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Abstract— Compressing soft-obstacles secondary to a con-
trolled motion task is common for human beings. While these
tasks are nearly trivial for teleoperated robots, they remain
a challenging problem in robotic autonomy. Addressing the
problem is significant. For example, in Minimally Invasive
Surgeries (MISs), safely compressing soft tissues ensures the
surgical safety and decreases tissue removal, thus dramatically
decreases surgical trauma and operating room time, and leads
to improved surgical outcomes.

In this work, we define the problem of soft-obstacle avoidance
and project the safety motion constraints into the task space and
the velocity space. We illustrate the significance of addressing
this problem in the robotic surgery scenario. We present a
Recurrent Neural Networks (RNNs) based solution, which for-
mulates the problem as an inequality constrained optimization
problem and solves it in its dual space. The application of the
proposed method was demonstrated in the Raven II surgical
robot. Experimental results demonstrated that the proposed
method is effective in addressing the soft-obstacle avoidance
problem.

Index Terms— Soft Obstacle Avoidance, Autonomous Robotic
Surgery, Robot Arm, Recurrent Neural Network

I. INTRODUCTION

Surgical robots improve dexterity, minimize hand tremor,
decrease surgical trauma and deliver decreased postoperative
pain, recovery time and hospital stay[1], [2], [3]. Because
of the complexity of surgeries, existing surgical robots are
often locally teleoperated by human surgeons. However, the
desire for further improving surgical outcomes drives the
research of autonomous robotic surgeries, because comparing
with human beings, surgical robots are neither emotional nor
fatigue, and can be more efficient and precise[4], [5].

Driven by the need for improving surgical outcomes,
research on robotic surgery autonomy has achieved progress
and demonstrated promising results on surgical tasks. For
example, Kehoe et al. proposed a novel model predictive
control algorithm and implemented autonomous multilateral
debridement on Raven II surgical robots[6]. Sen et al.
implemented autonomous suturing through designing a novel
needle guide and optimizing needle size, trajectory and
control parameters with sequential convex programming[7].
Hu et al. studied the path planner for image-guided semi-
autonomous brain tumor ablation and verified the method
on Raven II robot[5].

These works effectively demonstrated the feasibility and
the advantages of autonomous robotic surgeries. However,
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environmental obstacles were not considered in these works.
And in real Minimally Invasive Surgeries (MISs), both rigid
and soft-obstacles are ubiquitous. For rigid obstacles (for
example, bony structures), existing obstacle avoidance con-
trol schemes can be directly applied. For soft obstacles (for
example, muscles, blood vessels and nerves), new control
schemes that mimic human experts’ “gentle pushing” are
desired, in order to decrease surgical trauma and operating
room time and to improve surgical outcomes.

In surgeries performed by human surgeons or teleoperated
surgical robots, making a pathway by pushing soft obsta-
cles aside naturally happens all the time, with or without
explicitly measuring force. However, it is not clear how to
“gently push” and existing obstacle avoidance algorithms do
not address the problem. More discussion on “gentle push”
in surgery is in Subsection III-A.

This work models the soft-obstacle avoidance problem as
a constrained optimization problem, where the safety motion
pattern constraints are converted into inequality constraints.
Thus the soft-obstacle avoidance problem becomes con-
strained optimization. Recurrent Neural Networks (RNNs)
are chosen to solve the problem because of the robustness
and the efficiency shared by RNNs based control schemes[8],
[9], [10], [11], [12], [13], [14]. In summary, the main
contributions of this work are:
• We define the common task of “compressing soft-

obstacles secondary to a controlled motion task as the
soft-obstacle avoidance problem and illustrate the ben-
efits of addressing the problem in autonomous robotic
surgeries.

• We propose a RNN based solution to address the
soft-obstacle avoidance problem, while converting the
motion pattern constraints into the inequality boundary
conditions of RNNs.

• We demonstrate the concept of the proposed method
on the Raven II surgical robots in the context of
autonomous robotic surgeries. The effectiveness of the
proposed method compared with three other control
schemes on control precision, robustness against noise
and the ability of soft-obstacle avoidance.

II. REDUNDANT MANIPULATOR RIGID OBSTACLE
AVOIDANCE

A. Manipulator Kinematic Control

The manipulator kinematic model defines the nonlinear
mapping from the end effector pose (in the task space) to the
joint states (in the configuration space), as r(t) = f

(
q(t)

)
,
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where q(t) ∈ Rn is the joint state vector and r(t) ∈ Rm is
the end effector pose vector, f (·) is the kinematic model[15].
The kinematic control problem is to find the corresponding
q(t) for a given r(t), as q(t) = f−1(r(t)).

