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ABSTRACT: Fracture patterns experienced under a dynamic uniaxial compressive load are highly sensitive to rock
microstructural defects due to its brittleness and the absence of macroscopic stress concentration points. We propose two
different approaches for modeling rock microstructural defects and inhomogeneity. In the explicit realization approach,
microcracks with certain statistics are incorporated in the computational domain. In the implicit realization approach,
fracture strength values are sampled using a Weibull probability distribution. We use the Mohr-Coulomb failure criterion
to define an effective stress in the context of an interfacial damage model. This model predicts crack propagation at angles
±φch = ±(45 − φ/2) relative to the direction of compressive load, where φ is the friction angle. By using appropriate
models for fracture strength anisotropy, we demonstrate the interaction of rock weakest plane and φch. Numerical results
demonstrate the greater effect of strength anisotropy on fracture pattern when an explicit approach is employed. In
addition, the density of fractures increases as the angle of the weakest planes approaches ±φch. The fracture simulations
are performed by an h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that can accommodate
crack propagation in any directions.

Acknowledgments: The authors gratefully acknowledge partial support for this work via the U.S. National Science
Foundation (NSF), CMMI - Mechanics of Materials and Structures (MoMS) program grant number 1538332 and CCF -
Scalable Parallelism in the Extreme (SPX) program grant number 1725555.

1 INTRODUCTION

Heterogeneities in elastic properties and fracture strength
can be either explicitly or implicitly incorporated in rock
mechanics. In explicit approaches defects, microcracks,
and other inhomogeneities are directly incorporated in the
model. For example, in lattice models, the bulk is repre-
sented as a network of particles connected by springs. The
inhomogeneity can be readily incorporated in lattice mod-
els by sampling the strength of springs from an assumed
probability distribution [1,2]. For Finite Element Methods
(FEMs), the explicit modeling of defects such as micro-
cracks often requires a considerably finer discrete grid to
capture the geometries of the defects. This in turn can sub-
stantially increase the computational cost. Discrete Ele-
ment Method (DEM) and peridynamics methods model the
media as a collection of interacting particles. Similar to lat-
tice models, the material inhomogeneity can be explicitly
modeled by assigning different bond stiffness between the
particles. Some hybrid methods such as combined finite-
discrete element method (FDEM) [3], have been proposed
to combine the computational advantages of the FEMs and
flexibility of discrete methods in modeling inhomogeneity.
For example, [4, 5] represents cracked regions by discrete
elements while the intact parts are discretized by finite
elements.

While accurate, explicit approaches can become quite

expensive if defects of all sizes are directly incorporated in
the computational model. The implicit approaches only
include the collective effect of microstructures in macro-
scopic material models. Homogenization approaches derive
macroscopic properties such as elastic moduli by solving
the underlying problem in a Volume Element (VE). Similar
approaches can also be used to calibrate continuum dam-
age models, see for example [6–9]. For a macroscopically
homogeneous material, the derived values converge to a
unique value as the VE size approaches the size of the Rep-
resentative Volume Element (RVE)—referred to as Repre-
sentative Elementary Volume (REV) in rock mechanics.
However, by using RVEs the statistical variations of prop-
erties from sample to sample, and spatial inhomogeneities
of the material are lost. As an alternative, Statistical Vol-
ume Elements (SVEs), such as those in [10], use small
enough VEs that such variations are preserved. Finally,
phenomenological models attempt to represent material
inhomogeneity and statistical variation without formally
homogenizing it properties. The Weibull model [11,12], is
one of such models that can provide an accurate represen-
tation of statistical nature of fracture strength of brittle
materials such as rock.

Beside the higher accuracy and fidelity offered by ex-
plicit approaches, there are certain applications where de-
fects such as cracks are preferred to be represented explic-
itly. For example, explicit representation of cracks greatly
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simplifies the application of hydraulic load on crack sur-
faces as opposed to complex thermodynamic formulations
needed when cracks are implicitly modeled by a phase field
fracture model [13] or other similar approaches. Moreover,
the necessity of an explicit approach magnifies when the
interaction of hydraulically loaded with in-situ cracks is
considered [14]. In §5 as a future work, we proposed a hy-
brid approach that would combine the advantages of both
explicit and implicit approaches.

