainlobe @, and
the antenna gain of the sidelobe q. Let ¢;; be the phase from
BS j to VR user i. The antenna gain of the transmission link
from BS j to user ¢ is:
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Since the VR device is located in front of the VR user’s
head, the mmWave link will be blocked, if the user rotates. Let
Xq+ be the orientation of user ¢ at time ¢ and ¢ be the maximum
angle using which BS j can directly transmit VR videos to a
user without any human body blockage. ¢/ ; denotes the phase
from user ¢ to BS j. For user i, the blockage effect, b; (i),
caused by its own body can be given by:
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We assume that each VR user’s body constitutes a single
blockage area and n;;; represents the number of VR users
located between user ¢ and BS j at time ¢. If there are no
users located between user ¢ and BS j that block the mmWave
link, i.e., (b; (xit) + n;; = 0, then, as shown in Fig. 2(a)), the
communication link between user ¢ and BS j is line-of-sight
(LoS). If the mmWave link between user ¢ and BS j is blocked
by the user i’s own body (as shown in Fig. 2(b), b; (xi) = 1)
or blocked by other users located between user 7 and BS j
(as shown in Fig. 2(c), +n,;; > 0), then the communication
link between user ¢ and BS j is said to be non-line-of-sight

(NLoS). From (3), we can see that b; (x;+) and n;; can be
directly determined by the users’ orientations and locations.

Considering path loss and shadowing effects, the path loss
for a LoS link and a NLoS link between VR user 7 and BS j
in dB will be given by [27]:
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where 20 10g< ) is the free space path loss. Here, d°
represents the reference distance, f. is the carrier frequency
and v is the light speed. wy,s and wnios represent the path
loss exponents for the LoS and NLoS links, respectively.
Mos and ps o represent Gaussian random variables with
zero mean, respectively. op0s and onros represent the standard
deviations for LoS and NLoS links in dB, respectively. The
downlink data rate of VR video transmission from BS j to

user ¢ is given by:
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where FPL is the bandwidth allocated to each user and Pg
is the transmit power of each BS j which is assumed to be
equal for all BSs. Since the downlink uses mmWave links,
we assume that, due to directivity, interference in (6) can be
neglected, as done in [28].

B. Break in Presence Model

In a VR application, the notion of a BIP represents an
event that leads the VR users to realize that they are in a
fictitious, virtual environment, thus ruining their immersive
experience. In other words, a BIP event transitions a user from
the immersive virtual world to the real world [29]. For wired
VR, BIP can be caused by various factors such as hitting the
walls/ceiling, loss of tracking with the device, tripping on wire
cords, or talking to another person from the real world [29].
For wireless VR, BIP can be also caused by the delay of VR
video and tracking information transmission, the quality of the
VR videos received by the VR users, and inaccurate tracking
information received by BSs.

To model such BIP, we jointly consider the delay
of VR video and tracking information transmission and
the quality of the VR videos. We first define a vector
L (C]%L (it Yits bi (Xit) ;i) = [linye,- .- ling ] that rep-
resents a VR video that user ¢ received at time ¢ with l;;, + €
{0,1}. l;x; = O indicates that pixel k is not successfully
received by user ¢, and [;;; = 1, otherwise. We also define

T
a vector m; ¢ (Ga) = [ms1y,...,min, | that represents
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Fig. 2. VR video transmission over LoS/NLoS links

the weight of the importance of each pixel constructing a
VR video, where m;; € [0,1] and G4 represents a VR
application such as an immersive VR game or a VR video.
m;i+ = 1 indicates that pixel k£ is one of the most important
elements for the generation of G 4. The value of m;;, ¢+ depends
on the compression used for the VR video. In each VR
application G 4, a number of pixels can be compressed at the
BS and recovered by the user and, hence, these pixels are
not important. However, the pixels that cannot be compressed
by the BS are important and must be transmitted to the VR
users. Therefore, each pixel will have different importance and
mykt € [0,1]. Then, the BIP of VR user ¢ caused by the
wireless transmission will be given by:
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vp and g represent the target delay and k&iﬁeo quality
requirements, respectively. In (7), A represents the data size of
the tracking information, T e represents the time used
for tracking information transmission from user i to BS j,
D (li,t (c?kL (Tit, Yit, bi (Xat) ,nik))) represents the data size

. D(l; i itsYi 7b it )T
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the transmission latency for sending the tracking information
from BS k to user <. For 51mp11c1ty, hereinafter, w;; is referred
as wir (Zit, Yit, Xit> @Yy, apy ). (7) shows that if the delay of
VR video and tracking 1nf0rmat10n transmission exceeds the
target delay threshold allowed by VR systems or the quality
of the VR video cannot meet the video requirement, users will
experience a BIP (w;;=1). From (7), we can also see that, the
BIP of user ¢ caused by wireless transmission depends on user
1’s location, orientation, VR applications, and user association.
(7) captures the BIP caused by wireless networking factors
such as transmission delay and video quality. Next, we define
a BIP model that jointly considers wireless transmission, the

VR application type, and the users’ awareness. The BIP of
user ¢ can be given by [30]:

UL DL
P; (xitayita GA, Xits Qg ¢ ai,t)
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where €, is user i’s awareness, €, |; is the joint effect caused
by user ¢’s awareness and VR application G4, and €p is a
random effect. ¢;, €G 4 i» and e follow a Gaussian distribution
[30] with zero mean and variances o2, aéw, and 0%, re-
spectively. In (8), the value of P; (i, yit, Ga, Xit, @iy, apy)
quantifies the average number of BIP that user ¢ can identify
during a period. From (8), we can see that, as the VR
application for user i changes, the BIP value will change. For
example, a given user watching VR videos will experience
fewer BIP compared to a user engaged in an immersive first-
person shooting game. This is due to the fact that in an
immersive game environment, users are fully engaged with the
virtual environment, as opposed to some VR applications that
require the user to only watch VR videos. In (8), we can also
see that the BIP depend on the users’ awareness. This means
that different users will have different actions and perceptions
when they interact with the virtual environment and, hence,
different VR users may experience different levels of BIP.

