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Abstract—In this paper, a novel framework for guaranteeing
ultra-reliable millimeter-wave (mmW) communications using a
smart, artificial intelligence (AI)-powered mmW reflector is
proposed. The use of an Al-powered reflector allows changing
the propagation direction of mmW signals and, thus, improving
coverage particularly for non-line-of-sight (LoS) areas. However,
due to the possibility of stochastic blockage over mmW links,
designing an intelligent phase shift-control policy for the mmW
reflector to guarantee ultra-reliable mmW communications be-
comes very challenging. In this regard, first, based on the frame-
work of risk-sensitive reinforcement learning, a parametric risk-
sensitive episodic return is proposed to maximize the expected
bit rate while mitigating the risk of non-LoS mmW link in
the presence of future stochastic blockage over the mmW links.
Then, a closed-form approximation for the gradient of the risk-
sensitive episodic return is analytically derived. To directly find
the optimal policy for the proposed phase-shift controller, a
parametric functional-form policy is implemented using a deep
recurrent neural network (RNN). Then, based on the derived
closed-form gradient of risk-sensitive episodic return, the deep
RNN-based parametric functional-form policy is trained. The
efficiency of the proposed Al-powered reflector is evaluated in
an office environment. Simulation results show that the root-
mean-square errors between the optimal and approximate phase
shift-control policies of the proposed deep RNN is 1.35% in the
worst case. Moreover, on average, the mean value and variance
of the achievable rates resulting from the deep RNN-based policy
are only 1% and 2% less than the optimal solution for different
unknown mobile users’ trajectories, respectively.

Index Terms— Millimeter wave networks; reflectors; deep
neural networks; risk-sensitive reinforcement learning; 5G and
beyond.

I. INTRODUCTION

Millimeter wave (mmW) communications from 30 to 300
gigahertz (GHz) band is a promising candidate solution to
enable high-speed wireless access in next-generation wireless
networks [1]-[3]. Nevertheless, the high attenuation and scat-
tering of mmW propagation, even by small objects, renders
the design of mmW wireless networks very challenging [2].
To overcome this challenge, integrating massive antennas for
highly directional beamforming at both mmW access point
(APs) and user equipments (UEs) has been proposed [1],
[2]. However, applying beamforming techniques will render
the use of directional mmW links very sensitive to random
blockage caused by people and objects in a dense environ-
ment. This, in turn, gives rise unstable LoS mmW links and
unreliable communications [2], [3]. To provide robust LoS
mmW links, one proposed solution is to deploy ultra-dense
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mmW APs and active relay nodes to improve link quality
using multi-connectivity for a given UE [3], [4]. However, the
deployment of multiple mmW APs and active relay nodes is
not economically feasible and can also increase the control
signalling overhead. To decrease signalling overhead and al-
leviate economic costs while also establishing reliable mmW
communications, a mmW reflector can be used between the
mmW AP and UE [1], [5], [6]. The use of a mmW reflector
allows changing the propagation direction of mmW signals
thus improving coverage particularly for non-LoS areas.

