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Abstract—In this paper, the problem of training federated
learning (FL) algorithms over a realistic wireless network is
studied. In particular, in the considered model, wireless users
perform an FL algorithm that trains their local FL models using
their own data and send the trained local FL models to a base
station (BS) that will generate a global FL model and send it
back to the users. Since all training parameters are transmitted
over wireless links, the quality of the training will be affected by
wireless factors such as packet errors and availability of wireless
resources. Meanwhile, due to the limited wireless bandwidth, the
BS must select an appropriate subset of users to execute the FL
learning algorithm so as to build a global FL model accurately.
This joint learning, wireless resource allocation, and user selection
problem is formulated as an optimization problem whose goal is to
minimize an FL loss function that captures the performance of the
FL algorithm. To address this problem, a closed-form expression
for the expected convergence rate of the FL algorithm is first
derived to quantify the impact of wireless factors on FL. Then,
based on the expected convergence rate of the FL algorithm, the
optimal transmit power for each user is derived, under a given
user selection and uplink resource block (RB) allocation scheme.
Finally, the user selection and uplink RB allocation is optimized
so as to minimize the FL loss function. Simulation results show
that the proposed joint federated learning and communication
framework can reduce the FL loss function value by up to 10%

and 16%, respectively, compared to 1) an optimal user selection
algorithm with random resource allocation and 2) a random user
selection and resource allocation algorithm.

I. INTRODUCTION

Federated learning (FL) has been recently proposed by

Google [1] as an effective approach to perform distributed ma-

chine learning tasks without relying on a centralized datacenter.

FL is, in essence, a distributed machine learning algorithm that

enables users to collaboratively learn a shared prediction model

while keeping their collected data on their devices. However,

to train an FL algorithm in a distributed manner, the users must

transmit their training parameters over wireless links which can

introduce training errors, due to the limited wireless resources

and the inherent unreliability of wireless links.
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Recently, a number of existing works such as in [1]–[5] have

studied important problems related to the implementation of

FL over wireless networks. In [1], the authors developed two

update methods to reduce the uplink communication costs. The

authors in [2] conducted an extensive empirical evaluation for

five different FL models using four datasets. An echo state

network-based FL algorithm is developed in [3] to optimize

wireless virtual reality networks. In [4], the authors proposed

a novel FL algorithm that can minimize the communication

cost. The work in [5] exposed to potential of edge FL in

wireless networks. While interesting, these prior works [1]–

[5] assumed that wireless networks can readily integrate FL

algorithms. However, in practice, due to the unreliability of the

wireless channels and to the wireless resource limitations, FL

algorithms will encounter training errors. For example, symbol

errors introduced by the unreliable nature of the wireless

channel and by resource limitations can impact the quality and

correctness of the FL updates among users. Such errors will,

in turn, affect the prediction performance of FL algorithms, as

well as their convergence speed. Moreover, due to the wireless

bandwidth limitations, the number of users can perform FL

is limited; a design issue that is ignored in [1]–[4]. Hence,

in practice, to effectively deploy FL over real-world wireless

networks, it is necessary to investigate how the wireless factors

affect the performance of FL algorithms.

The main contribution of this work is a novel framework for

implementing FL algorithms over wireless networks by jointly

considering FL and wireless metrics and factors. To our best

knowledge, this is the first work that provides a fundamental

connection between the performance of FL algorithms and

the underlying wireless network. To this end, we propose a

novel FL model in which cellular-connected wireless users

transmit their locally trained FL models to a base station

(BS) that generates the global FL model and sends it back

to the users. For the considered FL model, the bandwidth of

uplink is limited and, hence, the BS needs to select appropriate

users to execute the FL algorithms so as to minimize the FL

loss function. In addition, the impact of the packet errors on

the parameter update process of the FL model is explicitly

considered. To minimize training errors due to wireless links,

we formulate a joint resource allocation and user selection

problem for FL as an optimization problem whose goal is to

minimize the value of the FL loss function while meeting the

delay and energy consumption requirements of executing FL.
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Fig. 1. The architecture of a wireless network that performs an FL algorithm.