Because the mapping f (·) are often nonlinear and non-
convex, it is popular to project the kinematic control problem
into the velocity space, through calculating the derivative
with respect to time, as: ṙt = Jq̇t, where J is the n×m Jaco-
bian matrix. Therefore, for full rank non-singular Jacobian
matrices, the kinematic control problem can be to simply
calculate the inverse Jacobian.

B. Redundant Manipulator Obstacle Avoidance

When the manipulator has more control Degrees of Free-
dom (DoF) than the task constraint DoF (n > m), the ma-
nipulator is considered to have kinematic redundancy, and
there exists an infinite number of points in its configuration
space corresponding to a single point in the task space.
This property is widely utilized to address the obstacle
avoidance problem, and many intelligent robots are equipped
with redundant manipulators for great versatility and broad
applicability.

It is natural to treat the obstacle avoidance as an extra con-
straint and augment the task space with it. This technique has
been named Task Space Augmentation, and a family of these
algorithms have been extensively studied and successfully
applied in real world applications[15], [16]. Mathematically,
this technique is described as:

ṙAt = JAq̇t

JA = [JT,JT
o ]

T

rA(t) = [ f
(
q(t)

)T
, fo
(
q(t)

)T
]T

(1)

, where fo(q(t)) ∈Rp corresponds to the obstacle avoidance
constraint and p is the dimension of the constraint.

Another family of classical solutions converts the obstacle
avoidance constraint into a cost function h(q) and the joint
velocity vector, q̇0 that corresponds to obstacle avoidance is
determined by the gradient of the cost function[15], [17].
The components of q̇0 located in the null space of J can be
selected by (I−J†J), and by adding the selected components
to the motion of moving end-effector(J†ṙ), the optimal joint
velocity that minimizes h(q) will be achieved as: q̇ = J†ṙ+
(I− J†J)q̇0, where J† is the Moore-Penrose pseudo-inverse
defined as J† = JT(JJT)−1.

III. RECURRENT NEURAL NETWORKS FOR
SOFT-OBSTACLE AVOIDANCE

A. Soft-obstacle Avoidance in Robotic Surgery

The importance of the soft-obstacle avoidance problem
in surgeries was identified when we were studying the
correlations between motion patterns and the surgical skill
levels in endoscopic skull base surgeries[18], [19], [20]. It
is well known that experienced surgeons generate less bone
and soft tissue removal than novice surgeons, which not
only decreases surgical trauma and recovery time, but also
leads to lower health care costs and reduces the possibility

of infection[21]. When we watched experienced surgeons
performing sinus and skull base operations, we found they
have better dexterity which allows compression of soft
tissues(Fig.1). It is straightforward to show that soft-obstacle
avoidance leads to decreased surgical removal, because al-
lowing soft tissue compression enlarges the configuration
space, which enlarges the task space.

Fig. 1: Endoscopic View of Minimally Invasive Skull Base
Surgery on a Cadaver. An expert surgeon was inserting an
instrument and an endoscope through the left and the right
nostrils, respectively, to reach the pathology. The experiment
demonstrated that gently pushing soft tissues effectively
decreases the surgical trauma and the operating room time.

Inspired by observing human expert surgeons’ operations,
the problem of “soft-obstacle avoidance” in robotic surgeries
is defined as: the contact between the manipulator links
and soft obstacles is allowed, under the condition that the
deformation of a soft obstacle does not lead to damage,
such as tearing. Soft-obstacle avoidance is ubiquitous in
Minimally Invasive Surgeries (MISs), thus is critical in
automated robotic surgeries, however, remains a challenge.

From the robotics perspective, the soft-obstacle avoidance
problem is different from the compliance control problem
and the constrained motion control problem in the context
of robotic surgeries. The latter two were often used in end
effector motion optimization for improving surgical out-
comes in teleoperated robotic surgeries. For example, cutting
tissues requires the control of both the position and the
force of the end effector[22], [23], and compliance control is
suitable for these tasks. Suturing requires the end effector to
move with desired velocities, and constrained motion control
can address the problem[24]. The soft-obstacle avoidance
requires that all links of a manipulator should not compress
soft tissues deeper or faster than the safety thresholds.
While it is easy to check with these rules for non-redundant
manipulators: projecting the desired end effector position
and velocity to the contact points and comparing with the
thresholds[25], for redundant manipulators, the redundancy
can be and should be used to minimize the safety risk.
RNN control schemes are competent to these requirements,
as discussed in Section III-C.

