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Abstract: Bilinear systems form models of wide-ranging applications in diverse areas of
engineering and natural sciences. Investigating fundamental properties of such systems has been
a prosperous subject of interest and remains essential toward the advancement of systems science
and engineering. In this paper, we introduce an algebraic framework utilizing the theory of
symmetric group to characterize controllability of bilinear systems evolving on special orthogonal
and Euclidean groups. Our development is based on the most notable Lie algebra rank condition
and offers an alternative to controllability analysis. The main idea of the developed approach
lies in identifying the mapping of Lie brackets of vector fields governing the system dynamics
to permutation multiplications on a symmetric group. Then, by leveraging the actions of the
resulting permutations on a finite set, controllability and controllable submanifolds for bilinear
systems evolving on the special Euclidean group can be explicitly characterized.
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1. INTRODUCTION

Bilinear systems form a subclass of nonlinear systems,
which emerge as natural models for various dynamical
processes in science and engineering. Prominent exam-
ples include systems describing the evoluation of the bulk
magnetization of a sample of nuclear spins immersed in
a magnetic field in quantum physics (Glaser et al., 1998;
Li and Khaneja, 2006; Li et al., 2011), the rotation and
translation of a rigid body in the presence of external forces
in mechanics and robotics (Baillieul, 1978; Isidori, 1995;
Jurdjevic, 1996), and the movement of cells, molecules or
radioisotope tracers between physiological compartments
in biology (Mohler and Ruberti, 1978; Eisen, 1979; Mohler
and Kolodziej, 1980). Since 1970s, tools from differential
geometry and Lie theory have been extensively exploited
to study nonlinear control systems from a geometric per-
spective, and the area of geometric control then took a
sharp turn (Brockett, 2014, 1976; Baillieul, 1978). One
of the most significant advancements in this field is the
development of a necessary and sufficient controllability
condition for control-affine systems, named the Lie algebra
rank condition (LARC), by which controllability is charac-
terized by the dimension of the Lie algebra generated by
the vector fields governing the system dynamics (Brock-
ett, 1972; Jurdjevic and Sussmann, 1972; Hermann and
Krener, 1977; Huang et al., 1983).
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In this paper, we present a new algebraic approach to an-
alyzing controllability for right-invariant bilinear systems
defined on the special orthogonal and Euclidean groups,
denoted SO(n) and SE(n), respectively. This approach
provides an alternative to the LARC and a new algebraic
interpretation of controllability. In particular, for systems
defined on SO(n), the key idea of the proposed approach is
to map Lie bracket operations of the vector fields governing
the system dynamics to permutation multiplications on
the symmetric group Sn. Through this mapping, together
with the LARC, controllability of systems on SO(n) can
be characterized in terms of permutation cycles. Further-
more, by acting the resulting permutations on a set of
n elements, e.g., {1, . . . , n}, the orbits of the actions give
rise to an explicit characterization of controllability, as well
as the controllable submanifold in uncontrollable cases, of
bilinear systems defined on SE(n) which are induced by
the Lie group action of SO(n) on Rn.

The paper is organized as follows. In Section 2, we intro-
duce an algebraic approach of analyzing controllability of
bilinear systems defined on SO(n) through permutation
cycles on Sn. Levaraged on this development and the de-
composition of SE(n) into the rotational and translational
components, in Section 3, we present the new method to
characterize controllability and controllable submanifolds
of bilinear systems defined on SE(n) in terms of the orbits
resulting from the Sn action on a finite set containing n
elements. In addition, the LARC for the bilinear system
evolving on a compact and connected Lie group and some
basics of the symmetric group theory are reviewed in
Appendices A and B, respectively.
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2. SYMMETRIC GROUP METHOD FOR SYSTEMS
ON SO(N)

In this section, we will introduce a new algebraic control-
lability condition for the right-invariant bilinear system
defined on SO(n) of the form

Ẋ(t) = B0X(t) +

m∑
i=1

ui(t)BiX(t), X(0) = I, (1)

where X(t) ∈ SO(n) is the state, ui(t) ∈ R are piecewise
constant control inputs, and B0, . . . , Bm are elements in
the Lie algebra so(n) of SO(n). The development of this
condition is based on mapping Lie bracket operations of
elements in so(n) to permutation multiplications in Sn

(Zhang and Li, 2017). To this end, we first briefly review
some basics of the Lie algebra so(n).