C. Problem Formulation

From (8), we can see that the BIP of each user depends on
this user’s location, orientation, and selected BSs. By using
an effective learning algorithm to predict the users’ locations
and orientations, the BSs can proactively determine the users’
association to improve the downlink and uplink data rates
and minimize BIP for each VR user. The BIP minimization
problem is:

min P; (%t,ymeXlt» }H{aaD%) ©)
alL gDl
BT el
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where Z;:, Ui+, and X;¢ are the predicted locations and ori-
entation of user ¢ at time ¢, which depend on the actual
historical locations and orientation of user ¢. U; is the number
of VR users associated with BS j over downlink and V' is the
maximum number of users that can be associated with each



BS. (9b) and (9c) show that each user can associate with only
one uplink BS and one downlink BS. From (9), we can see
that the BIP of each user will depend on the user association
as well as the users’ locations and orientations. Meanwhile,
the user association depends on the locations and orientations
of the VR users. If the BSs perform the user association
without knowledge of the locations and orientations of the
users, the body blockage between the user-BS transmission
links can potentially be significant, thus increasing the BIP of
each user. Therefore, the BSs must use historical information
related to the users’ locations and orientations to determine
the user association. As the users’ locations and orientations
will continuously change as time elapses, BSs must proactively
determine the user association to reduce the BIP of VR users.
In consequence, it is necessary to introduce a machine learning
algorithm to predict the users’ locations and orientations in
order to determine the user association and minimize BIP
of VR users. In the model defined in Section II, the user
association changes as the users’ location and orientation
vary with time. Consequently, each BS that connects to a
given VR user can only collect partial information about this
user’s locations and orientation. However, a BS cannot rely
on partial information to predict each user’s location and
orientation. Moreover, since a given VR user will change its
association, the data pertaining to this VR user’s movement
will be located at multiple BSs. Hence, traditional centralized
learning algorithms that are implemented by a given BS
cannot predict the entire VR user’s locations and orientations
without knowing the user’s data collected by other BSs. To
overcome the challenges mentioned previously, we introduce
a distributed federated learning framework that can predict the
location and orientation of each VR user as the training data
related to each user’s locations and orientations is located at
multiple BSs.

III. FEDERATED ECHO STATE LEARNING FOR
PREDICTIONS OF THE USERS’ LOCATION AND
ORIENTATION

Federated learning is a decentralized learning algorithm
[31] that can operate by using training datasets that are
distributed across multiple devices (e.g., BSs). For our system,
one key advantage of federated learning is that it can allow
multiple BSs to locally train their local learning model using
their collected data and cooperatively build a learning model
by sharing their locally trained models. Compared to existing
federated learning algorithms [32] that use matrices to record
the users’ behavior and cannot analyze the correlation of the
users’ behavior data, we propose an ESN-based federated
learning algorithm that can use an ESN to efficiently analyze
the data related to the users’ location and orientation. The pro-
posed algorithm enables the BSs to collaboratively generate a
global ESN model to predict the whole set of locations and ori-
entations for each user without transmitting the collected data
to other BSs. However, if the BSs use the centralized learning
algorithms for the orientation and location predictions, the
BSs must use the data collected from all BSs to train the

algorithm. ESNs have two unique advantages: simple training
process and the ability to analyze time-dependent data [21].
Since the data that is related to the orientation and locations
of the users is time-dependent and the users’ orientation and
locations will change frequently, we must use ESNs that can
efficiently analyze time-dependent data and converge quickly
to obtain the prediction results on time and determine the user
association. Next, we first introduce the components of the
federated ESN learning model. Then, we explain the entire
procedure of using our federated ESN learning algorithm to
predict the users’ locations and orientation.

A. Components of Federated ESN Learning Algorithm

A federated ESN learning algorithm consists of five compo-
nents: a) agents, b) input, ¢) output, and d) local ESN model,
which are specified as follows:

e Agent: In our system, we need to define an individual
federated ESN learning algorithm to predict the location
and orientation of each VR user. Meanwhile, each user’s
individual federated ESN learning algorithm must be im-
plemented by all BSs that have been associated with this
user. Each BS j must implement U learning algorithms
to predict the locations and orientations of all users.

e Input: The input of the federated ESN learning algorithm
that is implemented by BS j for the predictions of each
VR user ¢ is defined by a vector v;; = [v;51, -, v,;j_yT}T
that represents the information related to user ¢’s loca-
tion and orientation where v;;; = [&ijit,---, &N, ¢)
represents user ¢’s information related to location and
orientation at time ¢. This information includes user
©’s locations, orientations, and VR applications. N, is
the number of properties that constitute a vector v ;.
The input of the proposed algorithm will be combined
with the ESN model to predict users’ orientation and
locations. BSs will use these predictions to determine user
associations.

e Output: For each user i, the output of the federated
ESN learning algorithm at BS j is a vector y,,,
[g}iﬁﬂ,..‘,g}ij“ry] of user ¢’s locations and orienta-
tions where ¥ ;1 = [Fittk, Yittks Xit+k] With Tipp
and ;44 being the predicted location coordinates of user
i at time t 4+ k and Y;¢+ being the estimated orientation
of user ¢ at t + k. Y is the number of future time slots
that a federated ESN learning algorithm can predict. The
predictions of the locations and orientations can be used
to determine the user’s association.

e Local ESN model: For each BS j, a local ESN model is
used to build the relationship between the input of all BSs
and the predictions of the users’ location and orientation,
as shown in Fig. 4. The local ESN model consists of the
input weight matrix W' e RYW*T, recurrent matrix
W; € R¥W>Nw “and the output weight matrix W5 €
RY*(Nw+T)_ The values of W and W are generated
randomly. However, the output weight matrix W(j’-“t need
to be trained according to the inputs of all BSs.
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Fig. 4. The implementation of the ESN based federated learning. Here, the
data is located at the BSs and the learning model W"“‘ that is trained by
each BS’s collected data is the local model.