In [15, 16], it is shown that incorporating material in-
homogeneity plays an important role in predicting realis-
tic fracture patterns. For rock, material anisotropy also
plays a crucial rule; the existence of bedding planes not
only affects the elastic properties, but also makes the rock
weaker parallel to these planes; that is when the tensile
load is normal to the direction of bedding planes. There
are two main approaches to model the anisotropy of rock
fracture properties. In [17, 18], a failure criterion is ex-
pressed in terms of invariants of stress tensor and a sec-
ond order so-called microstructure tensor. While based on
sound continuum mechanics theories, it is not straightfor-
ward to extract the fracture strength of rock for a given
direction. In the second approach, typical failure crite-
ria such as Mohr-Coulomb or Hoek-Brown are generalized
such that for each direction, the parameters of these mod-
els are angle dependent; see for example [19].

We propose two approaches to model rock hetero-
geneities. In the explicit realization approach, we use cer-
tain statistics for microcrack density, location, and length
to generate random realizations that contain a large num-
ber of microcracks. In the implicit realization approach,
rather than using SVEs to homogenize effective proper-
ties, we use the phenomenological Weibull model to sample
fracture strength values at the vertices of a discrete finite
element mesh. As for modeling rock anisotropy, we adopt
the second general approach described above for implicit
realizations, in that the parameters of a failure criterion
(Mohr-Coulomb) are angle dependent. For explicit real-
izations, the realized cracks are heavily oriented around a
given angle. The problem specifically studied is the frac-
ture of rock under dynamic uniaxial compressive load. For
an isotropic model, the friction angle of rock dictates a
preferable angle for the formation of cracks. However,
when anisotropy is included, the competition of the nat-
ural angle of fracture under compressive load and the an-
gle corresponding to weakest plane results in interesting
fracture patterns for both explicit and implicit methods.
The underlying elastodynamic problem is solved by an h-
adaptive asynchronous Spacetime Discontinuous Galerkin
(aSDG) method [20–22]. The fracture is modeled using
an interfacial damage model [23]. A brief overview of the
contact/fracture models and certain extensions for mod-
eling anisotropic fracture based on Mohr Coulomb failure
criterion are presented in the next two sections. Finally,
§4 the effect of fracture strength anisotropy is studied for
a problem where rock is under compressive dynamic load.

2 A RATE-DEPENDENT INTERFA-
CIAL DAMAGE MODEL

This section provides an overview of the damage model
presented in [23]. One difference will be the use of an ef-
fective stress model that is appropriate for the compressive
mode fracture analysis presented in §4.

Instead of a traditional cohesive model, we present an
interfacial damage model to represent fracture and contact
modes on a crack surface. A scalar damage parameter, D,
is used to interpolate between fully bonded (D = 0) and
debonded (D = 1) states of an interface. It should be noted
that in the majority of damage formulations, the stiffness
of the bulk is degraded by the damage value. However, in
our formulation, the damage model degrades the state on
an interface. The contact modes include contact–stick and
contact–slip modes as described in [24] as well as a separa-
tion mode which corresponds to fracture or crack opening.
The use of Riemann solutions ensures that correct interface
kinematic compatibility conditions are satisfied without re-
sorting to penalty methods that are often combined with
traditional cohesive models.

The formulation of traction and velocity values on a
fracture section is comprised for two stages: First, the so-
lutions within each of the three contact modes are pre-
sented in §2.1. Second, by using interpolation values such
as D interface traction and velocity are obtained by form-
ing a weighted average of individual contact mode solu-
tions. This is described in §2.2. Finally, an effective stress
model for fracture under compressive stress is presented in
§2.3.

ξ1, e1

ξ2, e2

x1

x2

t

Γ P

(s−,v−)
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(s̆, v̆±)

Figure 1: Local coordinate frame at an arbitrary lo-
cation P on a spacetime fracture surface Γ .

2.1 Riemann Contact Solutions
Figure 1 shows a local coordinate system at an arbitrary
location P on contact interface Γ in spacetime. The lo-
cal coordinate (ξ1, ξ2, t) is chosen such that ξ1-direction is
normal to Γ . The quantities from opposite sides of Γ , dec-
orated with superscripts + and −, define the initial data
for the Riemann problem. Distinct velocity traces, v±,
and tractions, s±, defined by s = σ · n in which the same
spatial normal vector, n, is used to compute s+ and s−

from the traces of the stress tensor field on the interface,
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σ±. The Riemann solutions include the traction vector s̆
and velocity vectors v̆± that act on the interface. The
Riemann solutions are obtained by preserving the charac-
teristic values of the elastodynamic problem on each sides
of the fracture interface and enforcing the appropriate type
of kinematic compatibility (relation between v̆+ = v̆−) for
each type of contact solution. The Riemann solutions de-
pend on material impedance values from the two sides ±,