2.1 Basics of the Lie Algebra so(n)

The Lie algebra so(n) is an n(n− 1)/2-dimensional vector
space consisting of all n-by-n skew symmetric matrices. As
a Lie algebra, it is also equipped with a binary operation
called the Lie bracket and defined as [A,B] = AB − BA
for all A,B ∈ so(n).

Let Ωij ∈ so(n) denote the matrix with 1 in the ijth-
entry, −1 in the jith- entry, and 0 elsewhere, then the
set B = {Ωij : 1 ≤ i < j ≤ n} forms a basis of so(n).
The following lemma then characterizes the Lie bracket
relations among these basis elements in B.
Lemma 1. The Lie bracket of Ωij and Ωkl satisfies
[Ωij ,Ωkl] = δjkΩil + δilΩjk + δjlΩki + δikΩlj , where

δmn =

{
1 if m = n,

0 otherwise.

is the Kronecker delta function.

Proof. The proof directly follows from calculation. �

Notice that, by Lemma 1, [Ωij ,Ωkl] �= 0 if and only if there
exists a bridging index j = k, i = l, j = l, or i = k. This
observation plays an important role in the establishment of
the map between Lie bracket operations and permutation
multiplications in the next section.

2.2 Mapping Lie Brackets to Permutations

In this section, we introduce the approach to character-
izing controllability of bilinear systems defined on SO(n)
by permutation cycles. In particular, systems governed by
vector fields in B serve as suitable examples to illustrate
this algebraic framework due to the nice structure of B
shown in Lemma 1. Specifically, we will define a map that
transforms Lie bracket operations among elements in B to
permutation multiplications in the symmetric group Sn so
that the image of the control vector fields of a given system
under this map represents controllability of the system.

Formally, let P(B) denote the power set of B, then we de-
fine a map ι : P(B) → Sn by {Ωi1j1 ,Ωi2j2 , . . . ,Ωimjm} �→
(il, jl) · · · (i2, j2) · (i1, j1), where (ik, jk) is the cyclic nota-
tion of the permutation(

1 · · · ik · · · jk · · · n
1 · · · jk · · · ik · · · n

)

for each k = 1, . . . ,m.

On the Lie algebra level, if we pick Ωij ,Ωjk ∈ B, then
Lemma 1 implies [Ωij ,Ωjk] = Ωik �= 0, which is due to
the existence of the bridging index j, and consequently,
Lie({Ωij ,Ωjk}) = span{Ωij ,Ωjk,Ωik} holds. In this case,
on the symmetric group level, we have ι({Ωij ,Ωjk}) =
(i, j)(j, k) = (i, j, k), i.e., the bridging index j bridges i to
k and hence increases the cycle length by 1 ((i, j) and (j, k)
have length 2 and (i, j, k) has length 3). Inductively, given
a subset S ⊂ B satisfying the following two conditions

(i) for any Ωij ∈ S, there exists some Ωi′j′ ∈ S such that
[Ωij ,Ωi′j′ ] �= 0,

(ii) if S ′ ⊆ S and Lie(S ′) = Lie(S), then S ′ = S,
then ι(S) is a cycle of length |S|+1, where |S| denotes the
cardinality of S. Moreover, any subset of B satisfying the
condition in (ii) is called a set with no redundant element.
This bridging property immediately suggests a character-
ization of controllability of bilinear systems defined on
SO(n) by permutation cycles as shown in the following
theorem.

Theorem 2. A bilinear control system defined on SO(n) in
the form of

Ẋ(t) =

[
m∑

k=1

uk(t)Ωikjk

]
X(t), X(0) = I, (2)

where Ωikjk ∈ B for all k = 1, . . . ,m and I is the identity
matrix, is controllable if and only if there is a subset S of
{Ωi1j1 , . . . ,Ωimjm} such that ι(S) is an n-cycle.