We introduce three ESN models: single ESN model,
series ESN model, and parallel ESN model. In the single
ESN model, an ESN is directly connected to the input
and output. Moreover, as shown in Fig. 3, series and
paralle]l ESN models connect single ESN models in series
and parallel, respectively. Each ESN model has its own
advantage for our problem. In particular, a single ESN
model can converge faster than a series ESN model and
a parallel ESN model. A parallel ESN model has a larger
memory capacity than a series ESN model. A series ESN
model can decrease the prediction errors in the training
process.

B. ESN Based Federated Learning Algorithm for Users’ Lo-
cation and Orientation Predictions

Next, we explain the entire procedure of training the pro-
posed ESN-based federated learning algorithm. Our purpose
of training ESN is to find an optimal output weight matrix

in order to accurately predict the users’ locations and orienta-
tions, as shown in Fig. 4.

To introduce the training process, we first explain the state
of the neurons in ESN. The neuron states of the proposed
algorithm implemented by BS j for the predictions of user @
are:

M =Wip,, 1+ W?Uz'j,p (10)

Based on the states of neurons and the inputs, the ESN can
estimate the output, which is:

N (o

From (11), we can see that, in order to enable an ESN to
predict the users’ locations and orientations, we only need to
adjust the value of the output weight matrix. However, each
BS can collect only partial data for each user and, hence, we
need to use a distributed learning algorithm to train the ESNs.
To introduce the distributed learning algorithm, we first define
two matrices which are given by:

(1)

Vija1 Hja

H, =

j and Ej = [eim, AN

,€ij 1],
Vi, T HKj1
(12)
where e;;; is the desired locations and orientations of each
VR user, given the ESN input v;; ;. Then, the training purpose
can be given as follows:

mln -

TR Z st -,

A
+ 5w a3

(13) is used to find the optimal global output weight matrix
W according to which the BSs can predict the entire users’
locations and orientations without the knowledge of the users’
data collected by other BSs. From (13), we can see that, each
BS j needs to adjust its output weight matrix W?”[ and find
the optimal output weight matrix W, After the learning step,
we have W?‘" = W, which means that when the learning
algorithm converges, the local model of each BS will converge
to the global model.. A standard update policy of W;”t for
the augmented Lagrangian problem in (13) is given by [33]:

M ="' |[I-H] (I + H;H]) H]|

x (Hj Ej —nj,+ <W§“‘> , (14)
where ¢ is the learning rate and W is the optimal output
weight matrix that the ESN model of each BS needs to find.
From (14), we can see that W', is the output weight
matrix that is generated at BS j. VV]”tt 11 can only be used to
predict partial locations and orientations given the users’ data
collected by BS j. W', is different from the output weight
matrices of other BSs. The optimal output weight matrix is
given by:

out

-~ _out N
BcW, | + Bn,
t+1 — N |,

1
e (1)



Algorithm 1 Federated ESN learning algorithm for location
and orientation predictions

Input: Training data set (local), v;;.

Initialization: Each BS j generates the ESN model for each user including
W‘J“ (local), W ; (global), and W‘J’.‘“ (local).

1: Obtain the matrices H; and E; based on (10).

2: for time ¢ do

. t
3:  Compute W‘j’“t n

4:  Calculate Wy, +1 and 79" based on (16).
5:  Calculate W%, based on (15).

6: Compute m; 41 based on (17).
7.

8

9

1 using (14).

Compute ||75,141| and ||s;, .
t If ||7jeq1]] < va or ||sj ]l < va, the algorithm converges.
: end for

where Wt 41 and ng, +1 can be calculated as follows:
A out

B
out A 1 .
t+1 = B git+1s Tt = B Mgt
Jj=1

From (14) to (16), we can see that the global output weight
matrix W is based on (15) and (16) while the local output
weight matrix W°ut is based on (14). In (14), n;, is the
deviation between the output weight matrix W%, , of each
BS j and the optimal output weight matrix W(’”t1 that the
ESN model of each BS needs to converge, which is given by:

(16)

a7)

out _ out )

Tji+1 = Mg+ ( G+l t+1

(t’j_tl is the global optimal output weight matrix that can be

used to predict the entire locations and orientations of a given
user. This means that using W34, each BS can predict the
entire user’s locations and orientations as the BS only collects
partial data related to the user’s locations and orientations.
As time elapses, W'y, , will finally converge to W34, In

consequence, all of BSs can predict the entire locations and

orientations of each user. To measure the convergence, we

define two vectors which can be given by rj r=Wii—w
and sj; = W — W, <

Y4, the proposed algonthm converges. ’yA is determined by
the BSs. Since the minimization function in (13) is a convex
function, the BSs are guaranteed to find an optimal output
weight matrix that satisfy [|7;,41] < ya or ||sj]] < ya. As
Y4 increases, the accuracy of the predictions and the number
of iterations decrease. Therefore, BSs need to jointly account
for the time used for training ESN and the prediction accuracy
to determine the value of 4. In fact, the ESN As the learning
algorithm converges, each BS can use its own ESN to predict
the entire location and orientation of each VR user. According
to these predictions, BSs can determine the user association to
minimize the BIP of VR users. Algorithm 1 summarizes the
entire process of using ESN based federated learning algorithm
for the predictions of the users’ locations and orientations.
From Algorithm 1, we can see that W' and W$" are local
parameters which means that each BS j will generate its own
Wijr1 and W§". However, W is a global parameter which
means that all of the BSs will have the same W ;.

