
O
ffloading mobile computations is an inno-
vative technique to reduce energy consumption in 
mobile devices and minimize application response 
time. In this article, we propose a middleware 
framework that uses reinforcement learning (RL) 

to make reward-based offloading decisions. Our framework 
allows a smartphone to consider suitable contextual informa-
tion to determine when it makes sense to offload and select 
between available networks when offloading. We tested our 
framework in simulated and real environments, across vari-
ous apps, to demonstrate how energy consumption can be 
minimized in mobile devices capable of supporting offload-
ing to the cloud.
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DEVELOPING OFFLOADING OPPORTUNITIES 
Faster wireless network speeds and rapid innovations in 
mobile technologies have changed the way we use our com-
puters. It is estimated that 207.2 million people in the United 
States own a smartphone today, whereas the number of smart-
phone users worldwide is estimated to be more than 2 billion 
[1]. The volume of data being accessed and processed by 
smartphones and the sophistication of mobile apps is rapidly 
increasing over time. However, the evolution in hardware and 
software capabilities of mobile devices has not been paralleled 
by similar advances in battery technology. Today, high-end 
mobile apps increasingly burden the limited battery life of 
smartphones. For example, a GPS app can drain a phone’s 
battery completely within 7 h [2].

A promising solution that is being considered to support 
high-end mobile apps is to offload mobile computations to 
the cloud [3]–[9]. Offloading is an opportunistic process that 
relies on cloud servers to execute the functionality of an app 
that typically runs on a mobile device. Such computation 
offloading is being considered today as a means to save ener-

gy consumption (thereby improving battery 
lifetime) and increase the responsiveness of 
mobile apps.

We propose a novel middleware framework 
that uses a machine-learning technique called 
RL to make offloading decisions effectively on 
a smartphone. The proposed framework con-
siders various types of information on the 
mobile device, such as the network type, the 
network bandwidth, user context, and so on, to 
decide when to offload to minimize energy 
consumption. Our strategy selects between 
available networks [third generation (3G), 
fourth generation (4G), or Wi-Fi] when off
loading mode is active. Our experiments with 
real apps on a smartphone highlight the 
potential of our framework to minimize ener-
gy consumption.

CHALLENGES WITH OFFLOADING
In spite of existing research highlighting the 
potential of offloading in mobile devices, cur-
rent offloading techniques are far from being 
widely adopted in mobile systems. The imple-
mentation of these computation offloading 
techniques for many real-world mobile apps in 
real-world scenarios has not shown promising 
results [3], with the mobile device consuming 
more energy in the offloading process than the 
energy savings achieved due to computing on 
servers in an offloaded manner.

Offloading decision engines must consider 
not only the potential energy savings from 
offloading but also how the response time of 
the app is impacted by offloading. An effective 
decision to offload processing to the cloud 

must reduce energy without significantly increasing response 
time. Such decisions are heavily impacted by wireless net-
work inconsistency. The power consumed by the network 
radio interface is known to contribute a considerable fraction 
of the total device power, and it varies depending on wireless 
signal strength [10]. With the recent advent of high-band-
width 4G networks, there has been increased interest in the 
offloading domain, but from our experiments, we found that 
the 4G network consumes more energy than Wi-Fi and the 
3G network.

The network quality of a 4G connection at a mobile 
device’s location greatly affects the battery life. If the device 
is in the area that does not have 4G coverage, there is no 
advantage to a 4G interface, and if the 4G network search is 
not disabled, then the radio’s search for a nonexistent signal 
will drain the battery quickly. In the case of a weak signal, the 
device uses more power to send and receive data to and from 
the network. A strong 4G signal uses less battery, but the big-
gest problem is the constant switching from the 4G network 
to the 3G network and back again. Also, throughout a typical 
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day, at different times, the performance of a wireless network 
varies because of changing traffic load on the network. We 
refer to all such problems due to the mobile network as “net-
work inconsistency” problems.

OFFLOADING PERFORMANCE OF MOBILE APPS
We analyzed the performance implications of offloading by 
comparing two scenarios—one where all computations are per-
formed only on the mobile device without using the cloud at all 
(local mode) and the other where there was a complete reliance 
on the cloud computation (offload mode), with minimal compu-
tations on the mobile device. We selected five diverse commer-
cially available smartphone apps for our experiments: 1) matrix 
operations; 2) Internet browser; 3) zipper (file compression); 4) 
voice recognition/translation; and 5) torrent (file download). 
The experiments were performed on an LG G3 device running 
the Android OS version 5.0.1 around the Colorado State Uni-
versity campus in Fort Collins.