Proof. See (Zhang and Li, 2017). �

3. CONTROLLABILITY ANALYSIS OF BILINEAR
SYSTEMS ON SE(N)

In this section, we will extend the algebraic approach
introduced in Section 2 to develop a method for analyzing
controllability of bilinear systems evolving on the non-
compact Lie group SE(n). To this end, we first briefly
review some basics of the Lie group SE(n) and its Lie
algebra se(n).

3.1 Basics of SE(n) and se(n)

Consider the Euclidean space Rn as a Lie group under
addition, then its semidirect product with SO(n), denoted
by SE(n) = Rn � SO(n), is called the special Euclidean
group. Every element in SE(n) can be represented by
a 2-tuple (x,X) with x ∈ Rn and X ∈ SO(n), and
this also reveals that SE(n) contains SO(n) and Rn as
Lie subgroups. Algebraically, the group multiplication on
SE(n) is given by (x,X)(y, Y ) = (x + Xy,XY ) for any
x, y ∈ Rn and X,Y ∈ SO(n), which also indicates that
(0, I) is the identity element of SE(n). Topologically, due
to the non-compactness of Rn, SE(n) is also a non-compact
Lie group. In addition, SE(n) can be smoothly embedded
into GL(n+1,R), the general linear group consisting of all
(n+1)-by-(n+1) invertible matrices, and this embedding
yields a matrix representation for each (x,X) ∈ SE(n) as

(x,X) =

[
X x
0 1

]
,

where X ∈ SO(n) and x ∈ Rn.
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2. SYMMETRIC GROUP METHOD FOR SYSTEMS
ON SO(N)

In this section, we will introduce a new algebraic control-
lability condition for the right-invariant bilinear system
defined on SO(n) of the form

Ẋ(t) = B0X(t) +

m∑
i=1

ui(t)BiX(t), X(0) = I, (1)

where X(t) ∈ SO(n) is the state, ui(t) ∈ R are piecewise
constant control inputs, and B0, . . . , Bm are elements in
the Lie algebra so(n) of SO(n). The development of this
condition is based on mapping Lie bracket operations of
elements in so(n) to permutation multiplications in Sn

(Zhang and Li, 2017). To this end, we first briefly review
some basics of the Lie algebra so(n).

2.1 Basics of the Lie Algebra so(n)

The Lie algebra so(n) is an n(n− 1)/2-dimensional vector
space consisting of all n-by-n skew symmetric matrices. As
a Lie algebra, it is also equipped with a binary operation
called the Lie bracket and defined as [A,B] = AB − BA
for all A,B ∈ so(n).

Let Ωij ∈ so(n) denote the matrix with 1 in the ijth-
entry, −1 in the jith- entry, and 0 elsewhere, then the
set B = {Ωij : 1 ≤ i < j ≤ n} forms a basis of so(n).
The following lemma then characterizes the Lie bracket
relations among these basis elements in B.
Lemma 1. The Lie bracket of Ωij and Ωkl satisfies
[Ωij ,Ωkl] = δjkΩil + δilΩjk + δjlΩki + δikΩlj , where

δmn =

{
1 if m = n,

0 otherwise.

is the Kronecker delta function.

Proof. The proof directly follows from calculation. �

Notice that, by Lemma 1, [Ωij ,Ωkl] �= 0 if and only if there
exists a bridging index j = k, i = l, j = l, or i = k. This
observation plays an important role in the establishment of
the map between Lie bracket operations and permutation
multiplications in the next section.

2.2 Mapping Lie Brackets to Permutations

In this section, we introduce the approach to character-
izing controllability of bilinear systems defined on SO(n)
by permutation cycles. In particular, systems governed by
vector fields in B serve as suitable examples to illustrate
this algebraic framework due to the nice structure of B
shown in Lemma 1. Specifically, we will define a map that
transforms Lie bracket operations among elements in B to
permutation multiplications in the symmetric group Sn so
that the image of the control vector fields of a given system
under this map represents controllability of the system.