IV. MEMORY CAPACITY ANALYSIS

To improve the prediction accuracy of the proposed algo-
rithm, we analyze the memory capacity of the proposed ESN
model. The memory capacity quantifies the ability of each
ESN to record the historical locations and orientations of each
VR user. As the memory capacity of the ESNs increases,
the ESNs can record more historical data related to users’
locations and use this information to achieve better prediction'
for the users’ locations and orientations. The analysis of the
ESN memory capacity will be used for the choice of the
ESN models for the predictions of the users’ locations and
orientations. Next, we derive closed-form expressions of the
memory capacity of the three ESN models that we described
in Section III, namely, the single ESN model, the paralle]l ESN
model, and the series ESN model. Note that, our previous work
[34] analyzed the memory capacity for a centralized parallel
ESN model. In contrast, here, we analyze the memory capacity
for three ESN models used for federated learning.

We assume that the input of each ESN model at time ¢ is
m; and the output of each ESN model is z;. Then, the memory
capacity of each ESN model is given by [35]:

M= ZCOV my— k,Zt)

18
Var(mg)Var(z¢)’ (18)

where Cov and Var represent the covariance and variance

operators, respectively. In (18), m captures the
correlation between the ESN input m;_j at time ¢t — k and
the ESN output z; at time £. m = 1 indicates
that m;_; and z; are related which means that the output z;
includes the information of M, and, hence, the ESN can
record input m;_j at time t. W = 0 indicates that
my_ and z; are unrelated, which means that z; does not
include any information related to m;_j and, hence, the ESN
cannot record m;_j. In consequence, M represents the total
number of historical input data that each ESN can record. The

recurrent matrix W in each ESN model is given by:

0 0 --- w
w 0 0 0
W, = ) (19)
o -~ 0 0
0 O 0
and the input weight matrix is given by W" =
[wiln, .. ,wi]‘\“,w] T. We also define a matrix that will be used to

derive the memory capacity of the ESNs, which can be given
by:

in
wy W, wy
,w12n ,wlln . wgn
V = (20)
in in n
WNy  WNyp-1 0 W

IHere, as the size of the recorded data increases, the ESNs can use more
historical data to build a relationship between historical orientations and
locations, and future orientations and locations. Hence, the ESN prediction
accuracy improves.



Based on the above definitions, we can invoke our result from
[35, Theorem 2] to derive the memory capacity of single ESN
model, which can be given as follows.

Corollary 1 (Single ESN model). Given the recurrent matrix
W and the input matrix W' that guarantees the matrix V
regular, the memory capacity of the single ESN model is:

M = Ny — 1+ w?Vw. (1)
Proof. Given the input stream vector m_ ; =
[mq,...,my_1,my], we can calculate the activations
pj, using (10). The output weight matrix of the
ESN model can be given by W°" R 'p,, where
R = E {ut (ut)T} represents the covariance matrix with
Be = [H1,es- - finy t] and py = E[p,mi—x]. Assume that
why = [w}'\}w,w‘]‘\‘,wfl,...,w‘l“] and roty (wly, ) is

an operator that rotates vector wy, ~ ; by k positions to the
right. We have W = (1 — w?™W)wk A roty, (wi ).
where A = V'I?V with I' = diag (1,w,...,w¥w 1),
Based on W we can the covariance of the output

with the k-slot delayed input, which is given by
Cov(ze,mi—x) = (1 — w?* VW) w?*¢2¢,. We can also
obtain Var(z;) = E[zz] = (1 — w?¥W)w?*02¢,. Since
Cov? Mt k2t
Var(m;) = o2, we have M = Y 72, 4VZ:(1q(1t)Va’;(zt)) =

g,
Ny — 14+ w?Nw,

From Corollary 1, we can see that the memory capacity
of the single ESN model depends on the number of neurons
and values of the recurrent matrix. Corollary 1 also shows
that the memory capacity of the single ESN model will
not exceed Nyy. That means the single ESN model based
federated learning algorithm can only record Ny locations
or orientations.

Next, we derive the memory capacity of the parallel ESN
model, which can be given by the following theorem.

Theorem 1 (Parallel ESN). Given a parallel ESN model
during which L ESN models are parallel connected with
each other, each ESN model’s input weight matrix W that
guarantees the matrix V' regular and recurrent matrix W, then
the memory capacity of each parallel ESN can be given by:

M = Ny — 1+ w?¥v. (22)
Proof. See Appendix A. O

Theorem 1 shows that the memory capacity of a parallel
ESN model is similar to the memory capacity of a single
ESN. Hence, adding multiple ESN models will not increase the
memory capacity. This is due to the fact that, in a paralle]l ESN
model, there is no connection among the ESNs, as shown in
Fig. 3(b). Therefore, the input of the parallel ESN model will
separately connect to each single ESN and, hence, the parallel
ESN models do not need to use more neurons to record the
input data compared to the single ESN model. Theorem 1 also
shows that the memory capacity of a parallel ESN depends on
the number of neurons in each ESN model and the values of
the recurrent weight matrix of each ESN model. Accordingly,

we can increase the value of output weight matrix and the
number of neurons in each ESN model to increase the memory
capacity of the parallel ESN models. As the memory capacity
of the parallel ESN models increases, BSs can record more
users’ data to predict the users’ locations and orientations
accurately. Next, we derive the memory capacity of the series
ESN model.