Figure 1 shows the results of our experiments for the tor-
rent app (results for the other apps are omitted for brevity). 
We used the Android-based torrent app Flud [11] to perform 
torrent downloads in the local mode. In the cloud mode, a 
cloud server is used as a BitTorrent client to download torrent 
pieces on behalf of a mobile device. While the cloud server 
downloads the torrent, the mobile device switches to the 
sleep mode until the cloud finishes the torrent processes, and 
then the cloud uploads the downloaded torrent file in a single 

process to the mobile device. For our experiments, we used 
torrent file sizes ranging from 25 to 85 MB, with an Amazon 
Web Services cloud instance being used for the cloud mode 
[12]. Of all five apps that we analyzed, offloaded processing 
proves to be most beneficial in terms of both energy savings 
and response time for the torrent download app, which is data 
intensive but not compute intensive. The 4G network is faster 
than the 3G network but slower than Wi-Fi. The 4G network 
performs slightly better than the 3G network in terms of ener-
gy consumption for higher data sizes (45–85 MB), but for 
smaller data sizes, the 3G network is more energy efficient.

SUMMARY OF FINDINGS
The overall performance when offloading depends on various 
factors such as the amount of data required by the app, the 
wireless network signal type and strength, and the functional-
ity of the app under consideration. In some prior work [13], it 
was concluded that offloading is beneficial when an app is 
compute intensive and at the same time less data intensive. 
However, we found that this is not always the case. For 
instance, offloading is beneficial for apps that may not be 
compute intensive, but are data intensive, e.g., the torrent app. 
To make offloading more practical, it is important to reduce 
the energy spent in the communication between the mobile 
device and the cloud. 

Our experiments indicate that choosing the best possible 
network for offloading is a critical decision. One may assume 
that because the 4G network is faster than the 3G network, we 
should always rely on it for offloading when Wi-Fi is not avail-
able. However, our results indicate that the 4G network is more 
power hungry than the 3G network most of the time. Network 
quality is also a factor that cannot be ignored. We found that a 
good 3G coverage performs far better as opposed to poor 4G 
coverage, and vice versa. In the region of cell tower edges or 
where the coverage of 3G/4G ends, we found that the handover 
process results in high battery drain. This is because the device 
in such scenarios is constantly searching for the network, fre-
quently scanning the wireless spectrum around it to determine 
to which tower it should tether itself. The more networks there 
are to choose from, the longer the scans take. Some apps re
quire a channel to be established between the base station and 
the mobile device at regular intervals, which can significantly 
drain the device battery.

ADAPTIVE OFFLOADING
The decision to offload a mobile app to the cloud is a complex 
one due to the distributed nature and many real-time con-
straints of the overall system. To make an effective offloading 
decision, it is vital to consider various factors, as we discov-
ered after our experimental analysis from the previous section. 
As these factors vary at run-time, there is a need for an adap-
tive offloading approach that takes the variations of these fac-
tors at run-time into consideration when making decisions.

Flores and Srirama [4] proposed a fuzzy decision engine for 
code offloading that considers the contextual parameters on a 
device and the cloud to make an offloading decision adaptively. 
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FIGURE 1. The (a) average battery consumption and (b) response time. 
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The mobile device runs the fuzzy logic decision engine, which 
is used to combine n number of variables (e.g., app data size, 
network bandwidth) that are obtained from the overall mobile 
cloud architecture. The fuzzy logic decision engine works in 
three steps: fuzzification, inference, and defuzzification. In 
fuzzification, input data are converted into linguistic variables, 
which are assigned to a specific membership function. A rea-
soning engine is applied to the variables, which makes an infer-
ence based on a set of rules. 