Formally, let P(B) denote the power set of B, then we de-
fine a map ι : P(B) → Sn by {Ωi1j1 ,Ωi2j2 , . . . ,Ωimjm} �→
(il, jl) · · · (i2, j2) · (i1, j1), where (ik, jk) is the cyclic nota-
tion of the permutation(

1 · · · ik · · · jk · · · n
1 · · · jk · · · ik · · · n

)

for each k = 1, . . . ,m.

On the Lie algebra level, if we pick Ωij ,Ωjk ∈ B, then
Lemma 1 implies [Ωij ,Ωjk] = Ωik �= 0, which is due to
the existence of the bridging index j, and consequently,
Lie({Ωij ,Ωjk}) = span{Ωij ,Ωjk,Ωik} holds. In this case,
on the symmetric group level, we have ι({Ωij ,Ωjk}) =
(i, j)(j, k) = (i, j, k), i.e., the bridging index j bridges i to
k and hence increases the cycle length by 1 ((i, j) and (j, k)
have length 2 and (i, j, k) has length 3). Inductively, given
a subset S ⊂ B satisfying the following two conditions

(i) for any Ωij ∈ S, there exists some Ωi′j′ ∈ S such that
[Ωij ,Ωi′j′ ] �= 0,

(ii) if S ′ ⊆ S and Lie(S ′) = Lie(S), then S ′ = S,
then ι(S) is a cycle of length |S|+1, where |S| denotes the
cardinality of S. Moreover, any subset of B satisfying the
condition in (ii) is called a set with no redundant element.
This bridging property immediately suggests a character-
ization of controllability of bilinear systems defined on
SO(n) by permutation cycles as shown in the following
theorem.

Theorem 2. A bilinear control system defined on SO(n) in
the form of

Ẋ(t) =

[
m∑

k=1

uk(t)Ωikjk

]
X(t), X(0) = I, (2)

where Ωikjk ∈ B for all k = 1, . . . ,m and I is the identity
matrix, is controllable if and only if there is a subset S of
{Ωi1j1 , . . . ,Ωimjm} such that ι(S) is an n-cycle.

Proof. See (Zhang and Li, 2017). �

3. CONTROLLABILITY ANALYSIS OF BILINEAR
SYSTEMS ON SE(N)

In this section, we will extend the algebraic approach
introduced in Section 2 to develop a method for analyzing
controllability of bilinear systems evolving on the non-
compact Lie group SE(n). To this end, we first briefly
review some basics of the Lie group SE(n) and its Lie
algebra se(n).

3.1 Basics of SE(n) and se(n)

Consider the Euclidean space Rn as a Lie group under
addition, then its semidirect product with SO(n), denoted
by SE(n) = Rn � SO(n), is called the special Euclidean
group. Every element in SE(n) can be represented by
a 2-tuple (x,X) with x ∈ Rn and X ∈ SO(n), and
this also reveals that SE(n) contains SO(n) and Rn as
Lie subgroups. Algebraically, the group multiplication on
SE(n) is given by (x,X)(y, Y ) = (x + Xy,XY ) for any
x, y ∈ Rn and X,Y ∈ SO(n), which also indicates that
(0, I) is the identity element of SE(n). Topologically, due
to the non-compactness of Rn, SE(n) is also a non-compact
Lie group. In addition, SE(n) can be smoothly embedded
into GL(n+1,R), the general linear group consisting of all
(n+1)-by-(n+1) invertible matrices, and this embedding
yields a matrix representation for each (x,X) ∈ SE(n) as

(x,X) =

[
X x
0 1

]
,

where X ∈ SO(n) and x ∈ Rn.
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From the geometric aspect, let γ(t) = (x(t), X(t)) be a
smooth curve in SE(n) with γ(0) = (0, I), then its time
derivative at t = 0, i.e.,

γ̇(0) = (ẋ(0), Ẋ(0)) =

[
Ẋ(0) ẋ(0)
0 0

]
,

gives rise to an element in the Lie algebra se(n) by
identifying se(n) with T(0,I)SE(n), the tangent space of
SE(n) at the identity element (0, I). Note that X(t) is
a curve in SO(n) with X(0) = I, and hence we have

Ẋ(0) ∈ so(n). Therefore, every element (v,Ω) ∈ se(n) also
admits a matrix representation as

(v,Ω) =

[
Ω v
0 0

]
,

where Ω ∈ so(n) and v ∈ Rn.