Hence, our framework jointly considers learning and wireless

networking metrics. To solve this problem, we first derive a

closed-form expression for the expected convergence rate of the

FL algorithm so as to build the relationship between the packet

error rates and the performance of the FL algorithm. Based on

this relationship, the optimization problem can be simplified

as an mixed-integer nonlinear programming problem. To solve

this simplified problem, we first find the optimal transmit

power under given user selection and RB allocation. Then, we

transform the original optimization problem into a bipartite

matching problem. Finally, a Hungarian algorithm is used to

find the optimal user selection and RB allocation.

The rest of this paper is organized as follows. The system

model and problem formulation are described in Section II.

The expected convergence rate of FL algorithms is studied in

Section III. The optimal resource allocation and user selection

are determined in Section IV. Simulation results are analyzed

in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network having one base station (BS) and

a set U of U users that cooperatively perform an FL algorithm

for data analysis and inference (e.g., to generate radio maps

using distributed datasets). FL enables the BS and the users to

collaboratively learn a shared learning model while keeping all

the training data at the device of each user. In an FL algorithm,

each user will use its collected training data to train an FL

model. Hereinafter, the FL model that is trained at the device

of each user (using the data collected by the user itself) is

called the local FL model. The BS is used to integrate the

local FL models and generate a shared FL model. This shared

FL model is used to improve the local FL model of each user

so as to enable the users to collaboratively perform a learning

task without training data transfer. Hereinafter, the FL model

that is generated by the BS using the local FL models of the

users is called the global FL model. As shown in Fig. 1, the

uplink from the users to the BS is used to transmit the local

FL model parameters while the downlink is used to transmit

the global FL model.

A. Machine Learning Model

In our model, each user i collects a matrix Xi =
[xi1, . . . ,xiKi

] of input data where Ki is the number of

the samples collected by each user i and each element xik

is the FL algorithm’s input vector. Let yik be the output

of xik. For simplicity, we consider an FL algorithm with a

single output, which can be readily generalized to a case with

multiple outputs [1]. The output data vector for training the

FL algorithm of user i is yi = [yi1, . . . , yiKi
]. We assume that

the data collected by each user i is different from the other

users, i.e., (xi 6= xn, i 6= n, i, n ∈ U ). We define a vector wi

to capture the parameters related to the local FL model that

is trained by Xi and yi. wi determines the local FL model

of each user i. For example, in a linear regression learning

algorithm, xT
ikwi represents the output and wi determines the

prediction accuracy. The training process of an FL algorithm

is done in a way to solve:

min
w1,...,wU

1

K

U
∑

i=1

Ki
∑

k=1

f (wi,xik, yik), (1)

s. t. w1 = w2 = . . . = wU = g, ∀i ∈ U , (1a)

where K =
U
∑

i=1

Ki is total size of training data of all users. g is

the global FL model generated by the BS and f (wi,xik, yik)
is a loss function that captures the FL prediction accuracy.

Different FL algorithms use different loss functions [6]. For

example, for a linear regression FL, the loss function is

f (wi,xik, yik) = 1
2

(

xT
ikwi − yik

)2
. (1a) is used to ensure

that, once the FL algorithm converges, all of the users and the

BS will share the same FL model. To solve (1), the BS will

transmit the parameters g of the global FL model to its users

so that they train their local FL models. Then, the users will

transmit their local FL models to the BS to update the global

FL model. The update of each user i’s local FL model wi

depends on the global model g while the update of the global

model g depends on all users’ local FL models. The update

of the local FL model wi depends on the learning algorithm.

For example, one can use gradient descent or randomized

coordinate descent [1] to update the local FL model. The

update of the global model g is given by [1]:

g =

U
∑

i=1

Kiwi

K
. (2)

Due to wireless transmissions, the local FL models received by

the BS may contain erroneous symbols that affect the update of

the global FL model and the FL learning performance. Hence,

the wireless transmission delay will significantly affect the FL

convergence. Hence, to deploy FL over wireless network, one

must jointly consider the wireless and learning performance.

