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Abstract—In this paper, the problem of training federated
learning (FL) algorithms over a realistic wireless network is
studied. In particular, in the considered model, wireless users
perform an FL algorithm that trains their local FL. models using
their own data and send the trained local FL models to a base
station (BS) that will generate a global FL. model and send it
back to the users. Since all training parameters are transmitted
over wireless links, the quality of the training will be affected by
wireless factors such as packet errors and availability of wireless
resources. Meanwhile, due to the limited wireless bandwidth, the
BS must select an appropriate subset of users to execute the FL
learning algorithm so as to build a global FL. model accurately.
This joint learning, wireless resource allocation, and user selection
problem is formulated as an optimization problem whose goal is to
minimize an FL loss function that captures the performance of the
FL algorithm. To address this problem, a closed-form expression
for the expected convergence rate of the FL algorithm is first
derived to quantify the impact of wireless factors on FL. Then,
based on the expected convergence rate of the FL algorithm, the
optimal transmit power for each user is derived, under a given
user selection and uplink resource block (RB) allocation scheme.
Finally, the user selection and uplink RB allocation is optimized
so as to minimize the FL loss function. Simulation results show
that the proposed joint federated learning and communication
framework can reduce the FL loss function value by up to 10%
and 16%, respectively, compared to 1) an optimal user selection
algorithm with random resource allocation and 2) a random user
selection and resource allocation algorithm.

I. INTRODUCTION

Federated learning (FL) has been recently proposed by
Google [1] as an effective approach to perform distributed ma-
chine learning tasks without relying on a centralized datacenter.
FL is, in essence, a distributed machine learning algorithm that
enables users to collaboratively learn a shared prediction model
while keeping their collected data on their devices. However,
to train an FL algorithm in a distributed manner, the users must
transmit their training parameters over wireless links which can
introduce training errors, due to the limited wireless resources
and the inherent unreliability of wireless links.
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Recently, a number of existing works such as in [1]-[5] have
studied important problems related to the implementation of
FL over wireless networks. In [1], the authors developed two
update methods to reduce the uplink communication costs. The
authors in [2] conducted an extensive empirical evaluation for
five different FL models using four datasets. An echo state
network-based FL algorithm is developed in [3] to optimize
wireless virtual reality networks. In [4], the authors proposed
a novel FL algorithm that can minimize the communication
cost. The work in [5] exposed to potential of edge FL in
wireless networks. While interesting, these prior works [1]—
[5] assumed that wireless networks can readily integrate FL
algorithms. However, in practice, due to the unreliability of the
wireless channels and to the wireless resource limitations, FL
algorithms will encounter training errors. For example, symbol
errors introduced by the unreliable nature of the wireless
channel and by resource limitations can impact the quality and
correctness of the FL updates among users. Such errors will,
in turn, affect the prediction performance of FL algorithms, as
well as their convergence speed. Moreover, due to the wireless
bandwidth limitations, the number of users can perform FL
is limited; a design issue that is ignored in [1]-[4]. Hence,
in practice, to effectively deploy FL over real-world wireless
networks, it is necessary to investigate how the wireless factors
affect the performance of FL algorithms.

The main contribution of this work is a novel framework for
implementing FL algorithms over wireless networks by jointly
considering FL and wireless metrics and factors. To our best
knowledge, this is the first work that provides a fundamental
connection between the performance of FL algorithms and
the underlying wireless network. To this end, we propose a
novel FL model in which cellular-connected wireless users
transmit their locally trained FL models to a base station
(BS) that generates the global FL. model and sends it back
to the users. For the considered FL. model, the bandwidth of
uplink is limited and, hence, the BS needs to select appropriate
users to execute the FL algorithms so as to minimize the FL
loss function. In addition, the impact of the packet errors on
the parameter update process of the FL. model is explicitly
considered. To minimize training errors due to wireless links,
we formulate a joint resource allocation and user selection
problem for FL as an optimization problem whose goal is to
minimize the value of the FL loss function while meeting the
delay and energy consumption requirements of executing FL.
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Fig. 1. The architecture of a wireless network that performs an FL algorithm.