Similar to so(n), se(n) is also a finitedimensional vector
space, and hence has a basis. Let {e1, . . . , en} denote the
standard basis of Rn, and define R = {Rij ∈ se(n) : Rij =
(0,Ωij), 1 ≤ i < j ≤ n} and T = {Tk ∈ se(n) : Tk =
(ek, 0), 1 ≤ k ≤ n}, then the set R ∪ T forms a basis
of se(n). Analogous to Lemma 1, the following lemma
characterizes the Lie bracket relations among the basis
elements of se(n).

Lemma 3. The Lie brackets among the basis elements
of se(n) satisfy [Rij , Rkl] = δjkRil + δilRjk + δjlRki +
δikRlj , [Rij , Tk] = δjkTi − δikTj and [Tk, Tl] = 0 for all
1 ≤ i, j, k, l ≤ n.

Proof. The proof directly follows from the computation
of Lie brackets by using the matrix representations of Rij ,
Rkl, Tk and Tl. �

Notice that Lie brackets of the elements in R = {Rij :
1 ≤ i < j ≤ n} follow the same relation as those elements
in B = {Ωij : 1 ≤ i < j ≤ n} shown in Lemma 1. This
indicates that the Lie algebra se(n) contains so(n) as a Lie
subalgebra, and hence, together with the fact that SE(n)
contains SO(n) as a Lie subgroup, a system defined on
SE(n) also contains a system on SO(n) as a subsystem.
This observation provides a main tool for controllability
analysis of systems on SE(n) in the next section.

3.2 Decomposition of Systems on SE(n) for Controllability
Analysis

After the review of the Lie group SE(n) and its Lie algebra
se(n) in the previous section, we are well prepared for
the investigation into controllability of systems defined on
SE(n). In particular, we focus on bilinear systems governed
by vector fields in R∪ T of the form

d

dt

[
X(t) x(t)
0 1

]
=

(
m1∑
s=1

us(t)

[
Ωisjs 0
0 0

]

+

m2∑
l=1

vl(t)

[
0 ekl

0 0

])[
X(t) x(t)
0 1

]
,

(x(0), X(0)) = (0, I), (3)

where Ωisjs ∈ B is a basis element of so(n), ekl
is the kl

th standard basis vector of Rn, and us(t), vl(t) ∈ R are
piecewise constant control functions for all s = 1, . . . ,m1

and l = 1, . . . ,m2. Furthermore, as discussed in the
previous section, because SE(n) contains SO(n) and Rn

as Lie subgroups, the system in (3) can be decomposed
into two subsystems as

Ẋ(t) =

[
m1∑
s=1

us(t)Ωisjs

]
X(t), X(0) = I, (4)

ẋ(t) =

[
m1∑
s=1

us(t)Ωisjs

]
x(t) +

m2∑
l=1

vl(t)ekl
, x(0) = 0,

(5)

so that the systems in (4) and (5) are on SO(n) and Rn,
repectively.

In practice, systems on SE(n) are widely used to describe
the motion of rigid bodies whose dynamics are composed
of rotations and translations. The decomposition of the
system in (3) into the two subsystems in (4) and (5)
exactly reveals the corresponding rotational and transla
tional dynamics of the system in (3), respectively. The next
theorem further explores that the controllability analysis
of a system on SE(n) can also be equivalently carried over
to its corresponding rotational component on SO(n) and
translational component on Rn.

Theorem 4. A system defined on SE(n) in the form of (3)
is controllable if and only if its rotational component in
(4) and translational component in (5) are controllable on
SO(n) and Rn, respectively.