Zi± :=
{

(cdρ)± i = 1
(csρ)± i = 2, 3

(1)

in which the index i corresponds to spatial directions in
the local frame shown in fig. 1 and the longitudinal and
shear wave speeds are given by,

cd =

√
λ+ 2µ
ρ

, cs =
√
µ

ρ
. (2)

where ρ is mass density and λ, µ are Lamé parameters.
The Riemann solutions for contact–stick and bonded

modes, decorated with subscripts ST and B respectively,
are

s̆i
B = s̆i

ST = s̆i = si+Zi− + si−Zi+

Zi− + Zi+ + Zi−Zi+

Zi− + Zi+ (v+
i − v

−
i )

(3a)

v̆B
i = v̆ST

i = v̆i = si− − si+

Zi− + Zi+ + v+
i Z

i+ + v−
i Z

i−

Zi− + Zi+ (3b)

In separation mode, v̆+ and v̆− are independent. The
target tractions are, however, set to S, which in particular
is obtained by the particular fracture model used at the
interface. Similar to [15] we set S = 0. The Riemann
solutions for the separation case, decorated by S, are,

s̆i
S = s̆i = Si (4a)

v̆S±

i = v̆±
i = v±

i ±
Si − si±

Zi± (4b)

In contact mode, a friction model determines which of the
two contact–stick or contact–slip modes holds. This re-
quires the definition of themagnitude of tangential traction
for bonded Riemann solutions as,

τ̆B :=
{√

(s̆2
B)2 + (s̆3

B)2
d = 3

|s̆2
B| d = 2

(5)

where d is the spatial dimension. For the transition be-
tween contact–stick and contact–slip modes we use the
Mohr–Coulomb friction law, which states that contact–slip
mode holds if,

|τ̆B| > k
〈
−s̆1

B
〉

+ (6)

in which k is the friction coefficient and 〈.〉+ is the positive
operator. Under these conditions, the magnitude of target
shear traction is given by k

〈
−s̆1

B
〉

+. The normal compo-
nent of the traction and velocity vectors are enforced using
the bonded Riemann solutions Eq. (3) (for i = 1) and the
tangential velocities are obtained by preserving the charac-
teristic values in directions i 6= 1 and using Mohr-Coulomb
model for the tangential traction. For brevity, these solu-
tions are not presented here and can be found in [24].

2.2 Macroscopic Target Values

The macroscopic, i.e., averaged, solutions on Γ are ob-
tained by interpolating between bonded and debonded so-
lutions, using the damage parameter D,

s∗ := (1−D)s̆B +Ds̆D (7a)
v∗± := (1−D)v̆B +Dv̆±

D (7b)

in which subscripts B and D denote Riemann values for
bonded and debonded conditions.

The bonded solutions (s̆B , v̆B) are obtained from
Eq. (3), while any of the separation, contact–stick, or
contact-slip solutions can hold for the debonded values
s̆D, v̆±

D. First, it should be determined whether the
debonded part is in contact or separation model. Sep-
aration mode holds if the normal bonded traction s̆1

B is
positive or the normal displacement jump is positive at P
on Γ . Physically, the separation to contact mode tran-
sition is nonsmooth. Hence, a regularization scheme is
proposed in [24] where the relative contact fraction tran-
sitions debonded solutions from complete separated val-
ues at η = 0 to full contact values at η = 1. On the
other hand, [24] shows that stick to slip transitions are in
fact smooth. Thus, the binary state relative stick frac-
tion, γ ∈ {0, 1} is used to transition between contact–stick
(γ = 1) and contact–slip (γ = 0) modes. The Mohr–
Coulomb condition Eq. (6) is used to determine whether
stick or slip conditions hold.