Hence, our framework jointly considers learning and wireless
networking metrics. To solve this problem, we first derive a
closed-form expression for the expected convergence rate of the
FL algorithm so as to build the relationship between the packet
error rates and the performance of the FL algorithm. Based on
this relationship, the optimization problem can be simplified
as an mixed-integer nonlinear programming problem. To solve
this simplified problem, we first find the optimal transmit
power under given user selection and RB allocation. Then, we
transform the original optimization problem into a bipartite
matching problem. Finally, a Hungarian algorithm is used to
find the optimal user selection and RB allocation.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section II.
The expected convergence rate of FL algorithms is studied in
Section III. The optimal resource allocation and user selection
are determined in Section I'V. Simulation results are analyzed
in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network having one base station (BS) and
a set U of U users that cooperatively perform an FL algorithm
for data analysis and inference (e.g., to generate radio maps
using distributed datasets). FL enables the BS and the users to
collaboratively learn a shared learning model while keeping all
the training data at the device of each user. In an FL algorithm,
each user will use its collected training data to train an FL
model. Hereinafter, the FLL model that is trained at the device
of each user (using the data collected by the user itself) is
called the local FL model. The BS is used to integrate the
local FL models and generate a shared FL. model. This shared
FL model is used to improve the local FL model of each user
so as to enable the users to collaboratively perform a learning
task without training data transfer. Hereinafter, the FL. model
that is generated by the BS using the local FL. models of the
users is called the global FL model. As shown in Fig. 1, the
uplink from the users to the BS is used to transmit the local
FL model parameters while the downlink is used to transmit
the global FL. model.

A. Machine Learning Model

In our model, each user 7 collects a matrix X; =
[€i1,...,@ik,] of input data where K; is the number of
the samples collected by each user ¢ and each element x;x
is the FL algorithm’s input vector. Let y;; be the output

of x;;. For simplicity, we consider an FL algorithm with a
single output, which can be readily generalized to a case with
multiple outputs [1]. The output data vector for training the
FL algorithm of user ¢ is y; = [yi1, - - - , Yix,]- We assume that
the data collected by each user @ is different from the other
users, i.e., (x; # ®n,1 # n,i,n € U ). We define a vector w;
to capture the parameters related to the local FL model that
is trained by X; and y,. w; determines the local FL. model
of each user i. For example, in a linear regression learning
algorithm, @, w; represents the output and w; determines the
prediction accuracy. The training process of an FL algorithm
is done in a way to solve:

U K
o, L KZZf (Wi, @ik, Yir), (1

""" i=1 k=1
st.wl_wg— =wy =g, YielU, (la)

where K = 3 K is total size of training data of all users. g is

the global Fi inodel generated by the BS and f (w;, @ik, yir)
is a loss function that captures the FL prediction accuracy.
Different FL algorithms use different loss functions [6]. For
example, for a linear regress10n FL the loss function is
f(wi, @i, yie) = 5 (@hw; — yzk) (la) is used to ensure
that, once the FL algorithm converges, all of the users and the
BS will share the same FL model. To solve (1), the BS will
transmit the parameters g of the global FL model to its users
so that they train their local FL models. Then, the users will
transmit their local FL. models to the BS to update the global
FL model. The update of each user ¢’s local FL. model w;
depends on the global model g while the update of the global
model g depends on all users’ local FL. models. The update
of the local FL model w; depends on the learning algorithm.
For example, one can use gradient descent or randomized
coordinate descent [1] to update the local FL. model. The
update of the global model g is given by [1]:

U
9= ZKwZ )

Due to wireless transmiss10ns, the local FL. models received by
the BS may contain erroneous symbols that affect the update of
the global FL model and the FL learning performance. Hence,
the wireless transmission delay will significantly affect the FL.
convergence. Hence, to deploy FL over wireless network, one
must jointly consider the wireless and learning performance.

B. Transmission Model

For uplink, we assume that an orthogonal frequency-division
multiple access (OFDMA) technique in which each user oc-
cupies one RB. The uplink rate of user ¢ transmitting its local
FL parameters to the BS is given by:

R
= Z mmBUlog2 1+

n=1

Pih;
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ri,r] is an RB allocation vector with R

¢ (ri, P)

where r; = [7’1'_,1, cee
R
being the total number of RBs, r;, € {0,1} and > 7, = 1;

n=1
r;,n = 1 indicates that RB n is allocated to user 7, and r; ,, = 0,



otherwise; U], represents the set of users that are located at the
other service areas and transmit data over RB n; BY is the
bandwidth of each RB and F; is the transmit power of user i; h;
is the channel gain between user 7 and the BS; Ny is the noise
power spectral density; > P h; is the interference caused
ireu;,
by the users that are located ‘at the other service areas and use
the same RB. Note that, although we ignore the optimization
of resource allocation for the users located at the other service
areas, we must consider the interference caused by the users
using the same RBs, since this interference may significantly
affect the packet error rates and the performance of FL.
Similarly, the downlink data rate of the BS transmitting the
parameters of global FL model to each user ¢ is given by:

Pgh;

Z PBhij + BP N, ’
JjeEB’
where BP is the bandwidth that the BS used to broadcast the
global FL model to each user ¢; Pp is the transmit power of
the BS; B’ is the set of other BSs that cause interference to
the BS that performs the FL algorithm; h;; is the channel gain
between user ¢ and BS j.