B. Transmission Model

For uplink, we assume that an orthogonal frequency-division

multiple access (OFDMA) technique in which each user oc-

cupies one RB. The uplink rate of user i transmitting its local

FL parameters to the BS is given by:

cU
i (ri, Pi) =

R
∑

n=1

ri,nB
Ulog2






1+

Pihi
∑

i′∈U ′
n

Pi′hi′ +BUN0






,

(3)

where ri = [ri,1, . . . , ri,R] is an RB allocation vector with R

being the total number of RBs, ri,n ∈ {0, 1} and
R
∑

n=1
ri,n = 1;

ri,n = 1 indicates that RB n is allocated to user i, and ri,n = 0,
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otherwise; U ′
n represents the set of users that are located at the

other service areas and transmit data over RB n; BU is the

bandwidth of each RB and Pi is the transmit power of user i; hi
is the channel gain between user i and the BS; N0 is the noise

power spectral density;
∑

i′∈U ′
n

Pi′hi′ is the interference caused

by the users that are located at the other service areas and use

the same RB. Note that, although we ignore the optimization

of resource allocation for the users located at the other service

areas, we must consider the interference caused by the users

using the same RBs, since this interference may significantly

affect the packet error rates and the performance of FL.
Similarly, the downlink data rate of the BS transmitting the

parameters of global FL model to each user i is given by:

cD
i = BDlog2






1+

PBhi
∑

j∈B′

PBhij +BDN0






, (4)

where BD is the bandwidth that the BS used to broadcast the

global FL model to each user i; PB is the transmit power of

the BS; B′ is the set of other BSs that cause interference to

the BS that performs the FL algorithm; hij is the channel gain

between user i and BS j.
The transmission delay between user i and the BS over both

uplink and downlink will be:

lUi (ri, Pi) =
Z (wi)

cU
i (ri, Pi)

, lDi
(

BD
i

)

=
Z (g)

cD
i (BD

i )
, (5)

where function Z (wi) is the data size of wi and Z (g) is the

data size of the parameters related to the global FL model.

Here, Z (wi) and Z (g) are determined by FL algorithm type.

C. Packet Error Rates

For simplicity, each local FL model wi is considered as

a single packet for uplink transmission. A cyclic redundancy

check (CRC) mechanism [7] is used to check the data errors in

the received local FL models at the BS. In particular, C (wi) =
0 indicates that the local FL model received by the BS contains

data errors; otherwise, we have C (wi) = 1. The packet error

rate experienced by the transmission of each local FL model

wi to the BS is [8]:

qi (ri, Pi) =

R
∑

n=1

ri,nqi,n, (6)

where qi,n =









1− exp









−

m





∑

i′∈U′
n

Pi′hi′+BUN0





Pihi

















is the

packet error rate over RB n with m being a waterfall threshold.

We assume that, when the received local FL model contains

errors, the BS will not use it for the update of the global

FL model. We also assume that the BS will not ask the

corresponding users to resend the local FL models when the

received local FL models contain data errors. As a result, the

global FL model in (2) can be given by:

g (a,P ,R) =

U
∑

i=1

KiaiwiC (wi)

U
∑

i=1

KiaiC (wi)

, (7)

where a = [a1, . . . , aU ] is the vector of the user selection index

with ai = 1 indicating that user i performs the FL algorithm

and ai = 0, otherwise, R = [r1, · · · , rU ], P = [P1, · · · , PU ],
U
∑

i=1

KiaiC (wi) is the total number of training data samples,

which depends on the user selection vector a and packet

transmission C (wi), KiwiC (wi) = 0 indicates that the local

FL model of user i contains data errors and, hence, the BS

will not use it to generate the global FL model, g (a,P ,R) is

the global FL model that explicitly incorporates the effect of

wireless transmission.

D. Energy Consumption Model

In our network, the energy consumption of each user consists

of the energy needed for two purposes: a) Transmission of the

local FL model and b) Training of the local FL model. The

energy consumption of each user i is given by [9]:

ei (ri, Pi) = ςωiϑ
2Z (Xi) + Pil

U
i (ri, Pi) , (8)

where ϑ is the frequency of the central processing unit (CPU)

clock of each user i, ωi is the number of CPU cycles required

for computing per bit data of user i, and ς is the energy

consumption coefficient depending on the chip of each user

i’s device [9]. In (8), ςωiϑ
2Z (Xi) is the energy consumption

of user i training the local FL model at its own device and

Pil
U
i (ri, Pi) represents the energy consumption of local FL

model transmission from user i to the BS.