Theorem 2 (Series ESN model). Given a series ESN model
during which L ESN models are series connected with each
other, a recurrent matrix W of each ESN model, and each
ESN model’s input weight matrix W™ that guarantees the
matrix V' regular, the memory capacity of each series ESN
model is:

M= (1—w™)" 7 (N — 1+ 0?7) . (23)

Proof. See Appendix B. O

From Theorem 2, we can see that the memory capacity of
each series ESN model is smaller than the memory capacity
of a single ESN or a series ESN. Theorem 2 also shows that
the memory capacity of each series ESN model decreases as
the number of ESN models L increases. Thus, it would be
better to use a single ESN model or a parallel ESN model to
predict the users’ locations and orientations.

Theorems 1 and 2 derive the memory capacities of the
parallel ESN model and the series ESN model with single
input. Next, we formulate the memory capacity of a single
ESN model given multiple inputs, which is given by the
following theorem.

Theorem 3 (Multi-input single ESN). Consider a sin-
gle ESN with a recurrent matrix W, input vector m; =
[mi¢, ..., mky], the input weight matrix W™ that guarantees
the matrix V' regular, the memory capacity of each single ESN
is

K 2 2
M= (e o) iy 1,
Zk:1 anl PknOkOn
(24)

where py, represents the correlation coefficient between input
Mt and Mpt.

Proof. See Appendix C. O

From Theorem 3, we can observe that the correlation among
input elements in vector m; will affect the memory capacity
of each ESN model. In particular, as the correlation of the
input data increases, the memory capacity of the ESN model
increases. This is because the ESN can use more input data to
predict the users’ locations and orientations, hence improving
the predictions accuracy. Therefore, it would be better to
jointly predict the users’ locations and orientations.

Theorems 1-3 allow each BS to determine its ESN model,
the number of neurons Ny in each ESN model, and the values
of the recurrent matrix W as the size of the data collected by
each BS changes. A parallel ESN model has a larger memory
capacity compared with the series ESN model and is more



stable than the single ESN model, and, hence, a parallel ESN
model can record more historical data to predict the users’
orientations and locations so as to improve the prediction
accuracy. As the prediction accuracy is improved, the BSs
can determine the user association more accurately. Hence,
the BIP of the users can be minimized. Therefore, we use the
parallel ESN model in our proposed algorithm.

V. USER ASSOCIATION FOR VR USERS

Based on the analysis presented in Sections III and IV,
each BS can predict the users’ locations and orientations.
Next, we explain how to use these predictions to find the
user association for each VR user. Given the predictions of
the locations and orientations, the BIP minimization problem
in (9) can be rewritten as follows:

. A~ ~ ~ UL DL
1111 Pi (xit>yit7GA7Xit7a’it7ait) . (25)
a%t aPL ’ ’
1,7, t iGZ/[

We use the reinforcement learning algorithm given in [36]
to find a sub-optimal solution of the problem in (25). In the
reinforcement learning algorithm given in [36], the actions
are the user association schemes, the states are the strategies
of other BSs, and the output is the estimated BIP. Hence,
this reinforcement learning algorithm can learn the VR users
state and exploit different actions to adapt the user associa-
tion according to the predictions of the users’ locations and
orientations. After the learning step, each BS will find a sub-
optimal user association to service the VR users. To simplify
the learning process and improve the convergence speed, we
first select the uplink user association scheme. This is because
as the uplink user association is determined, the BSs that the
users can associate in downlink will be determined, as follows:

Proposition 1. Given the predicted location and orientation
of user 7 at time ¢ as well as the uplink user association a}ﬁ:t,
the downlink cell association for a VR user ¢ is:

ik.t%k)) A
DL DL S~ UL UL A .
@ikt ik agy e Con (it Tit)

A —]1{ D (1,0 (P, L))

AL, (o P me (Ga)>na ) (26)
where DY (Zit, it, bi (Xit) , nik) is short for bk and aPF, is
the downlink user association obtained in (26). ¢y (2, Yit)
is the uplink data rate of user .

Proof. For downlink user association, each VR user ¢ needs
to find a BS that can guarantee the transmission delay
and VR video quality. Since we have determined the user
association over uplink, the maximum time used for VR
video transmission can be given by ~p — I G
Consequently, user ¢ needs to connect with a BS that can

satisfy the transmission delay requirement of user i, i.e.,
D(li,t(a?zt,tc?t(iit,éit,bi()Zit)vnik) ) < o

aly cop (Eit,Gie,bi (Rit ) mik) S b aft el (@i,Gie)
Moreover, user ¢ needs to associate with a BS that
can meet the requirement of VR video quality, i.e.,
Lit (a?]&tc?kl“ (@ies Tier bs (Xit) nzk)) m; (Ga) = o
Thus, if BS k  can  satisfy the conditions:

TABLE I
SYSTEM PARAMETERS
Parameters Values Parameters Values
Pgp 30 dBm dg 5m
P 10 dBm c 28 GHz
o -94 dBm c 3 x 108 m/s
FUL 10 Mbit | w45, WNLos 2,24
FDL 10 Mbit | flog o> Honges 5.3,5.27
Nw 30 Gag 11
JE] 2 D 10 ms
M 15 dB YQ 0.8
m 0.7 dB 0;° 0.193
é 30° A 50 kbits
Y 10 T 5
Y 0.5 A 0.005
w 0.98 L 3
vV 10 J 2
7 7
0G4l 0.151 oB 0.05
D(lz,t(a'ftw,,c]ft(imz}u-,bi(fm)»”ik))) < _ A
alp ok (&, Gie,bi (Rit),mik) S D aft T (Zit,Gir)

and 1;  (apf  cor (i, Gir, bi (Xat) ,nik)) ma e (Ga) = g, user i
can associate with it. This completes the proof. O

From Proposition 1, we can see that the user association
of each user ¢ depends on user ¢’s location and orientation.
Proposition 1 shows that, for each user ¢, the uplink user
association will affect the downlink user association. This is
due to the fact that the VR system has determined the total
transmission delay of each user. As a result, when the uplink
user association is determined, the uplink transmission delay
and the requirement of the downlink transmission delay will
be determined.