Proof. (Necessity): Geometrically, the Euclidean group
SE(n) is trivially diffeomorphic to Rn×SO(n) through the
identity map (x,X) �→ (x,X). Therefore, if the system in
(3) is controllable on SE(n), then the direct product of the
controllable submanifolds of its subsystems in (5) and (4)
must be Rn × SO(n), and hence, they are controllable on
SO(n) and Rn, respectively.

(Sufficiency): Given any XF ∈ SO(n) and xF ∈ Rn, it
suffices to show that there exist piecewise constant control
functions u1, . . . , um1

, v1, . . . , vm2
simultaneously steering

the systems in (4) from I to XF and (5) from 0 to xF .

At first, we claim that m2 ≥ 1 must hold if the system in
(5) is controllable on Rn. Otherwise, the system reduces
to

ẋ(t) =

[
m1∑
s=1

us(t)Ωisjs

]
x(t), (6)

which describes the dynamics of the system on SO(n)
in (4) acting on Rn. However, the homogeneous spaces
of the Lie group action of SO(n) on Rn are the spheres
centered at the origin (Lee, 2003). Consequently, the
controllable submanifold of the system in (6) must be
contained in a sphere, which contradicts the controllability
of the translational component on Rn.

Now, let Sn−1
‖xF ‖ denote the sphere centered at the origin

with radius ‖xF ‖, where ‖ · ‖ denotes the Euclidean
norm on Rn, and V be the subspace of Rn spanned by
ek1 , . . . , ekm2

, then V ∩ Sn−1
‖xF ‖ �= ∅ holds. Pick a point

z ∈ V ∩ Sn−1
‖xF ‖, because SO(n) acts on Sn−1

‖xF ‖ transitively

(Lee, 2003), there exists A ∈ SO(n) such that xF = Az.
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In the following, we will develop a control strategy to
simultaneously steer the system in (4) from I to XF and
the system in (5) from 0 to xF in three steps. First, because
the system in (4) is controllable on SO(n), the control
inputs u1, . . . , um1 can be appropriately designed to steer
the system in (4) from I to A−1XF , and simultaneously,
the system in (5) stays at the origin by setting v1 = · · · =
vm2 = 0. Then, we set u1 = · · · = um1 = 0 and apply
v1, . . . , vm2 to steer the system in (5) from the origin to z.
In this step, the system in (4) stays at A−1XF . At last,
u1, . . . , um2 can be turned on again to steer the system in
(4) from A−1XF to XF . Since xF = Az, the system in (5)
will be simultaneously steered to xF from z, and then the
proof is done. �

The proof of Theorem 4 provides a systematic control
design procedure to simultaneously accomplish transitions
of the systems in (4) and (5) between desired states, which
concludes the controllability of the system in (3). Alterna-
tively, the proof can also be carried out algebraically by
computing the Lie algebras generated by the control vector
fields of these systems, which will be the main focus of the
next section through a symmetric group approach.

3.3 Controllability Characterization of Systems on SE(n)
via Symmetric Group Actions

In this section, we aim to illustrate the application of the
symmetric group approach of characterizing controllability
to bilinear systems defined on the non-compact Lie group
SE(n). At first, recall that, for such a system, its rotational
component is exactly governed by a system on SO(n) in
the form of (2). As a result, the algebraic controllability
condition represented in terms of the length of permuta-
tion cycles shown in Theorem 2 can be directly adopted to
evaluate the controllability of the rotational component in
(4). Now, according to Theorem 4, in order to analyze the
controllability of the whole system on SE(n), we only need
to focus on the translational component in (5). As shown in
the proof of Theorem 4, the translational component in (5)
contains the action of SO(n) on Rn, which motivates the
leverage of the action of Sn on Zn = {1, . . . , n} to study
its controllability. To this end, let’s first briefly recap some
basics of the group action of Sn on Zn.

For any σ ∈ Sn, let 〈σ〉 = {σr ∈ Sn : r = 0,±1, . . . }
denote the cyclic subgroup of Sn generated by σ and
σ = σ1 · · ·σl be its decomposition into a product of
disjoint cycles. By the definition of Sn, every element
σr ∈ 〈σ〉 ⊆ Sn is a bijective function on Zn. Then, for
any k ∈ Zn, we define the orbit of k under the group
action of 〈σ〉 on Zn to be the set of images of k under all
of the functions in 〈σ〉, denoted by 〈σ〉 · k = {π(k) : π ∈
〈σ〉} = {σr(k) : r = 0,±1, . . . }. It can be checked that
〈σ〉 ·k = Oσi

for an unique i = 1, . . . , l, where Oσi
denotes

the nontrivial orbit of the cycle σi.