In summary, s̆D and v̆±
D are interpolations of sepa-

ration solutions Eq. (4), bonded/contact–stick solutions
Eq. (3), and contact–slip [24] solutions. Considering the
three relative fractions, D, η, and γ, it is easy to show that
s∗ and v∗± in Eq. (7) can be expressed as linear sums of
the Riemann solutions from three distinct response modes,
bonded/contact–stick (B), contact–slip (SL), and separa-
tion (S):

s∗ := aBs̆B + aSLs̆SL + aSs̆S (8a)
v∗± := aBv̆B + aSLv̆±

SL + aSv̆±
S (8b)

with the coefficients

aB = 1−D +Dηγ (9a)
aSL = Dη(1− γ) (9b)
aS = D(1− η) (9c)

2.3 Damage Evolution Law

Bulk damage models that lack an intrinsic length scale,
may result in non-convergent numerical solutions where
damage localizes to layers whose width continues to shrink
without limit as the mesh is refined [25,26]. Similar prob-
lems exist for the interfacial damage models that lack a
length scale. Instead of directly incorporating a length
scale in the model, a length scale can be introduced
through a time scale in the damage evolution law, as in [27]
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for a bulk model and [26, 28] for an interfacial model. We
follow a similar approach and adopt the model in [29],

Ḋ =
{

1
τ̃

[1−H(〈Dt −D〉)] D < 1
0 D = 1

, (10)

in which τ̃ is a relaxation time, and Dt is a target damage
value that corresponds to the damage value under quasi-
static loading conditions. The function H has unit value
at zero and decreases to zero at infinity. Following [29], we
use H(x) = exp(−ax). From the form of H, a maximum
damage rate of 1/τ̃ is implied by Eq. (10).

In general, Dt depends on the states on both sides
of the interface. We focus on a model where damage is
mostly stress driven. In [23] we introduced a scalar effec-
tive stress, as s̆ :=

√
〈s̆1

B〉2 + (βτ̆B)2, where as in [30] β
is the shear stress factor, and the positive operator, 〈.〉,
ensures that no damage evolute incurs under compressive
normal stress. There are two problems with this effective
stress model. First, the shear strength of rock does not
increase as the confinement pressure increases. Second, it
predicts failure along ±45◦ for a uniaxial compressive test.
As a result, in [31] we proposed an effective stress model
that is based on Mohr-Coulomb failure criterion,

s̆ := τ̆B + kσ̆1
B (11)

where k is the friction coefficient introduced in Eq. (6).
The angle of friction φ is defined as,

φ = tan−1(k) (12)

Figure 2: The compressive strength, p̄, and the criti-
cal angle, φch, for the Mohr–Coulomb model.

The condition s̆ = s̄ corresponds to the Mohr-
Coulomb failure criterion as shown in fig. 2a) and fracture
strength based on Eq. (11) corresponds to cohesion, often
denoted by c. This model also captures the correct com-
pressive strength; as shown in fig. 2b), for a compressive
loading scenario where σbb is set to the uniaxial compres-
sive strength of rock p̄, based on its corresponding stress
state in 2a), for isotropic rock the value of p̄ and the orien-
tation of fracture plane with this load are determined as,

p̄ = 2σ̄ cos(φ)
1− sin(φ) = 2σ̄ 1√

1 + k2 − k
(13a)

φch = ±
(
π

4 −
φ

2

)
(13b)

Once the effective stress is formulated based on the
Mohr-Coulomb failure criterion, Dt is determined by,

Dt =


0 s̆ < s,
s̆−s
s̄−s s ≤ s̆ < s̄

1 s̄ ≤ s̆
, (14)

where 0 < s < s̄ are quasi-static strength thresholds for
the initiation of damage evolution and complete failure,
respectively. s̄ is referred to as the fracture strength.

3 STATISTICAL ASPECTS

3.1 Spatial Inhomogeneity
In the explicit realization approach, microcracks are ex-
plicitly incorporated in the computational domain. The
end points of these cracks are called fracture surface tips
(FSTs) In the implicit realization approach, the effect of
the in-situ defects can be homogenized to form an implicit
representation of rock strength. In this approach, cracks
can nucleation from points with lower strength and/or high
stress values. In short, the tips of all active cracks in a
computational domain, where pre-existed or nucleated af-
terward, is called a FST. In the aSDG method, used for
the analyses in §4, cracks can only propagate from FSTs.

V
θ

P
s1

s2
s̆ s̄

Figure 3: The angular distributions of effective stress
s̆ and fracture strength s̄ around the FST V. The
terms in Eq. (15) are s1 = σ̆1

B and s2 = τ̆B.