E. Problem Formulation

To jointly design the wireless network and the FL algorithm,

we now formulate an optimization problem whose goal is to

minimize the loss function of an FL algorithm by optimizing

the various wireless parameters, as follows:

min
a,P ,R

1

K

U
∑

i=1

Ki
∑

k=1

f (g (a,P ,R) ,xik, yik) (9)

s. t. ai, ri,n ∈ {0, 1} , ∀i ∈ U , n = 1, . . . , R, (9a)

R
∑

n=1
ri,n = ai, ∀i ∈ U , (9b)

lUi (ri, Pi) + lDi ≤ γT, ∀i ∈ U , (9c)

ei (ri, Pi) ≤ γE, ∀i ∈ U , (9d)
∑

i∈U

ri,n ≤ 1, ∀n = 1, . . . , R, (9e)

0 ≤ Pi ≤ Pmax, ∀i ∈ U , (9f)

where γT is the delay requirement for implementing the FL

algorithm, γE is the energy consumption of the FL algorithm,

and B is the total downlink bandwidth. (9a) and (9b) indicates

that each user can occupy only one RB for uplink data trans-

mission. (9c) is the delay needed to execute the FL algorithm.

(9d) is the energy consumption requirement of performing

an FL algorithm. (9e) indicates that each uplink RB can be

allocated to at most one user. (9f) is a maximum transmit power

constraint.

From (6) and (7), we see that the transmit power and re-

source allocation determine the packet error rate, thus affecting

the update of the global FL models. In consequence, the loss
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function of the FL algorithm in (9) depends on the resource

allocation and transmit power. Moreover, (9c) shows that, in

order to perform an FL algorithm, the users must satisfy a

specific delay requirement. In particular, in an FL algorithm,

the BS must wait to receive the local model of each user before

updating its global FL model. Hence, transmission delay plays

a key role in the FL performance. In a practical FL algorithm, it

is desirable that all users transmit their local FL models to the

BS simultaneously. From (9d), we see that to perform the FL

algorithm, a given user must have enough energy to transmit

and update the local FL model throughout the FL iterative

process. If this given user does not have enough energy, the

BS cannot choose this user to participate in the FL process.

In consequence, to implement an FL algorithm, the wireless

network must provide low energy consumption and latency,

and high reliability data transmission.

III. ANALYSIS OF GLOBAL FL MODEL

To solve (9), we first need to analyze how the packet error

rate affects the performance of the FL. To find the relationship

between the packet error rates and the FL performance, we

must first analyze the expected convergence rate of the FL.

In the studied network, the users adopt a standard gradient

descent method to update their local FL models as done in [1].

Therefore, during the training process, the update of user i’s

local FL model wi at time t is given by:

wi,t+1 = gt (a,P ,R)−
λ

Ki

Ki
∑

k=1

∇f (gt (a,P ,R) ,xik, yik),

(10)

where λ is the learning rate and ∇f (gt (a,P ,R) ,xik, yik)
is the gradient of f (gt (a,P ,R) ,xik, yik) with respect to

gt (a,P ,R).

We assume that F (g) = 1
K

U
∑

i=1

Ki
∑

k=1

f (g,xik, yik) where g

is short for g (a,P ,R). Based on (10), the update of global

FL model g at time t can be given by:

gt+1 = gt − λ (∇F (gt)− o) , (11)

where o = ∇F (gt)−

U
∑

i=1

KiaiwiC(wi)

U
∑

i=1

KiaiC(wi)

with

C (wi) =

{

1, with probability 1− qi (ri, Pi) ,
0, with probability qi (ri, Pi) .