VI. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a circular area with radius
r = 500 m, U = 20 wireless VR users, and B = 5
BSs distributed uniformly. To simulate blockage, each user
is considered as a two-dimensional point. For simplicity, we
ignore the altitudes of the BSs and the height of the users.
If blockage points are located between a user and its BS,
the communication link will be considered to be NLoS. Real
data traces for locations are collected from 50 students at
the Beijing University of Posts and Telecommunications. The
locations of each student is collected every hour during 9:00
am — 9:00 pm. For orientation data collection, we searched 25
videos related to a first-person shooter game from youTube.
Then, we input these VR videos to HTC Vive devices.
The HTC Vive deveploper system can directly measure the
movement of the VR videos using HTC Vive devices. We
arbitrarily combine one user’s locations with one orientation
for each VR wuser. In simulations, a parallel ESN model?
is used for the proposed algorithm due to its stability and
large memory capacity. The other system parameters are listed
in Table I. For comparison purposes, we consider the deep
learning algorithm in [15] and the ESN algorithm in [16],
as two baseline schemes. The deep learning algorithm in
[15] is a deep autoencoder that consists of multiple layers
of restricted Boltznann machines. The centralized ESN-based
learning algorithm in [16] is essentially a single layer ESN
algorithm. The input and output of the centralized ESN and

2The code can be found in https:/github.com/lasisal/deepESN.



deep learning algorithms are similar to the proposed algorithm.
However, for the deep learning algorithm and the centralized
ESN algorithm, each BS can use only its collected data to train
the learning model. Both the centralized and deep learning
algorithms are trained in an offline manner. All statistical
results are averaged over a large number of independent runs.

Figs. 5 and 6 show the predictions of the VR users’
locations and orientations as time elapses. To simplify the
model training, the collected data related to locations and
orientations are mapped to [—0.5,0.5]. The orientation and
location of each user are, respectively, mapped by the function

Zit+Tit

Xit_ ()5 and -2 n | X g;. From

Tos . — 0.5 where z =

n=1

Figs. 5 and 6, we observe that the proposed algorithm can
predict the users’ locations and orientations more accurately
than the centralized ESN and deep learning algorithms. Figs.
6(b) and 6(c) also show that the prediction error mainly occurs
at time slot 8 to 12. This is due to the fact that the proposed
algorithm can build a learning model that predicts the entire
locations and orientations of each user. In particular, the output
weight matrices of all ESN algorithms implemented by each
BS will converge to a common matrix. Hence, BSs can predict
the entire locations and orientations of each VR user.

Fig. 7 shows how the total BIP of all VR users changes
as the number of BSs varies. From Fig. 7, we can see that,
as the number of BSs increases, the total BIP of all VR users
decreases. That is because as the number of BSs increases, the
VR users have more connection options. Hence, the blockage
caused by human bodies will be less severe, thereby improving
the data rates of VR users. Fig. 7(a) also shows that the
proposed algorithm can achieve up to 16% and 26% reduction
in the number of BIP, respectively, compared to centralized
ESN algorithm and deep learning algorithm for a network with
9 BSs. These gains stem from the fact that the centralized ESN
and deep learning algorithms can partially predict the locations
and orientation of each VR user as they rely only on the local
data collected by a BS. In contrast, the proposed algorithm
facilitates cooperation among BSs to build a learning model
that can predict the entire users’ locations and orientations.
Fig. 7(b) shows that the proposed algorithm using a parallel
ESN model can achieve up to 8% and 14% gains in terms of
the total BIP of all users compared to the proposed algorithm
with a single ESN model and with a series model. Clearly,
compared to a single ESN, using a parallel ESN model can
increase the stability of the proposed algorithm. Meanwhile,
the memory capacity of a parallel model is larger than a
series ESN model thus improving the prediction accuracy and
reducing BIP for users.

In Fig. 8, we show how the total BIP of all VR users
changes with the number of VR users. This figure shows that,
with more VR users, the total BIP of all VR users increases
rapidly due to an increase in the uplink delay, as the sub-6
GHz bandwidth is shared by more users. Fig. 8 also shows that
the gap between the proposed algorithm and the centralized
ESN algorithm decreases as more VR users are present in

the network.. Clearly, with more VR users, it becomes more
probable that a user located between a given VR user and its
associated BS blocks the mmWave link. Thus, as the number
of users increases, more VR users will receive their VR videos
over NLoS links and, the total BIP significantly increases.

In Fig. 9, we show the CDF for the VR users’ BIP for
all three algorithms. Fig. 9 shows that the BIP of almost
98% of users resulting from the considered algorithms will
be larger than 10. This is due to the fact that the BIP will
also be caused by other factors such as VR applications and
user’s awareness. In Fig. 9, we can also see that the proposed
algorithm improves the CDF of up to 38% and 71% gains at a
BIP of 25 compared to the centralized ESN and deep learning
algorithms, respectively. These gains stem from the fact the
ESNs are effective at analyzing the time related location and
orientation data and, hence, they can accurately predict the
users’ locations and orientations.

