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Abstract—In this paper, the problem of enhancing the virtual
reality (VR) experience for wireless users is investigated by
minimizing the occurrence of breaks in presence (BIPs) that
can detach the users from their virtual world. To measure the
BIPs for wireless VR users, a novel model that jointly considers
the VR applications, transmission delay, VR video quality, and
users’ awareness of the virtual environment is proposed. In the
developed model, the base stations (BSs) transmit VR videos to
the wireless VR users using directional transmission links so as
to increase the data rate of VR users, thus, reducing the number
of BIPs for each user. Therefore, the mobility and orientation
of VR users must be considered when minimizing BIPs, since
the body movements of a VR user may result in blockage of its
wireless link. The BIP problem is formulated as an optimization
problem which jointly considers the predictions of users’ mobility
patterns, orientations, and their BS association. To predict the
orientation and mobility patterns of VR users, a distributed
learning algorithm based on the machine learning framework
of deep echo state networks (ESNs) is proposed. The proposed
algorithm uses concept from federated learning to enable multiple
BSs to locally train their deep ESNs using their collected data and
cooperatively build a learning model to predict the entire users’
mobility patterns and orientations. Using these predictions, the
user association policy that minimizes BIPs is derived. Simulation
results demonstrate that the developed algorithm reduces the
users’ BIPs by up to 16% and 26%, respectively, compared to
centralized ESN and deep learning algorithms.

I. INTRODUCTION

Deploying virtual reality (VR) applications over wireless
networks is an essential stepping stone towards flexible de-
ployment of pervasive VR applications [1]. However, to enable
a seamless and immersive wireless VR experience, it is
necessary to introduce novel wireless networking solutions
that can meet stringent quality-of-service (QoS) requirements
of VR applications in terms of delivering high data rates
and low latency. In wireless VR networks, the sudden data
rate reductions or large delay can negatively impact the
users’ VR experience (e.g., due to interruptions in VR video
streams). Due to such an interruption in the virtual world,
VR users will experience breaks in presence (BIPs) events
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that can be detrimental to their immersive VR experience.
While the fifth-generation (5G) new radio supports operation
at high frequency bands (with abundant bandwidth) as well
as flexible frame structure to minimize latency, performance
of communication links at high frequencies is highly prone to
blockage. That is, if an object blocks the wireless link between
the BS and a VR user, the data rate can drop significantly and
lead to a BIP. In addition to wireless factors such as delay and
data rate, behavioral metrics related to each VR user such as
the user’s awareness can also affect BIPs. Here, awareness is
defined as each wireless VR user’s perceptions and actions in
its individual VR environment. For instance, a user might be
too sensitive to slight variations in VR video quality changes,
while another user might be more tolerant. Therefore, to
minimize the BIPs of VR users, it is necessary to jointly
consider all of the wireless environment and user-specific
metrics that cause BIPs, such as link blockage, user mobility,
user orientation, user association, and user awareness.

Recently, several works have studied a number of problems
related to wireless VR networks [2]-[5]. In [2], the authors
develop a framework for mobile VR delivery to alleviate
the traffic burden over wireless networks. The authors in [3]
study the problem of supporting visual and haptic perceptions
over wireless cellular networks. The work in [4] proposes
a concrete measure for the delay perception of VR users.
Our previous works in [5] studied the problems of resource
allocation and 360° content transmission for wireless VR
users. However, most of these existing works do not provide a
comprehensive BIP model that accounts for the transmission
delay, the quality of VR videos, VR applications, and user
awareness. Moreover, the prior art in [2]-[5] does not jointly
consider the impact of the users’ body movements when using
mmWave communications with highly directional links to
support high data rates for VR video transmissions.

To address this challenge, machine learning techniques [6]
can be used to predict the users’ movements and proactively
determine the user associations that can minimize BIPs. How-
ever, the existing works for user movement predictions focus
on scenarios where users are not mobile, and hence, user
association does not change with time. Hence, the data for
each VR user’s movement can be collected by its associated
BS. In contrast, in real mobile VR scenarios, users will move
and change their association and the data related to the users’
movement is dispersed across multiple BSs. The BSs may



not be able to transmit all of their collected data on the
users’ movements to each other, due to the high overhead of
data transmission. Moreover, sending all the information to a
centralized processing server will cause very large latencies
that cannot be tolerated by VR applications. Thus, centralized
machine learning algorithms will not be useful to predict real-
time movements of the VR users. To this end, a distributed
learning framework that can be trained by the collected data
at each BS and cooperatively build a learning model that can
predict the entire users’ mobility and orientations is needed.