Several recent works such as in [4]-[8] have proposed the
deployment of mmW reflectors to establish reliable mmW
links. In [5], the authors present efficient designs for both
transmit power allocation and coefficient control of the surface
reflecting elements. Their goal is to optimize spectrum or
energy efficiency subject to individual link budget guarantees
for the mobile users. However, the work in [5] does not
consider stochastic blockage and, thus, the results cannot be
generalized to a real-world mmW system. In [4], the authors
implement a smart mmWave reflector to provide high data
rates between a virtual reality headset and game consoles. To
handle beam alignment and tracking between the mmWave
reflector and the headset, their proposed method must try
every combination of mirror transmit beam angle and headset
receive beam angle and, thus, it incurs significant overhead.
In [8], the authors designed a smart reflector consisting of
224 reconfigurable patches. Then, they proposed a two-stage
phase shift-control algorithm for the smart reflector-assisted
802.11ad networks. Their proposed phase shift-control algo-
rithm uses exhaustive search to find the optimal beam angle
of the AP and phase shift of the reflector. The work in [6]
used software-controlled metasurfaces as smart reflectors for
indoor scenarios. In the model of [6], a central server receives
incoming reflector reports, calculates the optimal configuration
per reflector to increase the received power of the target
user, and sends the corresponding commands. The existing
works in [4]-[8] assume static reflectors and do not provide
any efficient solution to intelligently control the configuration
of smart reflectors in an adaptive manner. Moreover, the
objective of [4]-[8] is to increase the coverage probability
or signal-to-noise ratio without mitigating the risk of non-
LoS mmW link. In practice, an intelligent solution is required
to capture unknown future blockages, adaptively control the
configuration of smart mmW reflectors, and guarantee ultra-
reliable mmW communication.

The main contribution of this paper is a novel framework



for guaranteeing ultra-reliable mobile mmW communications
using a smart mmW reflector called artificial intelligence
(AD)-powered reflector. The proposed Al-based approach can
autonomously reconfigure the patches of the smart reflector
in presence of stochastic blockage over the mmW links. To
solve the phase shift-control problem in a reflector-assisted
mmW network and guarantee ultra-reliable mmW commu-
nications, the proposed Al-powered reflector uses a deep
recurrent neural network (RNN) which learns an adaptive
phase-shift control policy. First, we formulate the problem
as a stochastic optimization problem whose goal is to not
only maximize the expected bit rate but to also mitigate the
risk of non-LoS mmW link over time. Then, we use deep
and risk-sensitive reinforcement learning (RL) to solve the
problem in an adaptive manner. The parametric functional-
form policy is implemented using a deep RNN which directly
searches the optimal policy of the phase-shift controller. In
this regard, a closed-form approximation for the gradient of
risk-sensitive episodic return is analytically derived, and the
RNN-based policy is trained using this derived closed-form
gradient. Simulation results show that the root-mean-square
errors (RMSEs) between optimal and RNN-based parametric
functional-form policy is 1.35% in the worst case. Moreover,
on average, the mean value and the variance of the achievable
rates from the RNN-based policy are only 1% and 2% less
than the optimal solution, respectively.

The rest of the paper is organized as follows. Section II
presents the system model and the stochastic and risk-sensitive
optimization problem in the smart reflector-assisted mmW net-
works. In Section III, based on the framework of deep and risk-
sensitive RL, we propose a deep RNN to intelligently solve the
stochastic and risk-sensitive optimization problem of reflector
configuration. Then, in Section IV, we numerically evaluate
the the proposed policy-gradient approach which intelligently
controls the reflector configuration. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System model

Consider the downlink of an indoor reflector-assisted mmW
network, composed of one mmW access point (AP). In this
network, due to the blockage of mmW signals, there exist
areas in which it is not possible to establish LoS mmW links
between the mmW AP and UE, particularly when users are
mobile. We call these areas as dark areas. Each mmW AP
and UE have N, and N, antennas to form their beams,
respectively. In our model, there is a Al-powered smart mmW
reflector that can intelligently reflect the mmW signals from
the mmW AP to the target UE in the dark area. Each mmW
reflector has L patches of small patch reflectors indexed by
[. Without loss of generality, we focus on one mmW AP and
a user device connected to it. We consider discrete time slots
indexed by t. The angle-of-departure (AoD) from the mmW
AP to the patch [ of the reflector at time slot ¢ is represented by
61+ Then, the mmW reflector establishes a LoS mmW link
using a controlled reflected path to bypass an obstacle. Let