B. RNN Control Scheme with Improved Control Precision

The constrained optimization of redundant manipulator
motions can be modeled as a Quadratic Programming prob-
lem: the defined cost function is the optimization target
and the optimization is subject to constraints, such as the
kinematic model, the joint limits etc.[13]. The process can
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be mathematically defined as:

min
q̇

q̇TW q̇+ cTq̇ (2a)

s.t. ṙd = Jq̇, (2b)
q ∈Ω (2c)

where J = ∂ f/∂q ∈ Rm×n, ṙd = ∂r(t)/∂ t ∈ Rm, and q̇ =
∂q/∂ t, and Ω⊂Rn denotes the set of the valid joint angles.

The problem can be more efficiently solved in its dual
space, through introducing the Lagrange multiplier and pro-
jecting the problem into its dual space[13]:

L(u,λ ) = uTu+λ
T(ṙd− Ju), (3)

where u is the dual vector of q̇[13], [26].
Though the introduction of Eqn.3, it can be proved that

through the Karush-Kuhn-Tucker condition, the solution to
Eqn.2 equals the solution to the following equation[27], [28]:

u= PΩ(u−
∂L
∂u

)

ṙd = Ju
(4)

, where PΩ is a projection function that reflects the boundary
conditions[13], [26].

Eqn. 4 reminds us of Recurrent Neural Networks as it is
the equation of the neural dynamics of a projected RNN
(Eqn. 5). More importantly, it has been proven that the
equilibrium of the projected RNN equals the optimal solution
of the original problem (Eqn.2)[13], [29], [26].

εu̇=−u+PΩ(u−
∂L
∂u

), (5a)

ελ̇ = ṙd− Ju (5b)

where ε > 0 is a scaling factor. PΩ(x) = argminy∈Ω||y− x||
is a projection function from domain Ω′ to Ω, where x ∈Ω′

and y ∈Ω.
However, the control scheme described in Eqn. 5 is subject

to error accumulation[8]. In order to improve control preci-
sion, we close the loop of position tracking by feeding the
position tracking error, e= rd−r, back into the optimization
target function, where rd is the desired target and r is the true
position from observations and/or estimations. Therefore, the
control scheme evolves to[8]:

u= PΩ(−kJT(r−rd)).

ṙd = Ju
(6)

The projection function PΩ bounds the neural activities. In
order to fulfill the joint limits, we need to project the limits
from the joint angle space to the joint velocity space as[8]:

PΩ(x) =

 d− for x≤ d−

x for d− < x < d+

d+ for d+ ≤ x
(7)

, with boundary conditions as:{
d− = c1(q−q−)
d+ = c2(q

+−q),
(8)

where q denotes the joint angle, q+ and q− are the upper
and the lower joint limits; and c1 and c2 are two positive
scaling factors. Intuitively, while the joint is approaching its
limits, its corresponding boundary condition approaches to
zero, thus the robot arm will not break the joint limits. The
two scaling factors can adjust the absolute magnitude of joint
velocities and the smoothness of velocity decrease.

C. Inequality Constraints Optimization for Soft-obstacle
Avoidance

There are many strategies for the rigid obstacle avoidance
problem. For example, an efficient way for redundant manip-
ulators is to construct constraints for avoiding the collision
and augment the task space with it (Eqn.1)[30]. Generally,
the collision can be avoided by forcing the potential collision
links to stop or to move toward the “escaping” direction. This
can be mathematically explained as:

ṙo = Joq̇, (9)

where ṙo is the velocity at the potential collision point on the
robot arm, Jo is the Jacobian with respect to this point, and
q̇ is the joint velocity. So making ṙo to stay at zero, or to be
a velocity that points to the escaping direction can avoid the
collision.

However, two mainly disadvantages prevent applying the
scheme (described in Eqn.9) to the soft-obstacle avoidance
problem. One is, the contact is not preferable but is still
allowed, if the contact is conducted in a “safe manner”. Sec-
ondly, augmenting task space adds extra constraints which
“consume” redundancy, while the redundancy is valuable for
the motion optimization.