The key contribution of this work is to develop a novel
framework for minimizing BIPs within VR applications that
operate over wireless networks. To our best knowledge, this
paper is the first to analyzes how a wireless network with
distributed learning can minimize BIP for VR users and
enhance their virtual world experience. For wireless VR users,
we mathematically model the BIP that jointly considers VR
applications, the delay of VR video and tracking information
transmission, VR video quality, and the users’ awareness. To
minimize the BIP of wireless VR users, we develop a federated
echo state network (ESN) learning algorithm that enables BSs
to locally train their machine learning algorithms using the
data collected from the users’ locations and orientations. Then,
the BSs can cooperatively build a learning model by sharing
their trained models to predict the users’ mobility patterns
and orientations. Based on these predictions, we perform
fundamental analysis to find an efficient user association for
each VR user that minimizes the BIPs. Simulation results
demonstrate that our proposed algorithm can achieve, respec-
tively, 16% and 26% gains in terms of total BIPs compared
to the centralized ESN and deep learning algorithm in [7].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network that consists of a set 3 of B BSs
that service a set i/ of U VR users. In this model, BSs act as
VR controllers that can collect the tracking information related
to the users’ movements via VR sensors and use the collected
data to generate the VR videos for their associated users. In
particular, the uplink is used to transmit tracking information
such as users’ locations and orientations from the VR devices
to the BSs, while the downlink is used to transmit VR videos
from BSs to VR users. For user association, the VR users
can associate with different BSs for uplink and downlink data
transmissions. We consider practical scenarios when the type
of VR application can depend on the location of the user. For
example, a given user that works in a lab may use certain VR
applications for training or research purposes, while using the
VR device for entertainment at home. This information will
be used by BSs to predict users’ locations and orientations
and proactively determine efficient user associations.

A. Transmission Model

We consider both uplink and downlink transmission links
between BSs and VR users. The VR users can operate at
both mmWave and sub-6 GHz frequencies. The VR videos
are transmitted from BSs to VR users over the 28 GHz band.
Meanwhile, the tracking information is transmitted from VR
devices to their associated BSs over a sub-6 GHz frequency

band [8]. This is due to the fact that sub-6 GHz frequencies
with limited bandwidth cannot support the large data rates
required for VR video transmissions. However, it can provide
reliable communications for sending small data sized users’
tracking information. Next, we first introduce the transmission
of the users’ tracking information in the uplink. Then, we
specify the VR video transmission via downlink mmWave
links.

1) Uplink Transmissions of User Tracking Information: Let
(24t,yir) be the Cartesian coordinates for the location of user
7 at time t and S be the data size of each user’s tracking
information, including location and orientation. S depends
on the VR system. The rate for transmitting the tracking
information from VR user i to BS j is:
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where FUL is the total uplink bandwidth of each BS j which
is assumed to be equal for all BSs, U JUL represents the number
of VR users associated with BS j over uplink, ¢/; is the set of
VR users associated with BS j, P, is the transmit power of
each VR user (assumed equal for all users), g;; is the Rayleigh
fading channel gain, d;; is the distance between VR user ¢ and
BS j at time ¢, and p? is the noise power.

2) Downlink VR Video Transmission: In downlink, antenna
arrays are deployed at BSs to perform directional beamforming
over the mmWave frequency band. For simplicity, a sectored
antenna model [9] is used to approximate the actual array
beam patterns. This simplified antenna model consists of
four parameters: the half-power beamwidth ¢, the boresight
direction 6, the antenna gain of the mainlobe (), and the
antenna gain of the sidelobe ¢. Let ¢;; be the phase from
BS j to VR user 7. The antenna gain of the transmission link
from BS j to user ¢ is:

GijZ{

Since the VR device is located in front of the VR user’s
head, the mmWave link will be blocked, if the user rotates. Let
X4+ be the orientation of user ¢ at time ¢ and 1) be the maximum
angle using which BS j can directly transmit VR videos to a
user without any human body blockage. ¢ ; denotes the phase
from user ¢ to BS j. For user 7, the blockage effect caused by
its own body can be given by:
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bi (xit) = {
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We assume that each VR user’s body constitutes a single
blockage area and n;;; represents the number of VR users
located between user 7 and BS 7 at time ¢. If there are no users
located between user ¢ and BS j that block the mmWave link,
(bi (xit)+nij = 0), the communication link between user ¢ and
BS j is line-of-sight (LoS). If the mmWave link between user
¢ and BS j is blocked by the user i’s own body (b; (xit) = 1)
or blocked by other users located between user ¢ and BS j
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(n;; > 0), the communication link between user 7z and BS j
is said to be non-line-of-sight (NLoS).