P11 € [—m, ] be the amount of shift that the patch [ of the
mmW reflector changes in the phase of received signal at time
slot £. We also define B as the total number of possible discrete
values for phase shifting per patch. Thus, the angle-of-arrival
(AoA) ¢+ from a UE to the patch [ of the mmW reflector at
time slot ¢ is given by ;, + 0; . The vector U@ e RE for
i =1, ..., B includes the i-th possible value for all controlled
phase shifts of the L patches at the mmW reflector. We define
pgl) = Pr(¥; = W) as the phase shift control policy of the
mmW reflector which is defined as the probability that the
mmW reflector selects the ¢-th phase shift vector to reflect the
received signal from the mmW AP at time slot £. For a given
vector U at time slot ¢, an N, x N,, channel matrix between
mmW AP and user is defined as follows [9]:

H, (D) = [arca(014), ..., area(Br4)] x diag(a)x

H
[aRX,u(¢1,t), () aRX,u(QSL,t)] y (D
—j NQ2—1 ZT"dSi“(Bl‘t) Ejﬁ@;z%dsm(el,t)]
where arx,(0:) = e -
(e Nu =1 27 4 sin(y,) ﬁ’l%dsmwm)]
and agxr(¢1t) = ro-

spectively denote the response Vec\t/(ﬁ for the AoD to the
l[-th patch and the AoA from patch [ [9]. Here, ¢;; =

l(_zt) +6;4,Vl =1,...,L, X is the mmW signal wavelength,
and d = % a= \/NaNu[\‘/’%, ey \(/XPLT} where p; is the path
loss and ¢ is the complex channel gain of path ! from the
mmW AP through patch [ to the UE [9]. Consequently, when
a controller at the mmW reflector selects the phase shift vector
W) at time slot ¢, the bit rate over the mmW link between the
mmW AP and a user through mmW reflector is given by [9]:
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where ¢ is the transmission power, w is mmW bandwidth, and

o? is the density of noise.
Fig. 1 is an illustrative example that shows how one mmW

AP and one mmW reflector are used to bypass the blockage
during two consecutive time slots ¢t and ¢t + 1. As we can
see in Fig. 1, since the user is in the kitchen during time
slots ¢t and t + 1, that area will be a dark area for the mmW
AP, the mmW reflector is therefore used to cover the user. In
this example, the mmW reflector uses 3 patches of reflectors.
Thus, the AoA of mmW AP signals directed to the patches
are 614,024,603, at time slot ¢t and 61 ¢41,60241,03 41 at
time slot ¢ + 1. Then, the mmW reflector shifts the phase
of the received signal following ¥, and W,,; during time
slot ¢ and t + 1, respectively. As we can see in Fig. 1, the
user receives data at time slot ¢ over the reflected mmW link
because the mmW reflector selects the phase shift values U,
such that the AoDs of the mmW signals ¢1 4, ¢2;, and ¢3¢
are matched to the user’s location. Meanwhile, at time slot
t + 1, the AoDs of mmW signals ¢q ¢11, P2++1, and @3 141
are not matched to the user’s location, due to user mobility
causing the reflector to select the wrong values for phase shifts,
W, 11, to reflect the received signals at time slot ¢ 4 1. In this
case, the phase-shift control policy needs to not only consider

r (D) = wlog, det [ Iy, +
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Fig. 1: An illustrative example of the system model.
the unknown future trajectory of mobile users but also to
adapt itself to the possible stochastic blockages in future time
slots. Thus, an intelligent phase shift-control policy, which can
predict unknown stochastic blockages, is required to guarantee
ultra-reliable mmW communication particularly for indoor
scenarios having a high numbers of dark areas.

B. Phase shift control for reflector-assisted mmW networks

Due to the stochastic changes of the mmW blockage be-
tween mmW AP or UE and mmW reflector, the phase shift-
control policy at a given slot ¢ depends on unknown future
changes in the LoS mmW links. To guarantee ultra-reliable
mmW links, instead of maximizing the expected bit rate, we
will seek to mitigate the risk which takes into account the
variance and skewness of LoS mmW links over time. To this
end, by using Taylor series, we define an exponential utility
function of the user’s bit rate before taking the expectation,
yielding higher order moments [10]. Consequently, we for-
mulate the phase shift-control problem for a reflector-assisted
mmW network as follows:

1 t+T—1
max — log [Er,{e("zt':t rﬂ)}7 3)
{[pif)]BxT}u ( ' )
S.t.