Fig. 10 shows how the normalized root mean square error
(NRMSE) of the predictions changes as the number of neurons
in each ESN model varies. In this figure, the NRMSE of the
predictions is given by ||@;;, — €y;.¢||. From Fig. 10, we can
see that, with more neurons, the NRMSE of the predictions
resulting from all of the considered ESN models decreases.
This is because, as the number of neurons increases, each ESN
model can record more historical data related to the users’
locations and orientations. Fig. 10 also shows that the parallel
model can achieve up to 37.5% and 90% gains in terms of
NRMSE compared to the series model for the ESN models
have 30 neurons. This is due to the fact that the prediction
errors of a parallel ESN model is averaged over multiple
outputs, thus, improving the prediction accuracy.

Fig. 11 shows how the total BIP of all VR users changes as
the number of BSs varies. In this figure, all of the considered
algorithms used the reinforcement learning algorithm given in
[31] to solve the problem in (25). In the algorithm without
the knowledge of the locations and orientations, the users are
randomly associated with the BSs. From Fig. 11, we can see
that the proposed algorithm yields 23% fewer BIP compared
to the algorithm without the knowledge of the locations and
orientations. This is due to the fact that the proposed algorithm
uses federated ESN algorithm to predict the users’ orientations
and locations to optimize the user association and reduce the
BIP of the users. From Fig. 11, we can also see that, a gap
exists between the proposed algorithm and the algorithm with
the perfect knowledge of the users’ orientations and locations.
This gap stems from the prediction inaccuracy caused by the
proposed algorithm.

VII. CONCLUSION

In this paper, we have developed a novel framework for
minimizing BIP within VR applications that operate over
wireless networks. To this end, we have developed a BIP
model that jointly considers the VR applications, transmis-
sion delay, VR video quality, and the user’s awareness. We
have then formulated an optimization problem that seeks to
minimize the BIP of VR users by predicting users’ locations
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and orientations, as well as ((letermlmng the user association.
To solve this problem, we have developed a novel federated
learning algorithm based on echo state networks. The proposed
federated ESN algorithm enables the BSs to train their ESN
with their locally collected data and share these models to
build a global learning model that can predict the entire

Number of BIPs
Fig. 9. CDFs of the BIP resulting from the different algorithms.
locations and orientations of each VR user. To improve the
prediction accuracy of the proposed algorithm, we derive a
closed-form expression of the memory capacity for ESNs to
determine the number of neurons in each ESN model and the
values of the recurrent weight matrix. Using these predictions,
each BS can determine the user association in both uplink and
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downlink. Simulation results have shown that, when compared
to the centralized ESN and deep learning algorithms, the
proposed approach achieves significant performance gains of
BIP.

APPENDIX

A. Proof of Theorem 1

Given the input stream vector m_; = [mq, ..., m¢_1, Mg,
the activations By in (10) of the reservoir neuron in ESN
model [ at time ¢ can be given by:

() __ .in in 2 in
Hj1 ¢ =W1,1Mt + WWNy, 1Mi—1 + W WNy, —1,1M—2
Ny —1_ in Ny in
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+ - tw WNy, 1T t—2Ny,
2Nw+1_ in
+w Wy —1,0Mt— 2Ny +1) T
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where w is an element of the recurrent matrix W which is
assumed to be equal for all of the ESN models. The output

weight matrix of each ESN model [ can be given by

out —1
Wl = Rl pk},l7

T
where R; = E ugl) (;é”) ] represents the covariance ma-

trix with ug ) = {Mglg, . ,Mg\l,)w t} and Pig = E\[uﬁl)mt_k}.
The element R; ;2 in R; can be calculated as follows
R; 12 =E [N(;)tuglz&]

i in 2 2 in in 2
=E[wY, w3, m; +w wNW w1, Mmi + e

+ w?Nw = 1)w2 Jws, mp_ (Nw ~1) + Ml z’wlznlm? Ny
+ o N T DRl lmff(2Nw71)
+ wN Wl lw;lmf 2Nw +---]

:UQ(wﬁnlwz L+ w? wNW lwl P R o T T lws l

2Ny 2(Nyy +1)
+w wy lw2l +w wNW,lwll + -

2(2N 1 ANw
+ w?CBNW gl ﬂU 1 tw w1,1w2,1+"')
2 2N
=0 E w WJ zw21+w wNW lw1z+
2(NW Do
+w ,lws,l)

T )
...1,1)) F2r0t2(w11r\lrw.u1,l)7
(28)

2 . . . . in _
where o< is the variance of the input signal my. wi, =, =

in in in in
[wNW’l,wwal,l, e wl,l} and roty (wNW

operator that rotates vector wi]‘\‘,
w

denote an

.1, by k place to the right.

in _ in in in
WnNy10) = U’szwjvw,lw-wwz,z]-

For example, rot; (
wNw 1) The element Ry ;; is given by:

F:diag(l,w,...,
2

o .
= m(mti(w%w...u

Ry ;; T

) Prot(wiy, 1.)-
(29)

Thus, R; = 1~ %xw Vi [?V) = %z A where A; =

VlTF 2v,. Similarly, based on (28), element py; ; is given by:

P11 =E [ﬂgimt k} = szkwi(l}\fw—k+1)modNW,l' (30)
We assume that Pry =
weight

(1 -

in — in
wg, = wpy,, - Hence,

Then, the
matrix of each ESN model [ is
wNW)ywh A roty (W, ).