Considering path loss and shadowing effects, the path loss
for a LoS link and a NLoS link between VR user 7 and BS j
in dB will be given by [9]:
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where Ly = 20 log (d"f 64”) is the free space path loss. Here,

d represents the reference distance, f, is the carrier frequency
and v is the light speed. xLos and xnrLos represent the path loss
exponents for the LoS and NLoS links, respectively. 1.5, , and
Mowes Tepresent Gaussian random variables with zero mean,
respectively. 01,5 and onpos represent the standard deviations
for LoS and NLoS links in dB, respectively. The downlink
data rate of VR video transmission from BS j to user ¢ is:
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where FPL is the bandwidth allocated to each user and Pg is
the transmit power of each BS j.

B. Break in Presence Model

In a VR application, the notion of a BIP represents an event
that leads VR users to realize that they are in a fictitious, vir-
tual environment, thus ruining their immersive experience. In
other words, a BIP event transitions a user from the immersive
virtual world to the real world [10]. For wired VR, BIP can
be caused by various factors such as hitting the walls/ceiling,
loss of tracking with the device, or talking to another person
from the real world [10]. For wireless VR, BIP can be also
caused by the delay of VR video and tracking information
transmission, the quality of the VR videos received by the
VR users, and the inaccurate tracking information received by
BSs.

To model such BIPs, we jointly consider the de-
lay of VR video and tracking information transmission
and the quality of VR videos. We first define a vector
Ly (CB-L (it, Yie, bi (Xat) s nij)) = [line, - - - ling 4] that rep-
resents a VR video that user 7 received at time ¢ with {;;; €
{0,1}. Iz = O indicates that pixel k is not successfully
received by user ¢, and [;; ; = 1, otherwise. We also define a
vector my;; (Ga) = Mg, -, miNL,t]T that represents the
weight of the importance of each pixel constructing a VR
video, where m;i, ; € [0,1] and G 4 represents a VR applica-
tion such as an immersive VR game or a VR video. m;;,; = 1
indicates that pixel & is one of the most important elements
for the generation of GG 4. Here, in each VR application G 4, a
number of pixels can be compressed at the BS and recovered
by the user. Hence, the pixels that can be compressed by the
BSs not important. However, some of the pixels cannot be
compressed by the BS and, hence, they need to transmit to the

VR users. Therefore, each pixel will have different importance
and m;i ¢ € [0,1]. Then, the BIP of VR user 4 caused by the
wireless transmission will be given by:
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where 1y, = 1 as x is true, 1y,; = 0, otherwise.
Ly Vg, =1asyorxistrue, 1y VI, =0, otherwise.
aly = |ayly, ..., a5, | is a vector that represents user i’s

uplink association with ayl, € {0,1} and Z agry = L.

Similarly, a;; = [a?lLt, o, abk J is a vector that repre-

sents user i’s downhnk association with azkt € {0,1} and

> alkt = 1. yp and g represent the target delay and
keB

video quality requirements, respectively. In (7), m
represents the time used for tracking information transmission
from user ¢ to BS j. D(tie D(L i (ia,yin biio) mik) )) represents

eir (@it yiesbi (xat),min)

the transmission latency for sending the tracking information
from BS £ to user 7. For simplicity, hereinafter, P} is referred
as P (i, yit, Xit» aty, aly). (7) shows that if the delay of
VR video and tracking 1nf0rmat10n transmission exceeds the
target delay threshold allowed by VR systems or the quality
of VR video cannot meet the video requirement, users will
experience a BIP (PX:l). From (7), we can also see that, the
BIP of user ¢ caused by wireless transmission depends on user
1’s location, orientation, VR applications, and user association.
(7) represents the BIP caused by wireless networking factors
such as transmission delay and video quality. Next, we show
the BIP model that jointly considers wireless transmission, the
VR applications, and the users awareness. The BIP of user
can be given by [11]:
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where ¢€; is the user i’s awareness measured by VR users,
€G4li 18 joint effect caused by user i’s awareness and VR
application G4, and ep is a random effect. €;, €5 Alis and
ep follow the Gaussian distribution [11] with zero mean and