(12)

We also assume that the FL algorithm converges to an op-

timal global FL model g∗ after learning steps. To derive

the expected convergence rate of the FL algorithms, we also

make the following assumptions: a) ‖∇F (gt+1)−∇F (gt)‖ ≤
L‖gt+1 − gt‖ where L is a positive constant and ‖gt+1 − gt‖
is the norm of gt+1 − gt, b) F (gt+1) ≥ F (gt) + (gt+1 −
gt)

T∇F (gt) +
µ
2 ‖gt+1 − gt‖

2, c) µI � ∇2F (g) � LI , and

d) ‖∇f (gt,xik, yik)‖2 ≤ ζ1+ζ2∇‖F (gt) ‖
2 with ζ1 ≥ 0 and

ζ2 ≥ 1 These assumptions can be easily satisfied by the general

FL loss functions such as linear or logistic loss functions. The

expected convergence rate of the FL algorithms can be obtained

by the following theorem.

Theorem 1. Given the transmit power vector P , RB allocation

matrix R, user selection vector a, optimal global FL model g∗,

and the learning rate λ = 1
L

, the upper bound of E[F (gt+1)−
F (g∗)] can be given by:

E[F (gt+1)− F (g∗)] ≤
ζ1

2LK

U
∑

i=1

Kiqi (ri, Pi)
1−At

1−A

+At
E(F (g0)− F (g∗)), (13)

where A = 1− 2µ
L

+ µζ2
LK

U
∑

i=1

Kiqi (ri, Pi).

Proof. Due to space limitations, the proof is omitted.

From Theorem 1, we see that, when the learning rate λ is a

constant (λ = 1
L

), the FL algorithm that considers the effect of

the packet error rates will finally converge as t increases. How-

ever, a gap, ζ1
2LK

U
∑

i=1

Ki (1− ai + aiqi (ri, Pi)), exists between

E[F (gt)] and E[F (g∗)]. This gap is caused by the packet errors

and user selection. As the packet error rate decreases, the gap

between E[F (gt)] and E[F (g∗)] decreases. Meanwhile, as the

number of users that implement the FL algorithm increases,

the gap also decreases. Moreover, as the packet error rate

decreases, the value of A also decreases, which indicates that

the convergence speed of the FL algorithm improves. Hence,

it is necessary to optimize resource allocation, user selection,

and transmit power for the implementation of FL algorithms.

IV. OPTIMIZATION OF PREDICTION ERRORS FOR

FEDERATED LEARNING ALGORITHM

In this section, we minimize the loss function of the FL

algorithms. From Theorem 1, we see that, to minimize the

loss function in (9), we need to only minimize the gap,

ζ1
2LK

U
∑

i=1

Ki (1− ai + aiqi (ri, Pi))
1−At

1−A
. When A ≥ 1, the

FL algorithms will not converge. In consequence, here, we

only consider the minimization of the FL loss function when

A < 1. Hence, as t is large enough, which indicates that the

FL algorithm converges, we have At = 0. The gap can be

rewritten as follows:

ζ1
2LK

U
∑

i=1

Ki (1− ai + aiqi (ri, Pi))

2µ
L

− µζ2
LK

U
∑

i=1

Ki (1− ai + aiqi (ri, Pi))

. (14)

From (14), we see that minimizing (14) only needs to min-

imize
U
∑

i=1

Ki (1− ai + aiqi (ri, Pi)). Meanwhile, since ai =

R
∑

n=1
ri,n and qi (ri, Pi) =

R
∑

n=1
ri,nqi,n, we have, when ai = 1,

qi (ri, Pi) ≤ 0 and when ai = 0, qi (ri, Pi) = 0. In

consequence, aiqi (ri, Pi) = qi (ri, Pi). The problem in (9)

can be simplified as follows:

min
P ,R

U
∑

i=1

Ki

(

1−
R
∑

n=1

ri,n + qi (ri, Pi)

)

(15)
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s. t. (9c)-(9f).

ri,n ∈ {0, 1} , ∀i ∈ U , n = 1, . . . , R, (15a)

R
∑

n=1
ri,n ≤ 1, ∀i ∈ U , (15b)

In (15), the BS allocating a RB to each user i indicates that

each user i is associated with the BS. In consequence, the user

selection index ai can be represented by the RB allocation

index
R
∑

n=1
ri,n. Next, we first find the optimal transmit power

for each user given the uplink RB allocation matrix R. Then,

we find the uplink RB allocation to minimize the FL loss

function.