Finally, the outputs from the reasoning engine are mapped to 
linguistic variable sets again in the defuzzification step. This 
offloading decision engine in [4] assumes a consistent network 
performance during offloading. However, as observed in our 
experiments, such consistency is difficult to achieve because of 
frequent mobile user movements and variable network quality 
(due to factors such as the location of the device and the load on 
the network). Moreover, the offloading decision engine mainly 
emphasizes energy savings; however, the response time is also a 
crucial metric for various apps that should not be ignored; oth-
erwise, the user quality of service degradation can become so 
severe that any effort to save energy becomes irrelevant.

MIDDLEWARE FRAMEWORK FOR EFFICIENT 
OFFLOADING OF MOBILE APPS
To simplify the mobile app development process and at the 
same time avoid problems caused by hard-coded annotations, 
our framework proposes to transfer all the computation for an 
app to the cloud instead of partial (selective) offloading of the 
app. Our framework involves a novel decision engine on the 

mobile device that works together with a clone virtual 
machine of the mobile software environment to execute apps 
on cloud servers.

Figure 2 shows a high-level overview of the proposed 
framework. Our framework is implemented at the middle-
ware level and runs in the background as an Android service. 
As a result, it requires no changes to any of the apps or the 
Android OS. The runtime monitor component periodically 
triggers the RL module to generate/update a Q-learning table. 
At any time, this Q-table contains information to guide the 
decision for when and how to offload an app to the cloud, 
depending on multiple factors.

RL is an unsupervised learning approach that focuses on 
learning by having software agents interact with an environment 
and then taking actions to maximize some notion of a reward. In 
supervised learning (e.g., using neural networks), a training set 
of correctly identified observations is required to train a predic-
tion model. RL differs from supervised learning in that correct 
input/output pairs of identified observations do not need to be 
presented, so there is no need for a pretrained model.

FIGURE 2. The RL-based middleware framework for efficient application offloading to the cloud. VM: virtual machine; CPU: central 
processing unit.
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In RL, the state-action value function is a function of both 
state and action, and its value is a prediction of the expected 
sum of future reinforcements. The state-action value function 
is referred to as the Q-function. Figure 3 summarizes how a 
typical Q-learning reinforcement algorithm works. Q-learning 
is a reward-based mechanism that generates a Q-table with 
reinforcement or penalty values. The figure illustrates a section 
of a Q-table where the possible actions are offloading with the 
3G, 4G, or Wi-Fi network, when the user is at different loca-
tions L1–L4. Actions are chosen, and the penalty values are 
calculated for respective actions to update the Q-table. Sup-
pose the system is at a defined state St at time .t  After taking 
action at from that state, we observe the one-step reinforce-
ment ,rt 1+  and the next state becomes .st 1+  This continues until 
we reach a goal state, ,K  steps later. The objective with RL is to 
find actions at that maximize (or minimize) the sum of rein-
forcements or rewards .rt  This can be reduced to the objective 
of acquiring the Q-function that predicts the expected sum of 
future reinforcements; where the correct Q-function deter-
mines the optimal next action.

In our problem formulation, the state of a mobile device is 
defined using the contextual information of the device such as 
its location, available network type, and network strength. 
These contextual factors are chosen as we consider them to be 
crucial for efficient offloading. The runtime monitor extracts 
the contextual information of the device to form state values 
of the system. For example, consider a mobile device that is at 
location L1, where it has access to a 3G network type with 
“strong” network strength. From this state, if an app process-
ing needs to be offloaded, then the Q-function is called to 
select the appropriate network that would result in the least 
penalty in terms of energy or response time (or both). In our 
framework, the following state and action values are used to 
generate the Q-function:

▼▼ set of state values (discrete values):
–– location = L1, L2, L3,…., Ln

–– network carrier = 3G, 4G, Wi-Fi
–– network strength = strong, medium, weak
–– data size = small, medium, large.

▼▼ set of action values:
–– offload using the 3G network
–– offload using the 4G network
–– offload using the Wi-Fi network.
The location L1–Ln can be any geographic area where the 

user utilizes the offloading app, e.g., office, home, and so on. 
More state-action pairs can be added to the aforementioned 
list to account for factors that might affect offloading, e.g., we 
can add “time of day” as another state value, as it is observed 
that network performance is slow at certain times of the day 
when the network load is high. However, a larger set of state-
value pairs will result in a larger Q-function requiring greater 
overhead to manage it.