variances o7, 0, ;> and a%, respectively. In (8), the value of

Pi (zit, yit, Ga,s Xit, @ ayy, ap %) quantifies the average number

of BIPs that user ¢ can 1dent1fy during a period. From (8), we
can see that as the VR application for user ¢ changes, the value
of BIP will change. For example, a given user watching VR
videos will experience fewer BIPs compared to a user engaged
in an immersive first-person shooting game. This is due to the
fact that in an immersive game environment, users are fully
engaged with the virtual environment, as opposed to some VR
applications that require the user to only watch VR videos.
In (8), we can also see that the BIPs depend on the users’
awareness. This means that different users will have different
actions and perceptions when they interact with the virtual



environment and, hence, different VR users may experience
different levels of BIP.

C. Problem Formulation

From (8), we can see that the BIP of each user depends
on the user’s locations and orientations as well as its associ-
ations. Using an effective learning algorithm to predict users’
locations and orientations, BSs can proactively determine
the users’ association to improve the downlink and uplink
data rates and minimize BIP for each VR user. The BIP
minimization problem can be given as follows:

: A ~ o UL DL
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fit-,??it-,)%it-,agf“ty%,t icu
s.t. U; <V, VjeB, (%a)
agl, €{0,1}, Viel,VjebB, (9b)
apl, €{0,1}, VielU,vje B, ¢
D=1 vied (9d)
%S alh, =1, Viel, (%)

where T4, y;, and x;; are the predicted locations and ori-
entation of user ¢ at time ¢. U; is the number of VR users
associated with BS j over downlink and V' is the maximum
number of users that can be associated with each BS. (9b) and
(9d) show that each user can associate with only one uplink
BS while (9¢) and (9e) indicate that each user can associate
with only one BS at downlink. From (9), we can see that
the BIPs of each user will depend on the user association as
well as the users’ locations and orientations. Meanwhile, the
user association depends on the locations and orientations of
the VR users. As the users’ locations and orientations will
continuously change as time elapses, BSs must proactively
determine the user association to reduce the BIPs of VR
users. Hence, it is necessary to introduce a learning algorithm
to predict the users’ locations and orientations in order to
determine the user association and minimize BIPs of VR users.

III. FEDERATED ECHO STATE LEARNING FOR
PREDICTIONS OF THE USERS’ LOCATION AND
ORIENTATION

Federated learning is a decentralized learning algorithm
[12] that can operate by using training datasets that are
distributed across multiple devices (e.g., BSs), instead of being
centralized at one location or device [13]. For our system,
one key advantage of federated learning is that it can allow
multiple BSs to locally train their ESNs using their collected
data and cooperatively build a learning model by sharing
their locally trained models. Compared to existing federated
learning algorithms [13] that use matrices to record the users’
behavior and cannot analyze the correlation of the users’
behavior data, we propose an ESN-based federated learning
algorithm that can use an ESN to efficiently analyze the data
related to the users’ mobility and orientation since an ESN
that is a recurrent neural network is good at analyzing time-
related data. Moreover, ESNs only need to train an output
weight matrix, hence, they reduce the training complexity of

the federated learning algorithms. Next, we first introduce
the components of the federated ESN learning model. Then,
we explain the entire procedure of using our federated ESN
learning algorithm to predict the users’ mobility patterns and
and orientation.

A. Components of Federated ESN Learning Algorithm

A federated ESN learning algorithm consists of four compo-
nents: a) agents, b) input, c) output, and d) local ESN model,
which are specified as follows:

o Agent: In our system, each BS j must implement at most
U learning algorithms.

e Input: The input of the federated ESN learning algorithm
that is implemented by BS j for the predictions of each
VR user i is defined by a vector @;; = [@j1,- - , :cij_,T]T
that represents the information related to user ¢’s mo-
bility and orientation where ®;;; = [Eij1.t5- -5 &ijN, 1)
represents user ¢’s information related to mobility and
orientation at time ¢. This information includes user 7’s
locations, orientations, VR applications, and the time
that user ¢ associates with BS j. N, is the number
of properties that constitute a vector x;;. The input
of the proposed algorithm will be combined with the
ESN model to predict users’ orientation and mobility
patterns. BSs will use these predictions to determine user
associations.