Figure 3 shows the distribution of s̆ and s̄ around the
FSF V. The definition of effective for any arbitrary angle
θ follows the definition Eq. (11) on fracture surfaces,

s̆(θ) := τ̆B(θ) + k(θ)σ̆1
B(θ) (15)

A crack is extended for which the ratio s̆/s̄ is a lo-
cal maximum with a value greater than or equal to unity
Once a crack propagation direction is assigned to an FST,
the underlying numerical method should accommodate an
extension along the proposed direction. Unlike eXtended
finite element methods (XFEMs) [32, 33] and generalized
finite element methods (GFEMs) [34] where the underly-
ing finite element mesh is not modified, mesh adaptive
schemes, e.g., [35, 36], move finite element vertices such
that a finite element boundary is aligned with the pro-
posed direction. Herein, we take the latter approach in
that adaptive operations in spacetime can align element
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boundaries with any proposed crack propagation direction;
cf. [23, 37] for more details. Once the crack is extended in
the proposed direction, the vertex V becomes inactive and
the new crack tip becomes an active FST.

3.1.1 Explicit Realization

In this method, the cracks are already included in the ini-
tial discretization. To generate the in-situ cracks, a certain
statistics of cracks is assumed. Perhaps the most impor-
tant statistics, the density of initial cracks is defined as,

α =

nc∑
i=1

l2i

Ac
(16)

where li is the length of crack number i in a 2D domain
with area Ac and nc is the number of cracks inside Ac. We
assume the crack length to follow a Weibull distribution,
and that their position in space to follow a uniform distri-
bution. We use the “take and place” approach to sample
and insert one crack in the computational domain at a
time, until the target crack density is reached.

3.1.2 Implicit Realization

Incorporating in-situ microcracks and defects of rock in a
computational domain can result in very expensive sim-
ulations. Instead, one can implicitly consider the effect
of cracks that are short enough to enable the application
of homogenization theories. Instead of using SVEs to ho-
mogenize the properties of rock and derive their statisti-
cal distribution, we employ a phenomenological model for
the fracture strength of rock. The Weibull model [11, 12]
has proved to be an accurate statistical model for fracture
strength of brittle and quasi-brittle materials. The cumu-
lative distribution function (CDF) for s̄ for a region with
area A is,

P (s̄) = 1− e
−
A
A0

(
s̄− smin

s0

)m

(17)

The model parameters are a strength scale s0, minimum
fracture strength smin, and the Weibull modulus m. A0 is
the area for which the Weibull parameters are calibrated.

The way in which Eq. (17) is used in a computational
setting is as follows. For any vertex V in the computational
domain, this CDF is used to sample a fracture strength s̄.
The value A is chosen as an area that is associated with
the vertex. For example, in fig. 3, A is set to the total area
of the 5 surrounding triangles.

3.2 Anisotropy
Material properties of rock, including fracture strength,
can be highly anisotropic, for example due to the existence
of bedding planes. Two different approaches are used to
incorporate rock anisotropy for the explicit realization and
implicit realization methods. In the explicit method, crack

orientation is biased around certain angles instead of fol-
lowing a uniform distribution in the range [0, π]. For ex-
ample, to model bedding planes around the angle θ0 = 30◦

a uniform distribution [θ0−∆θ/2, θ0 +∆θ/2] may be con-
sidered for crack orientation, where ∆θ is the span of the
angles of cracks.

For the implicit approach, fracture strength is not only
assumed to be a function of location, through material in-
homogeneity, but also anisotropic. The first aspect, inho-
mogeneity, is addressed by sampling a location-dependent
(and angle-independent) strength s̄(V ), as described in
§3.1.2. To model anisotropy, the strength is made angle-
dependent with the relation,

s̄(V, θ) = s̄(V )f(θ) (18)

where f(θ) is a modulation function. Modulation of the
parameters of a fracture strength model is one of the ap-
proaches to incorporate rock anisotropy in the literature.
For example, [38] and [39] modify the parameters of the
Mohr-Coulomb and Hoek-Brown [40] models, respectively.

In the discrete setting, the function f(θ) is sampled
separately for each vertex V of the discrete domain. The
function f(θ) is characterized by θ0 and f0 the angle and
minimum modulation of the function f(θ); that is f(θ)
takes the minimum value of f0 at θ0 ± π. As discussed in
§4, some randomness is incorporated in the sampling of f0
and θ0 for each vertex. Finally, once fracture strength is
fully characterized by Eq. (18) for V at all angles θ, the
direction of extension is determined as the angle that max-
imizes s̆(θ)/s̄(V, θ). A propagation from V is not realized
until this maximum ratio exceeds unity.