The Q-function is generated as follows. Initially, when the 
mobile device is at location L1, the runtime monitor accesses 
contextual information from the device such as location, net-
works available, and network strength. A small data file is then 
uploaded from the mobile device to the cloud, using the primary 
network carrier. The amount of battery consumed and the total 
response time taken for this operation are measured. The upload-
ing operation is repeated with varying (small, medium, and large) 
data sizes with all available networks at the location (3G, 4G, and 
Wi-Fi) activated one by one. For each of these uploading opera-
tions the runtime monitor measures the battery amount consumed 
and response time to complete the operation. The Q-table is then 
populated with the penalty values calculated using

	 ,P P x P yG b G t G3 3 3) )= + � (1)

	 ,P P x P yG b G t G4 4 4) )= + � (2)

	 .P P x P yWiFi WiFi WiFi) )= + � (3) 

Thus, in our RL framework, the reinforcement values 
are essentially the penalty values ,P G3  ,P G4  and .PWiFi  Once 

FIGURE 3. The Q-learning flow with an example of a Q-table. 
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populated, the Q-table can be updated periodically in the back-
ground when the user is not actively using the device. In (1)–
(3), to optimize battery consumption and response time, we 
used weights x and ,y  respectively with penalty values. We 
used .x y 0 5= =  to balance minimizing battery consumption 
and response time.

EXPERIMENTAL RESULTS
To evaluate the efficacy of our proposed framework, we con-
ducted a set of experiments. We implemented our middleware 
framework and its decision engine on an Android-based 
mobile device. To form the Q-function of our RL algorithm, 
real user data were collected at different geographical locations 
around the Colorado State University campus area. We com-
pared our work with the fuzzy logic decision engine proposed 
by Flores and Srirama [4], which we discussed previously and 
which we implemented on the Android-based mobile device.

Figure 4 shows the results for the matrix operation app 
with our proposed RL-based decision engine and the fuzzy 
logic-based decision engine from [4]. Similarly, Figure 5 

includes the results for the zipper app, and Figure 6 shows 
results for the Torrent app. In all the scenarios, the task of a 
decision engine is to decide whether to offload and to select 
the network to offload with. In these figures, the red trendline 
shows results with the fuzzy decision engine [4] whereas the 
green trendline shows the results with our RL-based middle-
ware framework. We have also shown bars with the results 
for offloading with each available network and local process-
ing as a reference.

In general, our results reveal that our proposed RL-based 
decision engine outperforms the fuzzy logic approach from 
[4]. For less data-intensive operations, the results of RL and 
fuzzy logic overlap. For instance, in the case of the zipper 
app (Figure 5), for lower data sizes fuzzy logic shows better 
results, because the Q-table generated using our RL algo-
rithm uses 25 MB as the minimum data size. For any data 
size lower than this minimum value, the RL-based framework 
is thus less effective at making predictions. This can be improved 
using a wider range of data files/sizes when populating the 
Q-table. For higher data sizes and more complex computations, 

FIGURE 4. The (a) average battery consumption and (b) response time of a matrix operations app with learning methods.
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FIGURE 5. The (a) average battery consumption and (b) response time of the zipper app with learning methods. 
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our RL approach gives an improved battery consumption and 
response time than [4].

Our RL-based engine has better prediction accuracy that is 
crucial for making effective offloading decisions. The overall 
performance of offloading depends on various factors, such as 
the amount of data required by the app, the network signal 
type (3G, 4G, and Wi-Fi) and network signal strength, and the 
complexity of the functionality of the app under observation. 
By considering all of these individual factors in the decision 
process, unlike the fuzzy logic approach from [4], and by 
using a more sophisticated and powerful learning algorithm, 
our framework is able to achieve notably better results com-
pared with [4]. Our results show that the proposed RL-based 
offloading system can save up to 30% battery power with up 
to 25% better response time compared with the fuzzy logic-
based approach.

CONCLUSION
We analyzed real mobile apps to determine the benefits of app 
offloading and presented a novel network-aware mobile middle-
ware framework based on RL to accomplish energy-efficient 
offloading in smartphones. Our results show that we can save 
up to 30% battery power with up to a 25% better response time 
when using our proposed framework compared with a state-of-
the-art fuzzy logic-based offloading approach from prior work.
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FIGURE 6. The (a) average battery consumption and (b) response time of the torrent app with learning methods. 
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