e Output: For each user i, the output of the federated
ESN learning algorithm at BS j is a vector y,,,
[@ijis1>-- > Yijery ) of user i’s locations and orienta-
tions where ¥y 1 = [Tittk, Yit+ ks Xit+k] With Ty
and y;4+, being the predicted location coordinates of user
1 at time t + k and Y,y being the estimated orientation
of user 7 at ¢t + k. Y is the number of future time slots
that a federated ESN learning algorithm can predict. The
predictions of the locations and orientations can be used
to determine the user’s association.

e Local ESN model: For each BS j, a local ESN model is
used to build the relationship between the input of all BSs
and the predictions of the users’ mobility and orientation.
The local ESN model consists of the input weight matrix
Wi € RNwXT | recurrent matrix W; € RNwxNw,
and the output weight matrix W§" € RY *(Nw+T)
The values of Wi;‘ and W are generated randomly.
However, the output weight matrix W§" need to be
trained according to the inputs of all BSs. A parallel ESN
model in which the ESNs are connected in series is used
for the proposed algorithm.

B. ESN Based Federated Learning Algorithm for Users’ Lo-
cation and Orientation Predictions

Next, we introduce the entire procedure of training the pro-
posed ESN-based federated learning algorithm. Our purpose
of training ESN is to find an optimal output weight matrix
in order to accurately predict the users’ mobility patterns and
orientations.

To introduce the training process, we first explain the ESN
neuron state. The neuron states of the proposed algorithm



implemented by BS j for the predictions of user ¢ are:

Bie =W, 1+ Wijnmz'j,t- (10)

Based on the states of neurons and the inputs, the ESN can
estimate the output, which is:

Lij.t ]
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From (11), we can see that to enable an ESN to predict the
users’ mobility patterns and orientations, we only need to
adjust the value of the output weight matrix. However, each
BS can collect only partial data for each user and, hence, we
need to use a distributed learning algorithm to train the ESNs.
To introduce the distributed learning algorithm, we first define
two matrices which are given by:

Hj1

(1)

Lij,1

H; = and E; = [eij,lv--'veiijL

Lij T HjT
where e;;; is the desired locations and orientations of each

VR user, given the ESN input x;; ;. Then, the training purpose
can be given as follows:

Z HWOULHT

(12) is used to find the optimal output weight matrix W
according to which the BSs can predict the entire users’
locations and orientations without the knowledge of the users’
data collected by other BSs. From (12), we can see that, each
BS j needs to adjust its output weight matrix W5" and find
the optimal output weight matrix W*"'. The update of W"
is given by:

out _
Wi =
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where ¢ is the learning rate and W' is the optimal output
weight matrix that the ESN model of each BS needs to find.
From (13), we can see that O“t +11 18 the output weight matrix
that is generated at BS j. W;’”t 1 can only be used to predict
partial mobility patterns and orientations given the users’ data
collected by BS j. W%, | is different from the output weight
matrices of other BSs The optlmal output weight matrix is:

BoW,, + Bry

win = PR s
where Wt 41 and ni’i‘l can be calculated as follows:
oul 1 &
W= B Z Wi, = B Z"j,t- (15)
j=1

In (13), n; ¢+ is the deviation between the output weight matrix

W%, of each BS j and the optimal output weight matrix

¢4, that the ESN model of each BS needs to converge,

which is given by:

n],t-i-l - n],t + Y (W;)utIJrl W(gqull) . (16)

Algorithm 1 Federated ESN learning algorithm for mobility
and orientation predictions

Input: Training data set (local), x;;.

Initialization: Each BS j generates the ESN model for each user including
W‘]?1 (local), W ; (global), and W‘}“‘ (local).

1: Obtain the matrices H ; and E; based on (10).

2: for time ¢ do

3:  Compute W§u£+1 using (13).

4 Calculate Wi +1 and 7" based on (15).

5: Calculate W', based on (14).

6: Compute 7 141 based on (16).

7.