0<p <1Vie{l, . By €{t,. t+T—1}, 4
B

Spl =19 et t+T - 13, 5)
=1

where the parameter ;1 < 0 denotes the risk sensitivity
parameter and the operator E is the expectation operation [10].
In (3), the objective is to maximize the average of episodic
sum of future bit rate, Z?ﬁfl ry, while also minimizing the
variance of this sum so as to capture the tail of rate distribution,
using phase shift-control policies pgf), vt' e {t,...,.t+T—1}.
The risk sensitivity parameter penalizes the variance and
skewness of the episodic sum of future bit rate. In (3),
{rv|t' =t,...,t +T — 1} depends on the phase shift-control
policies and the unknown AoA from user’s location during
T-consecutive future time slots.

The phase shift-control problem in (3) is a combinatorial
and stochastic optimization problem whose objective is to
assign the direction of reflections to each arriving mmW
signals. This problem does not admit a closed-form solution
and has an exponential complexity [11]. The complexity of

the stochastic optimization problem in (3) becomes more sig-
nificant due to the unknown probabilities for possible random
network changes such as the mmW link blockage events and
the user’s locations [11] as well as the large size of the state-
action space for decision variables. However, we are interested
in developing a low-complexity policy to solve (3) that can
intelligently adapt to intensive dynamics of mmW links over
future time slots. Next, we propose a framework based on
principles of deep RL to solve the optimization problem in
(3) with low complexity and in an adaptive manner.

III. INTELLIGENT PHASE SHIFT-CONTROL POLICY

In this section, we present the proposed adaptive policy
based on a new deep and risk-sensitive RL framework to
solve the phase shift-control problem in (3). We model the
problem in (3) as a partially observable Markov decision pro-
cess (POMDP) represented by the tuple {S, 4,0, P, R, 00},
where S is the state space, A is the action space, O is the
observation space, P is the stochastic state transition function,
P(s',s,a) = Pr(sir1 = §'|st = s,ar = a), R(ag,st) is the
immediate reward function, and og is the initial observation for
the controller of the mmW reflector [12]. In our problem, the
action space is the set of possible shift phases A = {¥() €
RE|i = 1,...,B} for the reflector patches, the observation
is the bit rate over mmW link r; € O, and the immediate
reward is current bit rate R(a;,s;) = r;. The state is the
AoA from the patches to the user ¢; for [ = 1,..., L which is
not observable. We represent the policy of our POMDP in a
parametric functional-form g (at|r:) = Pr{a = at|o = r4,0}
where 6 is a parameter vector. If Ar = {(ap,ry)|t/ =
t,...,t + T — 1} is a trajectory of the POMDP during 7T-
consecutive time slots, then the stochastic episodic reward
function during future 7T'-consecutive time slots is defined as
Rry = if:thl r¢. The unknown probability of trajectory Ar
is equal to IIy(T) = E,J;Tt*l mo(az|re) Prirqq1ylas, re}. We
define the risk-sensitive episodic return for parameter vector 6
at time slot ¢ as J(8,t) =  log (Ex, {e!7*)}) [10]. Given
the parametric functional-form policy g, the goal of the phase
shift controller is to solve the following optimization problem:

(ana, J(6:1), (©)
S.t.
0< Wg(atll’f‘t/) < 1,Vay € .A7th € {t, eyt +T — 1},
(7
Z mo(ay|ry) =1,V € {t,...t + T — 1}, (8)
Va, €A

where 7" << N. We will define the parameter vector 8 and
the value of N in Subsection III-A. To solve the optimization
problem in (8), the phase shift controller needs to have full
knowledge about the transition probability IIg(7"), and all
possible values of Rp; for all of the trajectories during
t' =t,...,t+T—1 from the POMDP under policy 7g. Since the
explicit characterization of the transition probability and values
of the episodic reward for all of the trajectories is not feasible
in highly dynamic mmW neworks, we use an RL framework to



solve (8). More specifically, we use policy-search approache
to find the optimal phase shift-control policy to solve proble:
in (8) for the following reasons. First, value-based approach
such as Q-learning are oriented toward finding determinist
policies. However, the optimal policy is often stochastic an
policy-search approaches can select different phase shifts wit
specific probabilities by adaptively tuning the parameters i
6 [11]. Second, any small change in the estimated valt
of an action can cause it to be (or not) selected in tt
value-based approaches and these small changes are highl
probable in highly dynamic mmW networks. In this regar
the most popular policy-search method is the policy-gradie:
method. In the policy-gradient method, the gradient objectiy
function is calculated and used in gradient-ascend algorithn
The gradient V.J(0,t) of the risk-sensitive objective functic
is approximated as follow.

Theorem 1. The gradient of the objective function, J(6,t),
in (8) is approximated by:

Vo (0,t) = Ex, {VelogIlg(T) 9)
(1 = HEA{Br D Rre + S RE.,)),
where  Vollg(T) = P Ve logme(aslry) and

Ear{Rri} =5, Ho(T) Ry

Proof. Let Ar = {(ay,ry)|t =t,...,t+T —1} be a trajectory
during T'-consecutive time slots which leads to the episodic
reward Ry, = ﬁ,f;_l ry. The Taylor expansion of the

utility function for small values of v yields:

J(0,t) = En, {Rr.} + gVarAT{Rﬂt}. (10)

Since Vary, {R7+}
rewrite:

J(0,t) ~Epr, {Rr: + ngT,t} -

=En {R7,}— (IEAT{RT¢})2, we can

%([EAT{RT,t}f. (11)

The probability of the trajectory Ap is IIg(7T"). Thus,
we can write J(0,t) ~ Y, {lle(T)(Rr; + 5R%,)} —

&( >oa, o (T){RT,t}>2. Hence:

Vo (0,1) ~ Z{venea’)(m,t +5RE - (D)
Z Vollo(T){Rr,}) Zne H{Rr:1})-

Since Vgloglly(T) = vl?[l:("T(;‘F), we can write
Vo J(@, t) I~ [EAT {Vg logIlg (T) (RT,t + %R%,t)} —
WEA{VelogIle(T)Rr i }En{Rr+}. By performing
additional simplifications, we have:

Vo (0,t) ~ Ex, {VglogITg(T) x (13)

(1 = HEs{Br. D Rre + S RE,)),
where Vg log Ig(T) = :,Jf;*l Vo log mg(at|r:) because the
probability of trajectory Ar occuring is equal to Ilg(T) =

i,i‘:*l mo(at|re) Pri{ris1|as, r:} and log(zy) = log(x) +
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Fig. 2: The many-to-many deep RNN for implementing the mmW
reflector phase-shift control policy 7e.
log(y). u

Following Theorem 1, we can use (7) to solve the opti-
mization problem in (8) using a gradient ascent algorithm
and, then, find the optimal phase shift-control policy. To
calculate (7), we need a lookup table of all trajectories of risk-
sensitive values and policies over time. However, this lookup
table is not practically available for a highly dynamic indoor
mmW networks. To overcome this challenge, we propose to
combine deep neural network (DNN) with the RL policy-
search method. Such a combination was shown in [12], where
a DNN learns a mapping from the partially observed state to
an action without requiring any lookup table of all trajectories
of risk-sensitive values and policies over time. Consequently,
next, we propose an RL algorithm that uses a deep RNN based
on policy gradient for solving (8).