In order to address these problems, the proposed method
converts the soft-obstacle avoidance problem to inequity
boundary conditions, so contact is allowed, but also safe
motion patterns are enforced by the RNN neural activity
boundary conditions and do not consume the robot arm
redundancy.

ṙo > Joq̇, (10)

where ṙo = sign
(
k(ro)

)
◦vmax(dc) is the safe velocity thresh-

old, operator ◦ indicates Hadamard product (element-wise
product), function sign(x) is the sign function ( −1, 0, and
1 for x < 0, x = 0 and x > 0, respectively), k(ro) is the
direction of velocities, which points to the counter-direction
of the compression as: ro,0−ro, where ro,0 is the initial tissue
contacting position. vmax(dc) is the maximum allowed speed
for safe contact, which correlates to the compression depth
dc = ||ro,0− ro|| of soft tissues.

With the inequity defined in Eqn. 10, the RNN control
scheme can find the optimal (defined by the optimization
target function in Eqn. 2) joint velocities that fulfill all
constraints (joint limits, contact motion etc.). However, the
maximum allowed compression depth dcMax is not fulfilled
by the scheme yet. In order to do so, the requirement to exert
no more compression than dcMax can be achieved by forcing
the vmax(dcMax) = 0. Similarly, the corresponding joint ve-
locity will be q̇oMax. Therefore, the soft-obstacle avoidance
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can be achieved by modifying the boundary conditions to
the following form, as:{

d−i = max
(
c1(qi−q−i ), q̇s,i

)
d+

i = c2(q
+
i −qi)

, for q̇s,i ≤ 0{
d−i = c1(qi−q−i )
d+

i = min
(
c2(q

+
i −qi), q̇s,i

) , otherwise,
(11)

where q̇s,i = min(q̇o,i, q̇oMax,i), i = 1, · · · ,n denotes the i-th
link.

In summary, the proposed soft-obstacle avoidance control
scheme is mathematically described as Enq.6 with the projec-
tion function defined in Eqn.7 under the boundary conditions
described in Eqn. 11.

IV. EXPERIMENTAL RESULT AND DISCUSSION

RNN control schemes have demonstrated improved com-
putational efficiency, precision and robustness, comparing
with their numerical equivalents[9]. In this section, we will
compare the proposed method with representative RNN
control schemes on the precision, the robustness and the
ability of obstacle avoidance.

RNN control schemes have demonstrated improved com-
putational efficiency, precision, and robustness, comparing
with their numerical equivalents[9]. In this section, we will
compare the proposed method with representative RNN
control schemes on the precision, the robustness and the
ability of obstacle avoidance.

To our best knowledge, the proposed method is the first
RNN control scheme that is capable of soft-obstacle avoid-
ance. To provide a benchmark, three popular RNN con-
trol schemes were compared with the proposed method.For
quick reference, these algorithms are referred as “Method1”,
“Method2” and “Method3”. “Method1” [30] addresses the
obstacle avoidance problem for redundant manipulators in
the velocity space. “Method2” [31] addresses the obstacle
avoidance problem in the acceleration space. “Method3”
[32] optimizes motion in obstacle-free environments, but it
addresses the error accumulation problem.

The four algorithms were compared in software simulation
for the Raven II surgical robot, a popular surgical robot plat-
form that has been deployed at 17 sites world wide[33]. The
mechanical design, the kinematic model and the dynamic
model, and the parameters of simulation can be found in
[34]. k = 100, c1 = c2 = 0.5 were chosen empirically for the
proposed method.

A. Control Precision

The control precision was verified in simulation experi-
ments. The task is to pursue a circular trajectory and the 7-th
DoF of Raven is not utilized, so the task DoF is three and
the manipulator DoF is six. Because “Method3” has superior
precision, but is not capable of obstacle avoidance, all four
algorithms were compared in obstacle free environments.
Method1 and Method2 suffer from error accumulations,
so the manipulator starts on the trajectory; the other two
methods have random start positions. An example trajectory
from the proposed method was shown in Fig.2, from which

we can see that even though the arm has huge initial tracking
error, its errors converge quickly and follows the desired
trajectory. The tracking errors of the four algorithms were
shown in Fig.3 and listed in Table I. From these results, it
is clear that the proposed method has an advantage on the
control precision.

Fig. 2: Tracking a Circular Trajectory with Proposed Method
in Obstacle Free Environment. Raven II started from a
random position, and the initial arm pose is indicated by
thick colored lines. The links’ trajectories were indicated by
thin colored lines. The desired trajectory was indicated by
green lines, which is overlaps by the end effector trajectory
indicated by red lines. It is clear that because the proposed
method does not suffer from the error accumulation, even
though the initial tracking error is big, the errors converge
fast.