8

9

Compute |7, 141 and ||s;,.|].
: If|lrjeqn]] < va or |[sj¢]] < va, the algorithm converges.
: end for

?”Jr‘l is the global optimal output weight matrix that can be

used to predict the entire mobility patterns and orientations of
a given user. This means that using W7 +1, each BS can predict
the entire user’s mobility patterns and orientations as the BS
only collects partial data related to the user’s mobility and
orientations. As time elapses, Om ++1 will finally converge
to Wii,. In consequence, all of BSs can predict the entire
mobility patterns and orientations of each user. To measure
the convergence, we define two vectors which can be given
by Tt Woul Wout and sji = Wout _ oul As
[lrje41]] < 7va or Hsjt|| < 74, the proposed algorlthm
converges. As the learning algorithm converges, each BS can
use its own ESN to predict the entire mobility and orientation
of each VR user. According to these predictions, BSs can
determine the user association to minimize the BIPs of VR
users. Algorithm 1 summarizes the entire process of using
ESN based federated learning algorithm for the predictions
of the users’ mobility patterns and orientations. Based on the
predictions of the users’ orientations and mobility patterns, we
can use a reinforcement learning algorithm given in [14] to find
a sub-optimal solution. The reinforcement learning algorithms
can learn the VR users state and exploit different actions to
adapt the user association according to the the predictions of
the users’ mobility and orientation. After the learning step,
each BS will find a sub-optimal user association.

IV. SIMULATION RESULTS

For our simulations, we consider a circular area with radius
r = 500 m, U = 20 wireless VR users, and B = 5
BSs distributed uniformly. The orientation data is collected
from a first-person shooter game at the Youtube Website. In
particular, we record the users’ orientations from 25 videos of
the first-person shooter VR game. For comparison purposes,
we consider the deep learning algorithm in [7] and the ESN
algorithm in [15], as two baseline schemes. All statistical
results are averaged over a large number of independent runs.

Fig. 1 show the predictions of the VR users’ orientations
as time elapses. To simplify the model training, the collected
data related to orientations are mapped to [—0.5,0.5]. From
Fig. 1, we observe that the proposed algorithm can predict the
users’ orientations more accurately than the centralized ESN
and deep learning algorithms. Figs. 1(b) and 1(c) also show
that the prediction error mainly occur at time slot 8 to 12.
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Fig. 2. Total BIPs experienced by VR users as the number of BSs varies.

This is due to the fact that the proposed algorithm can build a
learning model that predicts the entire mobility and orientation
of each user. In particular, the output weight matrices of all
ESN algorithms implemented by each BS will converge to a
common matrix. Hence, BSs can predict the entire mobility
and orientations of each VR user.

Fig. 2 shows how the total BIP of all VR users changes
as the number of BSs varies. From Fig. 2, we can see that,
as the number of BSs increases, the total BIP of all VR users
decreases. That is because as the number of BSs increases, the
VR users have more connection options. Hence, the blockage
caused by human bodies will be less severe, thereby improving
the data rates of VR users. Fig. 2 also shows that the proposed
algorithm can achieve up to 16% and 26% reduction in the
number of BIPs, respectively, compared to centralized ESN
algorithm and deep learning algorithm for a network with 9
BSs. These gains stem from the fact that the centralized ESN
and deep learning algorithms can partially predict the mobility
and orientation of each VR user as they rely only on the local
data collected by a BS. In contrast, the proposed algorithm
facilitates cooperation among BSs to build a learning model
that can predict the entire users’ mobility and orientations.

V. CONCLUSION

In this paper, we have developed a novel framework for
minimizing BIPs within VR applications that operate over
wireless networks. To this end, we have developed a BIP
model that jointly considers the VR applications, transmis-
sion delay, VR video quality, and the user’s awareness. We
have then formulated an optimization problem that seeks to
minimize the BIP of VR users by predicting users’ mobility

) - (d) o .
Fig. 1. Predictions of the VR users’ orientations as time elapses.
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and orientation, as well as determining the user association.
To solve this problem, we have developed a novel federated
learning algorithm based on echo state networks. The proposed
federated ESN algorithm enables the BSs to train their ESN
with their locally collected data and share these models to
build a global learning model that can predict the entire
mobility pattern and orientations of each VR user. Using these
predictions, each BS can determine the user association in both
uplink and downlink. Simulation results have shown that, when
compared to the centralized ESN and deep learning algorithms,
the federated ESN approach achieves significant performance
gains in terms of BIPs.
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