In conclusion, in the explicit realization approach, frac-
ture strength is not inhomogeneous nor anisotropic. That
is, a unique angle independent value is used for s̄ in con-
trast to the model Eq. (18) for the implicit realization
method. In addition, no cracks are permitted to nucleated
inside the domain. These are consequences of the assump-
tion that the random and explicit distribution of cracks is
the only source of randomness for the explicit realization
approach.

Figure 4: Compressive fracture of a rectangular do-
main: a) Domain geometry and loading; b) The
discrete initial mesh for an explicit realization with
α = 0.5 and angular bias θ0 = 40◦.
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(a) t = 14 µs. (b) t = 22 µs. (c) t = 30 µs. (d) t = 40 µs.

(e) t = 50 µs. (f) t = 60 µs. (g) t = 80 µs. (h) t = 100 µs.

Figure 5: A sequence of solutions for an explicit realization with α = 0.5 and angular bias θ0 = 20◦. Strain
energy density is mapped to color with blue-to-red range indicating low to high values.

4 NUMERICAL RESULTS

Figure 4a) diagrams a problem involving compressive uni-
axial loading applied to a rectangular domain in which the
load ramps from zero to a sustained value of σ0 = 2.5MPa
over 10 microseconds. The domain dimensions are W =
0.08 m and H = 0.16 m. The angle of weak planes for both
implicit and explicit realizations with respect to the load
direction (vertical direction) is denoted by θ0 in the clock-
wise direction as shown. Similar to θ0, all the angles are
measured relative to the vertical direction in the clock-wise
direction. The material properties are: Young’s modulus
E = 65 GPa, mass density ρ = 2600 kg/m3, and Pois-
son’s ratio ν = 0.27. The friction coefficient is k = 0.3,
corresponding to φ = 16.9◦. In the absence of fracture
strength anisotropy we would expect cracks along ±φch,
where φch = (45◦ − φ/2) = 36.65◦;cf. Eq. (13b) and fig.
2b).

The two different explicit and implicit realization mod-
els are used for this study. Figure 4b) shows an explicit
realization spatial mesh for crack density α = 0.5. The re-
alized microcrack orientations are sampled from a uniform
distribution with the average angle θ0 = 40◦ and a span of
∆θ = 10◦. The fracture strength is set to s̄ = 1.344 MPa,
which from Eq. (13a) yields a uniaxial fracture strength
of p̄ = 3.612 MPa. Thus, in the absence of microcracks
the compressive load of σ0 = 2.5MPa is not large enough
to cause any crack nucleation before the magnitude of the
load doubles when the waves propagating from the top and

bottom intersect in the middle of the domain. However,
the presence of microcracks implies that cracks can prop-
agate from their tips even under this applied load.

Figure 5 shows the solution visualization for an ex-
plicit realization with α = 0.5 and mean microcrack an-
gle θ0 = 20◦; cf. fig. 4a). In the presence of microc-
racks, two things happen; first, between the two angles
±φch = ±36.65◦ the +φch has a much closer direction
to in-situ cracks. So, if there are long distances between
cracks more cracks with the angle φch, rather than −φch,
are expected. Second, the microcrack directions to a large
extend direct crack propagation directions as they create
weak planes along the θ0 direction. From the energy den-
sity visualizations in fig. 5 both expectations are verified.
First, not many cracks are observed with negative angles
with respect to the load direction. Second, the majority
of cracks propagate along θ0 = 20 and its only between
the cracks that angles closer to anticipated φch = 36.65◦

connects the cracks. The competition between θ0 and φch

and high stress concentrations in the fracture process zones
around the crack tips and on the sides of the crack surfaces,
due to frictional sliding, can clearly be seen in figs. 5(f-h).

Figure 6 compares the results for explicit realization
simulations for different mean values of microcrack orien-
tation θ0. As mentioned, the natural angles of crack ex-
tension are along ±φch = ±36.65◦. In fig. 6a, the cracks
are too close to vertical direction and their direction is
not close to ±φch, however, still φch is closer to crack di-
rections and more of this angle of crack propagation is

6



(a) θ0 = 10◦. (b) θ0 = 20◦. (c) θ0 = 30◦. (d) θ0 = 40◦. (e) θ0 = 60◦. (f) θ0 = 90◦.