A. Architecture of the proposed deep RNN for solving (8)

We use a DNN to approximate the policy 7g(als) for
solving (8). Our proposed DNN for risk-sensitive and deep RL
method is presented in Fig. 2. Here, the parameters 8 € RY
includes the weights over all connections of the proposed DNN
where NV is equal to the number of connections [12].

1) Input Layer: since the Markov decision process is
partially observable, we consider the history of the POMDP
during h-consecutive previous time slots as the input layer of
DNN [11], [12]. Thus, the 1nput zy is equal to {x<F>|k =

.,h} in which z<F> = {pt )(h peplt = 1, B} U
{rt (h—k+1)}- The first and second inputs of entry in z<">
indicate the phase shift-control policies and received bit rate
at time slot ¢t — (h — k + 1).

2) Output layer: the output y is T' vectors of size B for
future time slots ¢ = ¢,...,t + T — 1, where element ¢ in the
vector captures the probability pgf) for selecting phase shifts
vector ¥ at time slot #'.

3) Long short-term memory (LSTM) layer: the dynamics of
LoS mmW links depend on the unknown blockage due to the
mobility of the target user over time. On the other hand, at
a given time slot, the user’s trajectory over future time slots



depends on the locations of the mobile user during previ
time slots, especially for an indoor scenario. Thus, we us¢
RNN to deploy a deep RL that aggregates the observation
mmW blockages during previous time slots and makes a ir
precise prediction of the next state of the POMDP compare:
traditional DNNs [13]. In particular, we use a many-to-m
RNN in which the encoder network has two LSTM layers v

h and % units, and the decoder network has one LSTM ¢
with 7" units, as shown in Fig. 2. There is a fully conne
h—to-% network between two layers of the encoder netw:
We use a drop out probability 0.2 to prevent over-fitting of
proposed deep RNN [13]. The input of LSTM unit k at layer
1is <F> where k = 1, ..., h. After using a Softmax function
for each LSTM unit at the encoder network, the output of
each unit h+1 at layer 3, y<"**> = 714, is a vector of size B
that includes the phase shift-control policy at each time slot
t, yShtt> = pi”. This architecture was chosen because the
encoder LSTM network maps the history of the POMDP to
the internal state shown by ¢<"> and a<"> in Fig. 2, more
precisely compared to other DNN architectures, and then the
decoder LSTM network can use this internal state to predict
the phase shift-control policy [13], [14].

Consider a training set M of M samples that is available
to train the RNN network. Each training sample m includes
a sample of policies and bit rates during h-consecutive
time slots before time slot ¢, {ﬂ((,m)(at/ 7)), r,g,m ) |t =
tm — h + 1,..,t,}, and policies and bit rates dur-
ing future T-consecutive time slots after time slot t,,,
75 (ap ), alT T =ty 4+ 1, oty + T}, Conse-
quently, based on Theorem 1 and by replacing the expectation
with sample-based estimator for Vg.J(0), we use the gradient-
ascend algorithm to train the RNN as follows:

M

oL (m)
Vo (0) ~ - ; (ve log TTY™ (T) x
(1 = pRar) R, + 5 RE,,) ) (14)
0 0+aVe(0), (15)
where VoIIJ™(T) = T Velog 7™ @™ |y,

D ro™ and Ry = LM Ry, Here,
« is the learning rate. In summary, to solve the optimization
problem in (3), we use deep and risk-sensitive RL and solve
(8) using the gradient ascent algorithm. Hence, we implement
the parametric functional-form policy mg with the proposed
deep RNN in Fig. 2. Then, we use (14) and (15) to iteratively
train the proposed RNN and optimize 6.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, the carrier frequency is set to 73 GHz
and the mmW bandwidth is 1 GHz. The number of transmit
antennas at the mmW AP and receive antennas at the UE are
set to 64 and 4, respectively. The duration of each time slot
is 1 millisecond. The transmission power of mmW AP is 46
dBm and the power density of noise is -88 dBm. We assume
that the mmW reflector assigns a square of 3 x 3 = 9 patches