The transmission delay between user ¢ and the BS over both
uplink and downlink will be:

Z (w;) D (D Z(g)
D (gD} —
TRy ) = @y
where function Z (w;) is the data size of w,; and Z (g) is the

data size of the parameters related to the global FL. model.
Here, Z (w;) and Z (g) are determined by FL algorithm type.

= BPlog, |1+

“)

I (ri, Py) =
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C. Packet Error Rates

For simplicity, each local FL model w; is considered as
a single packet for uplink transmission. A cyclic redundancy
check (CRC) mechanism [7] is used to check the data errors in
the received local FL models at the BS. In particular, C' (w;) =
0 indicates that the local FL. model received by the BS contains
data errors; otherwise, we have C (w,;) = 1. The packet error
rate experienced by the transmission of each local FL model
w; to the BS is [8]:

R
qi (ri, Pi) = Z TinQin; (6)
n=1
m< > Pi/hi/-i—BUNo)
where ¢;, = | 1 —exp | — = is the

Pih;

packet error rate over RB n with m being a waterfall threshold.
We assume that, when the received local FL model contains
errors, the BS will not use it for the update of the global
FL model. We also assume that the BS will not ask the
corresponding users to resend the local FL. models when the
received local FLL models contain data errors. As a result, the
global FL. model in (2) can be given by:

g(a,P,R) = , @)
Z Kia; ( 1)

where a = [a1, . . ., ay] is the vector of the user selection index
with a; = 1 indicating that user ¢ performs the FL algorithm
and a; = 0, otherwise, R = [ry,--- ,ry], P =[Py, -+, Pyl,

Z Kia;
Wthh depends on the user selection vector a and packet
transmission C' (w;), K;w;C (w;) = 0 indicates that the local
FL model of user i contains data errors and, hence, the BS
will not use it to generate the global FL. model, g (a, P, R) is
the global FLL model that explicitly incorporates the effect of
wireless transmission.

C'(w;) is the total number of training data samples,

D. Energy Consumption Model

In our network, the energy consumption of each user consists
of the energy needed for two purposes: a) Transmission of the
local FL model and b) Training of the local FL. model. The
energy consumption of each user ¢ is given by [9]:

ei (ri, P) = swi9*Z (X)) + Pl (ri, P) (8)

where ¢ is the frequency of the central processing unit (CPU)
clock of each user 7, w; is the number of CPU cycles required
for computing per bit data of user ¢, and ¢ is the energy
consumption coefficient depending on the chip of each user
i’s device [9]. In (8), sw;¥%Z (X) is the energy consumption
of user ¢ training the local FL. model at its own device and
P;lY (r;, P;) represents the energy consumption of local FL
model transmission from user ¢ to the BS.

E. Problem Formulation

To jointly design the wireless network and the FL algorithm,
we now formulate an optimization problem whose goal is to
minimize the loss function of an FL algorithm by optimizing
the various wireless parameters, as follows:

U K;

a{l};%f;l;f (a, P, R), ik, yir) ©9)
s.t.a;,rin €{0,1}, VieUn=1,...,R, (9a)

R
> Tin =ai, ViU, (9b)

n=1
W(ry,P)+1° <~r, Viel, (9¢)
€ (Tia Pl) S YE, Vi € Z/{7 (9d)
Srin<l,Vn=1,...,R, (9e)

ieu
OSPZSPIH&X’ VZGU, (9D

where 7 is the delay requirement for implementing the FL
algorithm, ~g is the energy consumption of the FL algorithm,
and B is the total downlink bandwidth. (9a) and (9b) indicates
that each user can occupy only one RB for uplink data trans-
mission. (9c¢) is the delay needed to execute the FL algorithm.
(9d) is the energy consumption requirement of performing
an FL algorithm. (9e) indicates that each uplink RB can be
allocated to at most one user. (9f) is a maximum transmit power
constraint.