A. Optimal Transmit Power

The optimal transmit power of each user i can be determined

by the following lemma.

Lemma 1. Given the uplink RB allocation vector ri of each

user i, the optimal transmit power of each user i, P ∗
i is:

P ∗
i = min {Pmax, Pi,γE

} , (16)

where Pi,γE
satisfies the equality ςωiϑ

2Z (Xi)+
Pi,γE

Z(wi)

cU
i (ri,Pi,γE)

=
γE.

Proof. To prove Lemma 1, we first prove that ei (ri, Pi) is an

increasing function of Pi. Based on (3) and (8), we have:

ei (ri, Pi) = ςωiϑ
2Z (Xi) +

Pi

R
∑

n=1
ri,nBUlog2 (1 + κi,nPi)

,

(17)

where κi,n = hi
∑

i′∈U′
n

Pi′hi′+BUN0

. The first-derivative of

ei (ri, Pi) with respect to Pi is given by:

∂ei (ri, Pi)

∂Pi

=

(ln 2)
R
∑

n=1

ri,n
1+κi,nPi

((1 + κi,nPi) ln(1 + κi,nPi)− κi,nPi)

(

R
∑

n=1
ri,nBUln (1 + κi,nPi)

)2 .

(18)

Since
∂ei(ri,Pi)

∂Pi
is always positive, ei (ri, Pi) is a mono-

tonically increasing function. Contradiction is used to prove

Lemma 1. We assume that P ′
i (P ′

i 6= P ∗
i ) is the optimal trans-

mit power of user i. In (9d), ei (r
∗
i , Pi,γE

) is a monotonically in-

creasing function of Pi. Hence, as P ′
i > P ∗

i , ei (r
∗
i , P

′
i ) > γE,

which does not meet the constraint (9f). From (6), we see that,

the packer error rates decrease as the transmit power increases.

Thus, as P ′
i < P ∗

i , we have qi (ri, P
∗
i ) 6 qi (ri, P

′
i ). In

consequence, as P ′
i < P ∗

i , P ′
i cannot minimize the function in

(15). Hence, we have P ′
i = P ∗

i . This completes the proof.

From Lemma 1, we see that the optimal transmit power

depends on the size of the collected data Z (Xi), the size

of the local FL model Z (wi), and the interference in each

RB. In particular, as the size of the collected data and local

FL model increases, each user must spend more energy for

training FL model and, hence, the energy that can be used for

data transmission decreases. In consequence, the value of the

FL loss function increases.

B. Optimal Uplink Resource Block Allocation

Based on Lemma 1 and (6), the optimization problem in

(15) can be simplified as follows:

min
R

U
∑

i=1

Ki

(

1−
R
∑

n=1

ri,n +

R
∑

n=1

ri,nqi,n

)

(19)

s. t. (9a), (9b), and (9e),

lUi (ri, P
∗
i ) + lDi ≤ γT, ∀i ∈ U , (19a)

ei (ri, P
∗
i ) ≤ γE, ∀i ∈ U . (19b)

Obviously, the objective function (19) is an integer linear

programming problem, which can be solved by a bipartite

matching algorithm. Compared to traditional convex optimiza-

tion algorithms, using bipartite matching to solve problem (19)

does not require calculating the gradients of each variable nor

dynamically adjusting the step size for convergence.

To use the bipartite matching algorithm for solving (19), we

first transform the optimization problem into a bipartite match-

ing problem. We construct a bipartite graph A = (U ×R, E)
in which, R is the set of RBs that can be allocated to each

user, each vertex in U represents a user and each vertex in R
represents an RB, E is the set of edges that connect to the

vertices from each set U and R. Let ϑin ∈ E be the edge

connecting vertex i in U and vertex n in R with ϑin ∈ {0, 1},

where ϑin = 1 indicates that RB n is allocated to user i,

otherwise, we have ϑin = 0. Let matching T be a subset of

edges in E , in which no two edges share a common vertex in

R, such that each RB n can only be allocated to one user

(constraint (9e) is satisfied). Nevertheless, in T , all of the

edges associated with a vertex i ∈ U will not share a common

vertex n ∈ R, such that each user i can occupy only one RB

(constraint (9b) is satisfied). The weight of edge ϑin is given

by:

ψin =

{

Ki (qi,n − 1) , lUi + lDi ≤ γT and ei ≤ γE,

+∞, otherwise,
(20)

where lUi and ei is short for lUi (ri,n, P
∗
i ) and ei (ri,n, P

∗
i ).