The output of each ESN model [ at
can be given by z, = (ui))TW (1 -
w2k ()T A oty (wi ) and 2 = Y
Then, the covariance of the output with the k-slot delayed
input can be calculated by:

output

o2wkroty, (w‘l“_”NW .
out _
W =

time ¢

COV(Zt, mt,k)

Z w? MW )w"Cov ((ug >) mt_k) Aflrotk(wilnmNW’l)

=L(1 — w*"")w?*o? (rotk(
(@)

NWZ)) A[ ' rotk (W iy 1)

—~

L(]. _ wZNw) 2k 2<k7

(3D



where (a) is obtained from the fact that ( =

The
L 2
=1

w?Nw) w2k 52(;,, we have Var(z;) =

. T .
(rotu(wh_y,,.1)) A7 rot(wlh ) variance

of the output can be given by:

o

E [21,62p,t] -

Var(z;) = l

(32)

M=
Mh X Mm

1

1p
Since E [z 1214] = (1 —
L2(1 _ wQNW)w2k0_2Ck_

The memory capacity of the parallel ESN model can be
given by

i Cov(mi—k,2t)  Cov(my, zt)

Cov?(mi—, 2t) 1
M= Sottmenz) 1S5 Cotmcn) _ Con

« Var(mq)Var(zt) L

k=0 1=1 =1

1 & N | -~
=7 (=) w20 )Co

=1 k=0 =1

L Ny —1 oo
_1 Z(l — PN < Z w2ka> (szz\rwk>
L= k=0 k=0
L
— 23w g

(33)
where (a) is obtained from the fact that (o = (n,, and (b)
stems from the fact that wlszk =lask=1,..., Ny —1
and w?M (. = w?NW . This completes the proof.

B. Proof of Theorem 2

Let m_, = m¢_1,m;] be the input steam
vector and zt(l) be the output of ESN model /. Next, we
derive the memory capacity of a series ESN model using
an enumeration method. First, according to (27)-(32), we

[mla"'a

have Cov(z” mix) = (1 — w?¥w)w2ko2¢,. Given
the output of the first ESN model, z§1), which is the
input of the second ESN model, then Cov(zt(Q),mt_k) =
(1—w2NW)2w2k§k02. Similarly, we can obtain that
Cov(z,gg),mt_k) = (1—w2NW)3w2k’Ck02. Therefore, we
can conclude that Cov(zt(L),mt,k) = (1- wQNW)L w?F (.

Based on (34), the memory capacity of a series ESN can

be given by Y% (1 — w™ ) w2, — (1-w?™)" G

Then, the memory capacity of a series ESN is
M= Z( 2NW) kaCR_(l_WQNW)LCO
:( _ 2NW) szkck_(
W 2Ny —1
:(1 2NW) [Z w2ka+ Z wszk—Fm]

k= k=Ny,
. (1 w2 W ) L

o (5 )

w2 W
- (1 )
NW 1 ka(:k)L B Co— CO'WQNW>

—_(1_ 2NW
—w2Nw 1 — w2Nw
2N -

This completes the proof.

L
— W ) Co

NW -1 + szW) .
(34)

C. Proof of Theorem 3

The memory capacity of a single ESN with multiple inputs
is derived using an enumeration method. Consider K = 2,
then the input stream will be m_; = [m__1:,m o] where
M.t = Mkl ... Mit—2Mit—1ME:. Based on the proof of
Theorems 1 and 2, R can be given by:

01 + 2p120102 + 03 VT2

R = Vv
1 — w2Nw (35)
B O’l + 2p1201092 + 02 A,
- 1 — w2Nw

and pj, = w” (0% + 03) roty (V'1...). Then the output weight
matrix can be given by:

(1 — wQNW) wk (af + U%)

2 2
o{ + 2p120102 + 05

wou — A roty, (Vi v).-

(36)
The output at time ¢ is
t)T wou
(1 — w2NW) wk (O’% + 03) (
= mt

2 2
01 + 2[)12010’2 + 05

zt:(m

)T A roty, (Vi ).

(37)
The covariance of the output at time ¢ and ¢ — k is given by:

G‘% + O’%
2 2
oy + 2p120102 + 05

x Cov ((pt)T,mt_k) x A7'roty (Vi..n)

0'% + 2p120'10'2 + O'%
Based on (32), Var (z;) = Cov (z¢, m;_) . Then, the memory
capacity can be given by

Cov (z¢, my_i) = (1 — wQNW) wk

2Nw) ka



M

Similarly,
pacity

ey

Cov? (z¢, M)
Var (m) Var (z:)

i Cov* (z¢, m—k) 7
Var (m_1,) Var (z:)

> o

k=0

2
0'1 +02 2N
5 5 X (l—w W)
o{ 4+ 2p120102 + 05

Ny —1
2N
—w w)

% Z kaC ZTQiji(

o7 4 o2 2 Ny —1
1 2 2k 2N

= E w —(1—-wW
(U% + 2p120102 + 03 ) P G —( )

=

Cov (z¢, my)
0% 4 2p120102 + 03

Cov (z¢, my—k)
0% 4+ 2p120102 + 03

2 2
01 +0'2

2
= N —1—|—w2NW).
(U%+2p120102+05) ( w

the  memory
with  input
which is given
2

(38)
ca-
vector
by

we can formulate
the single ESN
[mlt; may, mgt],

of

a'1 +a’2+03

(U +20120102+2P130103+2P230203+02+0’

In consequence, the memory capacity of a single ESN with

input vector MMy

[miy,...,mg] can be given by

K 2
21100

(Zszl Zf:l PknOkOn

) (NW -1+ w2NW). This completes

the proof.
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