Figure 6: Comparison of fracture patterns and deformed shapes for the explicit realization model for crack
density α = 0.5 and different values for angular bias θ0 at time t = 90 µs. The crack segments are color coded
with the damage value D ∈ [0, 1] mapped to the blue to red color range.

expected between microcracks. The reorientation of prop-
agating cracks in this direction can clearly be seen in the
figure. This trend continues in fig. 6b but with slightly
more straight path for cracks. Finally, in fig. 6c and es-
pecially fig. 6d, the angle of in-situ cracks gets so close to
φch that first much more straight crack path is observed
and second due to the energetically favorable propagation
of cracks, a denser fracture network is observed. As the
crack angles get farther away from φch in fig. 6e, crack
paths start to become more complex. Finally, for θ0 = 90◦

in fig. 6f there is no preferred direction between ±φch and
cracks with both directions are observed. In addition, the
very unfavorable direction of microcracks greatly inhibits
crack propagation under the compressive stress loading.

Figure 7: Sample f(θ) functions, cf. Eq. (18), for
f0 = 0.25 and θ0 = 20◦ and θ0 = 60◦.

Next, the results for the implicit approach are pre-
sented. Two aspects need to be addressed; first, the in-
homogeneity of fracture strength is realized by sampling
s̄ from Eq. (17). The values m = 4, smin = 0.74 MPa,
s0 = 2.69 MPa, and A0 = 0.01 m2 imply a mean strength
E(s̄) = 3.03 MPa for A = W × H = 0.0128 m2 in
Eq. (17). This corresponds to a mean compressive strength
of E(p̄) = 8.14 MPa which is significantly larger than the
applied load σ0 = 2.5MPa. However, the statistical varia-
tion of sampled s̄ implies that for the points whose sampled

compressive strength is smaller than σ0 = 2.5MPa, a crack
can be nucleated.

The anisotropy of the fracture strength is modeled by
the function f(θ), cf. Eq. (18). For all the implicit realiza-
tions f(θ) ranges from one to its minimum value f0 = 0.25
at an angle with ±5◦ variation around a specified angle
θ0. Figure 7 shows two samples for f(θ) for θ0 = 20◦ and
θ0 = 60◦, where as shown in fig. 4 and evident in this figure,
θ0 and θ0 ± 90◦ correspond to the weakest and strongest
planes.

A sequence of solutions for an implicit realization with
angle bias θ0 = 20◦ is shown in fig. 8. Comparing cor-
responding times in figs. 8(a-d) with those from explicit
realization in figs. 5(a-d), we observe that fewer cracks are
observed for the implicit approach. This is expected for
the two particular set-ups considered, as in the explicit
approach the large microcracks can greatly increase stress
fields around the crack tips and cause further crack prop-
agation. Also apparent in figs. 8(a-d) is that most cracks
propagation along positive angles, which is expected by
having weakest plane at θ0 = 20◦. The results in figs. 8(e-
h) show high level of compaction near the top and bottom
boundaries. Also, while more cracks are observed close to
θ0 to φch, see for example figs. 8(g-h), there are also cracks
close to −φch. In comparison to fig. 5, we observe that
the explicit representation of microcracks results in much
more focused propagation of cracks in the range θ0 to φch.

Figure 9 compares fracture patterns for different an-
gles of the weakest plane θ0 for the implicit realization
model. Similar to the explicit realization model, the high-
est density of cracks are observed when weakest planes are
close to natural angle of fracture φch = 36.65◦, that is for
θ0 = 30◦ and θ0 = 40◦, in figs. 9(c-d). Moreover, unlike
the explicit model, where the orientation of microcracks at
positive angles heavily prevented crack propagation at neg-
ative angles, for the implicit model a considerable density
of cracks can be observed at negative angles. However, by
closer examination, the majority of cracks with substantial
damage, red color, are in positive directions.

Finally, fig. 10 shows the finite element front meshes
for the implicit realization approach for different angles θ0
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(a) t = 14 µs. (b) t = 22 µs. (c) t = 30 µs. (d) t = 40 µs.

(e) t = 60 µs. (f) t = 80 µs. (g) t = 100 µs. (h) t = 120 µs.

Figure 8: A sequence of solutions for an implicit realization with min stress ratio f0 = 0.25 and angular bias
θ0 = 20◦. Strain energy density is mapped to color with blue-to-red range indicating low to high values.

(a) θ0 = 10◦. (b) θ0 = 20◦. (c) θ0 = 30◦. (d) θ0 = 40◦. (e) θ0 = 60◦. (f) θ0 = 90◦.