Fig. 3: Tracking Error Comparison of the Four Algorithms
on Circular Trajectory Tracking.

TABLE I: RMS Position Tracking Error Comparison.

Method1[30] Method2[31] Method3[32] Proposed
RMS 0.0280 0.0249 0.0089 0.0081

B. Robustness Against Noise

Because of the cable driven mechanism, surgical robots
model uncertainties reduce control precision[35]. The pro-
posed method closed the control loop with a feedback of
control errors to improve robustness to process noise. In
order to verify the robustness against additive process noise,
we artificially injected Gaussian White noise with standard
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(a) σ = 0.01- Method1 (b) σ = 0.01- Method2 (c) σ = 0.01- Method3 (d) σ = 0.01-Proposed

(e) σ = 0.25- Method1 (f) σ = 0.25- Method2 (g) σ = 0.25- Method3 (h) σ = 0.25-Proposed

Fig. 4: Tracking Robustness Against Additive Gaussian White Noise.

deviations: σ = 0.01 and σ = 0.25. We are aware that
probably no manipulator has control error as bad as σ = 0.25
(about 43◦ for revolute joints and 0.75m for prismatic joints
with 99.7% confidence), but the extremity is helpful for the
verification purpose.

Fig.4 shows the tracking errors with respect to noise levels.
From the figures we can see that both Method3 and the
proposed method have better robustness by avoiding error
accumulations.

C. Obstacle Avoidance
As Method3 is not capable of obstacle avoidance, thus was

excluded from the obstacle avoidance experiments.
In the experiments, we use a plane-shaped obstacle and

located the target behind the plane to simulate the scenario
that a surgical robot is required to reach a target beyond
a surgical pathway boundary. In order to better visualize
experimental results, we purposely increased the maximum
allowed compression depth dcMax = 10cm, for matching the
size of Raven II robot. We defined a motion pattern that the
allowed velocity to exponentially decrease with respect to
compression depth, dc, as: vmax =−(dcMax/log

(
dcMax−dc)

)
.

The proposed method can be applied to various definitions of
dcMax and vmax, according to surgical procedures and tissue
types.

Fig.5 visualizes the trajectories of the three methods in
soft obstacle. From the figure we can see that while Method1
and Method2 stopped when they reached the boundary, the
proposed method compressed the boundary and eventually
reached the target. The velocity at the contact points were
shown in Fig.6. We can see that Method1 and Method2
were still trying to reach the target but the velocities at
the contact points remained nearly zero, and the proposed
method dramatically reduced the velocity at the contract
point in order to avoid the damage to the surgical pathway
boundary but slowly reached the target, as desired.

The distances between the target and the end effector
were compared in Fig.7 to verify that the surgical robot
reached the desired target under the proposed control scheme.
The clinical significance of the proposed scheme is clear
as: an extra cut was avoided by the proposed scheme, thus

Fig. 5: Trajectory Comparison in Soft-obstacle Avoidance
Experiments. The simulated surgical robot was required to
reach a target (green ball) behind the soft obstacle (blue plane
constituted by triangles). The end effector trajectories were
denoted by red lines. The proposed scheme allows the arm
to compress the soft obstacle, thus the goal was reached.

Fig. 6: Contact Point Velocity Comparison. The velocity at
the contact point was visualized in X, Y and Z directions,
respectively. The green dashed line indicates the boundary of
damage-free velocities. The proposed scheme regulates the
contact velocity and allows the surgical robot to “gently”
(the contact velocity and the compression depth are within
the defined safety threshold) push a soft obstacle.

the surgical trauma and costs can be further decreased in
automated robotic surgeries.

V. CONCLUSION

In this work, a RNN based control scheme was proposed
to address the soft-obstacle avoidance problem, which is
critical and challenging in autonomous robotic surgeries. The
proposed method meets the limits the maximum compression
depth and the requirements on motion patterns at the same
time thus can be easily applied to various types of soft
tissues and surgical procedures. The proposed method can
be easily extended to other applications whose constraints
can be converted into the compression depth and the velocity
patterns.
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Fig. 7: Distance between Target and End Effector Compar-
ison. The distance between the target and the end effector
were compared to verify that the surgical robot reached the
desired target under the proposed control scheme.
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