From (20), we see that when RB n is allocated to user i, if the

delay and energy requirements cannot be meet, ψin = +∞,

which indicates that RB n will not be allocated to user i. The

purpose of this bipartite matching problem is to find an optimal

matching set T ∗ that can minimize the weights of the edges

in T ∗. A standard Hungarian algorithm [10] can be adopted to

find the optimal matching set T ∗. When the optimal matching

set is found, the optimal RB allocation is determined.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a circular network area

having a radius r = 500 m with one BS at its center servicing

U = 20 uniformly distributed users. The other parameters used

in simulations are listed in Table I. The data used to train the

FL algorithm is generated randomly from [0, 1]. The input x

and the output y follow the function y = −2x + 1 + n ×
0.4 where n follows a Gaussian distribution N (0, 1). The FL
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Fig. 3. Value of the loss function as the number of iteration varies.

algorithm is used as the linear regression approach to model the

relationship between x and y. For comparison purposes, we use

two baselines: a) an FL algorithm that optimizes user selection

with random resource allocation and b) an FL algorithm that

randomly determines user selection and resource allocation.

Baseline a) is actually an FL algorithm without consideration

of wireless factors (which can be seen as a version of the

original FL algorithm in [1]). Baseline b) is an FL algorithm

without consideration of wireless factors and optimizing FL

performance.

Fig. 2 shows an example of using FL algorithms for linear

regression. In this figure, optimal FL indicates the packet

error rates of all users are zero. From Fig. 2, we can see

that the proposed FL algorithm can fit the data samples more

accurately than baselines a) and b). This is due to the fact that

the proposed FL algorithm jointly considers the learning and

wireless factors and, hence, it can optimize user selection and

resource allocation to reduce the effect of wireless transmission

errors on training FL algorithm and improve the performance

of the FL algorithm.

Fig. 3 shows how the value of the FL loss function changes

as the total number of users varies. In this figure, an appropriate

subset of users is selected to perform the FL algorithm. From

Fig. 3, we see that, as the number of users increases, the

value of the loss function decreases. Moreover, as the number

of users increases, the effect of packet errors on the global

FL model decreases. This is due to the fact that an increase

in the number of users leads to more data available for the

FL algorithm training and, hence, improving the accuracy of

approximation of the gradient of the loss function. Fig. 3 also

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value

α 2 N0 -174 dBm

PB 1 W B 20 MHz

M 64 BU 150 kHz

σi 1 Pmax 0.01 W

f 10
9 Ki [12,10,8,4,2]

ς 10
−27 γT 100 ms

ωi 40 γE 0.02 J

shows that the proposed algorithm reduces the loss function

by, respectively, up to 10% and 16% compared to baselines

a) and b). The 10% reduction of the loss function stems from

the fact that the proposed algorithm optimizes the resource

allocation. The 16% reduction stems from the fact that the

proposed algorithm joint considers learning and wireless effects

and, hence, it can optimize the user selection and resource

allocation to reduce the FL loss function.

VI. CONCLUSION

In this paper, we have developed a novel framework that

enables the implementation of FL algorithms over wireless

networks. We have formulated an optimization problem that

jointly considers user selection and resource allocation for

the minimization of the value of FL loss function. To solve

this problem, we have derived a closed-form expression of

the expected convergence rate of the FL algorithm that con-

siders the wireless factors. Based on the derived expected

convergence rate, the optimal transmit power is determined

given the user selection and uplink RB allocation. Then, the

Hungarian algorithm is used to find the optimal user selection

and RB allocation so as to minimize the FL loss function.

Simulation results have shown that the FL algorithm that

considers the wireless factors yields significant improvements

in performance compared to the existing implementation of the

FL algorithm that does not account for wireless factors.
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