From (6) and (7), we see that the transmit power and re-
source allocation determine the packet error rate, thus affecting
the update of the global FL models. In consequence, the loss



function of the FL algorithm in (9) depends on the resource
allocation and transmit power. Moreover, (9c) shows that, in
order to perform an FL algorithm, the users must satisfy a
specific delay requirement. In particular, in an FL algorithm,
the BS must wait to receive the local model of each user before
updating its global FL model. Hence, transmission delay plays
a key role in the FL performance. In a practical FL algorithm, it
is desirable that all users transmit their local FL models to the
BS simultaneously. From (9d), we see that to perform the FL.
algorithm, a given user must have enough energy to transmit
and update the local FL model throughout the FL iterative
process. If this given user does not have enough energy, the
BS cannot choose this user to participate in the FL process.
In consequence, to implement an FL algorithm, the wireless
network must provide low energy consumption and latency,
and high reliability data transmission.

III. ANALYSIS OF GLOBAL FL MODEL

To solve (9), we first need to analyze how the packet error
rate affects the performance of the FL. To find the relationship
between the packet error rates and the FL performance, we
must first analyze the expected convergence rate of the FL.

In the studied network, the users adopt a standard gradient
descent method to update their local FL. models as done in [1].
Therefore, during the training process, the update of user i’s
local FL model w; at time ¢ is given by:

K.
)\ k2

w1 =g, (a, P, R) — K, E Vf(g.(a,P,R), @ik, yir),
b k=1

(10)
where \ is the learning rate and Vf (g, (a, P, R), xk, yir)
is the gradient of f (g, (a,P,R),x;,yix) with respect to
g, (a, P, R).

U K,
We assume that F'(g) = = > > f (g, @i, yix) where g

i=1 k=1
is short for g (a, P, R). Based on (10), the update of global
FL model g at time ¢ can be given by:

9i+1 = (VF(gt) - o), an
U
where 0 = VF(g,) — :; with
; Kia;C(w;)
\_ [ 1, with probability 1 — g; (r;, P;),
C(w;) = {0, with probability ¢; (s, P;) . (12)

We also assume that the FL algorithm converges to an op-
timal global FL model g* after learning steps. To derive
the expected convergence rate of the FL algorithms, we also
make the following assumptions: a) ||V F(g, ;) —VF(g,)| <
L||g; 1 — g,|| where L is a positive constant and ||g, ,, — g||
is the norm of g,y — g;, b) F(g,41) > F(g) + (9441 —
9:)"VF(g,) + 51911 — g:]1* © pI X V2F(g) = LI, and
D VF (e, i, yin) > < G+ GV F (gy) || with ¢ > 0 and
(2 > 1 These assumptions can be easily satisfied by the general
FL loss functions such as linear or logistic loss functions. The
expected convergence rate of the FL algorithms can be obtained
by the following theorem.

Theorem 1. Given the transmit power vector P, RB allocation
matrix R, user selection vector a, optimal global FL model g*,
and the learning rate A = £, the upper bound of E[F(g,, ) —
F(g*)] can be given by:

O < 1— At
E[F —F(g")] < =2 Kiqi (ri, B;
[Place) = P& < gpg K B) T
+ A'E(F(go) — F(g7)), (13)
where A =1— 2 + “@ Z Kiq (ri, By).
Proof. Due to space limitations, the proof is omitted. |

From Theorem 1, we see that, when the learning rate A is a
constant (\ = %), the FL algorithm that considers the effect of
the packet error rates will finally converge as ¢ increases. How-

ever, a gap, 2LK Z K; (1

E[F(g,)] and I[-E[F(1 )] This gap is caused by the packet errors
and user selection. As the packet error rate decreases, the gap
between E[F'(g,)] and E[F(g*)] decreases. Meanwhile, as the
number of users that implement the FL algorithm increases,
the gap also decreases. Moreover, as the packet error rate
decreases, the value of A also decreases, which indicates that
the convergence speed of the FL algorithm improves. Hence,
it is necessary to optimize resource allocation, user selection,
and transmit power for the implementation of FL algorithms.