Figure 9: Comparison of fracture patterns and deformed shapes for the implicit realization model for minimum
strength factor f0 = 0.25 and different values for angular bias θ0 at time t = 90 µs. The crack segments are
color coded with the damage value D ∈ [0, 1] mapped to the blue to red color range.

at a later time t = 150 µs. These figures demonstrate the
level of mesh refinement and adaptivity close to the top
and bottom boundaries that are caused by the compaction
of rock. This is a testament to the aSDG methods power-
ful meshing operations that accommodate crack propaga-
tion in arbitrary directions. The map of aSL to color also
demonstrate which crack segments are in slip mode. As
evident, at this time the majority of crack segments are
in contact–stick mode. The local sliding of certain crack
segments at different times is responsible for the deformed
shapes observed in fig. 9.

5 CONCLUSIONS

We presented the explicit and implicit realization ap-
proaches to model rock inhomogeneity. Modeling of rock
inhomogeneity is essential in problems that lack initial
stress concentration points, such as rock fracture under
axial compressive load studied in this manuscript. In
addition, for this problem in an isotropic rock medium,
cracks tend to nucleation and propagate along ±φch =
±(45◦ − φ/2) directions with respect to the compressive
load direction. We studied the effect of rock anisotropy
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(a) θ0 = 0◦. (b) θ0 = 30◦. (c) θ0 = 50◦. (d) θ0 = 60◦. (e) θ0 = 70◦. (f) θ0 = 80◦.

Figure 10: Comparison of the front meshes and aSL for the implicit realization model for minimum strength
factor f0 = 0.25 and different values for angular bias θ0 at time t = 150 µs. The crack segments are color coded
with aSL ∈ [0, 1] mapped to the blue to red color range.

on the angles at which cracks propagate. It was demon-
strated that in the explicit approach where the microcracks
were directly incorporated in the computational domain,
the angle of weakest plane of rock had a more major role
on fracture patterns. Moreover, for both approaches, more
cracks propagated when the weakest plane direction tended
to the natural fracture angle φch.

Figure 11: Fracture in isotropic rock under vertical
uniaxial tensile stress.

In this manuscript, we only studied fracture in
anisotropic rock under uniaxial compressive stress with-
out side confinement. There are some other interesting
fracture modes where anisotropy plays an important role.
Figure 11 shows the fracture pattern in an unconfined rock
specimen under a vertical uniaxial tensile loading. As ob-
served, most fractures are perpendicular to the direction
of tensile loading. It is worth mentioning that the origi-
nal Mohr-Coulomb model used in this manuscript is not
appropriate for this type of fracture analysis; cf. [31] for
further discussion on the choice of fracture model. The
second effect is the presence of lateral confinement for uni-
axial compressive loading scenarios. Similar to the results
presented herein, many experimental and numerical stud-
ies [41–46] show the appearance of diagonal cracks at an-

gles ±(45◦ ± φ/2) relative to the direction of compressive
loading for isotropic rock. Figure 12 shows the effect of
confinement (on the left and right sides) on fracture pat-
tern for a sample under vertical compressive loading. The
appearance of more cracks along the (vertical) loading di-
rection is contributed to the effect of stress confinement. In
future work, we will investigate the effect of anisotropy on
fracture pattern for other loading scenarios such as those
shown in fig. 11 and fig. 12.

Figure 12: Fracture in isotropic rock under vertical
uniaxial compressive stress with side confinement.

There are also other extensions to this study from a
statistical perspective. First, the homogenization of SVEs,
rather than using the phenomenological Weibull model,
can greatly improve the accuracy of rock inhomogeneity
with the implicit realization approach. Second, for ex-
plicit realization of crack actual microcrack statistics such
as those reported in [47] and more robust approaches for
their generation [48] can be employed. Third, for a more
quantitative analysis quantities of interest such as maxi-
mum attainable compressive stress and dissipated fracture
energy can be derived as a function loading rate and ma-
terial inhomogeneity and anisotropy; as shown in [16, 49],
modeling rock inhomogeneity becomes more important at
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higher loading rates and models that treat rock as a homo-
geneous medium greatly overestimate the induced density
of cracks. Finally, while the explicit approach is more re-
alistic, the computational cost prohibits its direct applica-
tion to many practical problems. We plan to propose a hy-
brid approach that to some extend preserves the accuracy
of an explicit approach and the efficiency of an implicit ap-
proach; cracks under a certain size will be homogenized to
an implicit representation of strength, while longer cracks
are explicitly modeled and are maintained in the problem
description. This would unify the two types of analyses
presented in this manuscript.
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