From mmW AP Probability distribution of mobile user's location
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Fig. 4: Phase shift-control policy, 7.

to reflect the mmW signals. Each patch of the mmW reflector
shifts the phase of the mmW signals with a step of 5 radians
from the range [—, 7]. For generating the data set of mobile
users’ trajectories to train and test our proposed RNN, we
use a modified random walk model. In this case, the direction
of each user’s next step is chosen based on the probability
of user’s presence at next step location in a given indoor
scenario. The probability of user’s presence at each location
can be obtained by indoor localization techniques [15]. We
consider a 35-sq. meter office environment with a table at the
center. Fig. 3 shows the probability distribution of the user’s
locations in the office, the location of the mmW reflector, and
an illustrative example of a user trajectory. For comparison
purposes, we consider the optimal solution, as a benchmark
in which the exact user’s locations and optimal strategies for
the reflector during the next future 7-time slots are known.

Fig. 4 shows the approximated phase shift-control policy, g,
for different history length, h, when the size of the training set
is 90% of the data set, with © = —0.3, and T = 2. From Fig. 4,
we can observe that the RMSEs between the approximate and
optimal policies are 0.0135, 0.0081, and 0.0057, respectively,
for h = 10, h = 20, and A = 30. This is due to the fact that
when the history length increases, the deep RNN can capture
the previous dynamics over mmW links better and predict
the future mobile user’s trajectory more precisely. Thus, the
approximated phase shift-control policy based on RNN is near
the optimal solution.
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In Fig. 5, we show the RMSE of the approximated phase
shift-control policy with respect to the number of future
consecutive time slots, T, for different history lengths h and
training sizes. Following Fig. 5, the RMSE increases as the
length of future consecutive time slots used to predict the
policies increases. In addition, the RMSE decreases for high
value of history length. On average, the RMSE for history
length 30 is 26% less than a history length of 10. Moreover, as
the training size increases from 80% to 90% of the dataset, the
RMSE decreases. This is because a training deep RNN with
90% compared to 80% of the dataset leads to better prediction
of the phase shift-control policy.

In Fig. 6, we show the achievable rate, R, following the
approximate phase shift-control policy over time for different
history lengths and risk sensitivity parameters. As we can see
from Fig. 6, a lower value for the risk sensitivity parameter
leads to a higher reliability over the highly dynamic mmW
link. On average, the variance of the achievable rate is 30%
and 2% more than the variance of the optimal solution for
p = —0.1 and ¢ = —0.5, respectively. Moreover, when the
history length increases, the achievable rate from our proposed
RNN-based approach becomes closer to the optimal solution.
On average, the mean values of the achievable rates are 3%
and 1% less than the optimal solution for A = 10 and h = 30,
respectively. This is due to the fact that more history length
leads to lower RMSE (See Fig. 5).

V. CONCLUSION

In this paper, we have proposed a novel framework for guar-
anteeing ultra-reliable mobile mmW communications using an
Al-powered reflector that provides LoS mmW coverage by
reflecting mmW signals toward mobile users. First, based on
risk-sensitive RL, we have proposed a parametric risk-sensitive
episodic return to maximize the expected bit rate and mitigate
the risk of non-LoS mmW link in the presence of unknown
future stochastic blockage over the mmW links. Then, we
have analytically derived a closed-form approximation for the
gradient of the risk-sensitive episodic return. We have modeled
the parametric functional-form policy with a deep RNN, which
is trained based on the derived closed-form gradient of the

Achievable rate (Ry) [Mbps|

-m-p=—-0.1h=10
—0— = —0.1,h=30
-m-p=—-05h=10
——p = —0.5,h=30
e Optimal policy

0 5 10 15
Time slots (¢)

Fig. 6: Achievable rate, Rr.
risk-sensitive episodic return. Simulation results have shown
the effectiveness of the proposed approach and its ability to

achieve a near-optimal solution.
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