—a; + a;q; (r;, P;)), exists between

IV. OPTIMIZATION OF PREDICTION ERRORS FOR
FEDERATED LEARNING ALGORITHM

In this section, we minimize the loss function of the FL
algorithms. From Theorem 1, we see that, to minimize the
loss function in (9), we need to only minimize the gap,

S S K (1—a; + ag, (ri, ) =45 When A > 1, the

FL algtl)rlthms will not converge. In consequence, here, we
only consider the minimization of the FL loss function when
A < 1. Hence, as t is large enough, which indicates that the
FL algorithm converges, we have A® = 0. The gap can be
rewritten as follows:

G
2LK

K (1—a; +aig; (ri, P))

™Ms

(14)

U
2 Z: i (1= a; +aig; (ri, 1))

w|‘

From (14), we see that minimizing (14) only needs to min-
U

imize > K; (1 — a; + a;q; (r;, P;)). Meanwhile, since a; =
i=1

R
Z Tin and qi (Tia R) -

n=1
ql (rl,Pl-) < 0 and when a; = 0, ¢;(r;; ;) = 0. In
consequence, a;q; (7;, P;) = g¢; (r;, P;). The problem in (9)
can be simplified as follows:

manK <1 — Z Tin + @i (T4, PZ)>

n=1

> TinGin, we have, when a; = 1,

5)



s. t. (9¢)-(9f).

rin €{0,1}, VieU,n=1,...,R, (15a)
R
Z Tin <1, Vi EZ/l,
n=1
In (15), the BS allocating a RB to each user ¢ indicates that
each user ¢ is associated with the BS. In consequence, the user

selection index a; can be represented by the RB allocation
R

index Y r;,. Next, we first find the optimal transmit power
n=1

for each user given the uplink RB allocation matrix R. Then,

we find the uplink RB allocation to minimize the FL loss
function.

(15b)

A. Optimal Transmit Power

The optimal transmit power of each user ¢ can be determined
by the following lemma.

Lemma 1. Given the uplink RB allocation vector r; of each
user %, the optimal transmit power of each user 7, P;" is:

P’ = min {Puax, P |

3

(16)
where P; ., satisfies the equality cw;9%Z (X;)+ %}fmﬂ) =
C'L T, i\YE

VE-

Proof. To prove Lemma 1, we first prove that e; (r;, P;) is an
increasing function of P;. Based on (3) and (8), we have:

P;
ei (ri, Py) = qwi?Z (X;) +

R )
> rinBYlogy (1 + kinF;)
n=1
17

where K;, = m. The first-derivative of
ew,
e; (r;, P;) with respect to P; is given by:
aei (Tia P’L) .
OP;

R
(ln 2) Z 1+:;T;Pi ((1 + Ki,npi) 11?1(1 + Ki,npi) — fii,nﬂ)
n=1 ’

R 2
( Z ri7nBUln (1 =+ fii,npi))

n=1

(18)
Since %ﬁ:m is always positive, e; (r;, P;) is a mono-
tonically increasing function. Contradiction is used to prove
Lemma 1. We assume that P/ (P/ # P;) is the optimal trans-
mit power of user ¢. In (9d), e; (7}, P; - ) is a monotonically in-
creasing function of P;. Hence, as P/ > P*, e; (v}, P!) > g,
which does not meet the constraint (9f). From (6), we see that,
the packer error rates decrease as the transmit power increases.
Thus, as P; < P/, we have ¢; (r;, P}) < ¢;(r;,P]). In
consequence, as P/ < P, P/ cannot minimize the function in
(15). Hence, we have P/ = P;. This completes the proof. [

From Lemma 1, we see that the optimal transmit power
depends on the size of the collected data Z (X;), the size
of the local FL. model Z (w;), and the interference in each
RB. In particular, as the size of the collected data and local
FL model increases, each user must spend more energy for
training FL model and, hence, the energy that can be used for

data transmission decreases. In consequence, the value of the
FL loss function increases.

B. Optimal Uplink Resource Block Allocation

Based on Lemma 1 and (6), the optimization problem in
(15) can be simplified as follows:

U R R
3K <1 -3 zq> (19)
s. t. (9a), (9b), and (9e),
Y (r, P*)+12 <, Viel, (19a)
e (ri, PY) < e, Viel. (19b)

Obviously, the objective function (19) is an integer linear
programming problem, which can be solved by a bipartite
matching algorithm. Compared to traditional convex optimiza-
tion algorithms, using bipartite matching to solve problem (19)
does not require calculating the gradients of each variable nor
dynamically adjusting the step size for convergence.

To use the bipartite matching algorithm for solving (19), we
first transform the optimization problem into a bipartite match-
ing problem. We construct a bipartite graph A = (U X R, E)
in which, R is the set of RBs that can be allocated to each
user, each vertex in U/ represents a user and each vertex in R
represents an RB, & is the set of edges that connect to the
vertices from each set ¢/ and R. Let ¥, € £ be the edge
connecting vertex ¢ in U/ and vertex n in R with 9;, € {0, 1},
where ¥;,, = 1 indicates that RB n is allocated to user 7,
otherwise, we have ¥, = 0. Let matching 7 be a subset of
edges in &, in which no two edges share a common vertex in
R, such that each RB n can only be allocated to one user
(constraint (9e) is satisfied). Nevertheless, in 7, all of the
edges associated with a vertex ¢ € ¢/ will not share a common
vertex n € R, such that each user 7 can occupy only one RB
(constraint (9b) is satisfied). The weight of edge ¥;, is given
by:

where [Y and e; is short for 1Y (r;,, P}) and e; (1, PF).
From (20), we see that when RB n is allocated to user ¢, if the
delay and energy requirements cannot be meet, ¥;, = +00,
which indicates that RB n will not be allocated to user ¢. The
purpose of this bipartite matching problem is to find an optimal
matching set 7* that can minimize the weights of the edges
in 7*. A standard Hungarian algorithm [10] can be adopted to
find the optimal matching set 7*. When the optimal matching
set is found, the optimal RB allocation is determined.

K (qin —
+00,

1),1Y +1? <~r and €; < g,

otherwise, (20)

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a circular network area
having a radius » = 500 m with one BS at its center servicing
U = 20 uniformly distributed users. The other parameters used
in simulations are listed in Table I. The data used to train the
FL algorithm is generated randomly from [0, 1]. The input x
and the output y follow the function y = —2x + 1+ n X
0.4 where n follows a Gaussian distribution N (0, 1). The FL
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algorithm is used as the linear regression approach to model the
relationship between x and y. For comparison purposes, we use
two baselines: a) an FL algorithm that optimizes user selection
with random resource allocation and b) an FL algorithm that
randomly determines user selection and resource allocation.
Baseline a) is actually an FL algorithm without consideration
of wireless factors (which can be seen as a version of the
original FL algorithm in [1]). Baseline b) is an FL algorithm
without consideration of wireless factors and optimizing FL
performance.

Fig. 2 shows an example of using FL algorithms for linear
regression. In this figure, optimal FL indicates the packet
error rates of all users are zero. From Fig. 2, we can see
that the proposed FL algorithm can fit the data samples more
accurately than baselines a) and b). This is due to the fact that
the proposed FL algorithm jointly considers the learning and
wireless factors and, hence, it can optimize user selection and
resource allocation to reduce the effect of wireless transmission
errors on training FL algorithm and improve the performance
of the FL algorithm.

Fig. 3 shows how the value of the FL loss function changes
as the total number of users varies. In this figure, an appropriate
subset of users is selected to perform the FL algorithm. From
Fig. 3, we see that, as the number of users increases, the
value of the loss function decreases. Moreover, as the number
of users increases, the effect of packet errors on the global
FL model decreases. This is due to the fact that an increase
in the number of users leads to more data available for the
FL algorithm training and, hence, improving the accuracy of
approximation of the gradient of the loss function. Fig. 3 also

TABLE I
SYSTEM PARAMETERS
Parameter Value Parameter Value
a 2 No -174 dBm
Pp 1w B 20 MHz
M 64 BY 150 kHz
o 1 Pmax 0.01 W
f 107 K; [12,10,8,4,2]
5 1027 1 100 ms
w; 40 YE 0.02J

shows that the proposed algorithm reduces the loss function
by, respectively, up to 10% and 16% compared to baselines
a) and b). The 10% reduction of the loss function stems from
the fact that the proposed algorithm optimizes the resource
allocation. The 16% reduction stems from the fact that the
proposed algorithm joint considers learning and wireless effects
and, hence, it can optimize the user selection and resource
allocation to reduce the FL loss function.

VI. CONCLUSION

In this paper, we have developed a novel framework that
enables the implementation of FL algorithms over wireless
networks. We have formulated an optimization problem that
jointly considers user selection and resource allocation for
the minimization of the value of FL loss function. To solve
this problem, we have derived a closed-form expression of
the expected convergence rate of the FL algorithm that con-
siders the wireless factors. Based on the derived expected
convergence rate, the optimal transmit power is determined
given the user selection and uplink RB allocation. Then, the
Hungarian algorithm is used to find the optimal user selection
and RB allocation so as to minimize the FL loss function.
Simulation results have shown that the FL algorithm that
considers the wireless factors yields significant improvements
in performance compared to the existing implementation of the
FL algorithm that does not account for wireless factors.
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