With the brief survey of the group action of Sn on Zn

above, we are able to explore the relationship between the
actions of SO(n) on Rn and Sn on Zn. Corresponding to
the Lie bracket relation [Rij , Tk] = δjkTi − δikTj shown in
Lemma 3, it can be checked that [Ωijx, ek] = δjkei − δikej
holds for any x ∈ Rn. Specifically, [Ωijx, ek], as well as
[Rij , Tk], vanishes unless k = i or k = j. On the other
hand, for the action of Sn on Zn, 〈(i, j)〉 · k = {i, j} holds

if k = i or k = j, and 〈(i, j)〉 · k = {k} is the trivial
action otherwise. Therefore, the Lie bracket [Ωijx, ek] can
be represented by using ι as

[Ωijx, ek] =

{
∓eι(Ωij)·k, if k = i or k = j,

0, otherwise.

Following from this observation, if ι(S) = (a1, . . . , al) is an
l-cycle for some S ⊂ B with no redundant element, then,
because of Lie(S) = span{Ωij : i, j = a1, . . . , al} (Zhang
and Li, 2017), for any Ωij ∈ S, [Ωijx, ek] �= 0 if and only
if k ∈ Oι(S), and consequently, Lie(S · x) = span{ek : k ∈
Oι(S)}, where Oι(S) = {a1, . . . , al} denotes the nontrivial
orbit of ι(S) and S · x = {Ωijx : Ωij ∈ S} is the set of
vector fields on Rn induced by the action of S on Rn. On
the symmetric group level, we have

〈ι(S)〉 · k =

{
Oι(S), if k ∈ {a1, . . . , al},
{k}, otherwise,

i.e., 〈ι(S)〉 · k is nontrivial if and only if k ∈ Oι(S). Similar
to the case of systems defined on SO(n) shown in Theorem
2, the above relationship between the actions of SO(n) on
Rn and Sn on Zn immediately gives rise to a symmetric
group approach to characterizing controllability of systems
induced by the action of SO(n) on Rn in the form of (5).

Theorem 5. A bilinear system defined on Rn in the form
of (5), i.e.,

d

dt
x(t) =

[
m1∑
s=1

us(t)Ωisjs

]
x(t) +

m2∑
l=1

vl(t)ekl
, x(0) = 0,

is controllable if and only if there exists S ⊆ {Ωisjs : s =
1, . . . ,m1} such that

⋃m2

l=1(〈ι(S)〉 · kl) = Zn.

Proof. (Necessity): Under the condition that the system
in (5) is controllable on Rn, it suffices to show Zn ⊆⋃m2

l=1(〈ι(S)〉 · kl), or equivalently, any r ∈ Zn satisfies
r ∈ 〈ι(S)〉 · kl for some kl.

Let S be a subset of {Ωi1j1 , . . . ,Ωim1
jm1

} such that it

does not contain redundant element and satisfies Lie(S) =
Lie{Ωi1j1 , . . . ,Ωim1 jm1

}. Pick any r ∈ Zn, if r = kl for

some l = 1, . . . ,m2, then r ∈ 〈ι(S)〉 · kl holds trivially.
Otherwise, because the system in (5) is controllable on
Rn, there must exist Ωαβ ∈ Lie(S) and ekγ

for some
γ = 1, . . . ,m2 such that [Ωαβx, ekγ

] = er, which then
implies r ∈ 〈ι(S)〉 · kγ .
(Sufficiency): We need to show that any standard basis
element er of Rn can be generated by iterated Lie brackets
of the control vector fields of the system in (5).

If {k1, . . . , km2
} = Zn, then {ek1

, . . . , ekm2
} = {e1, . . . , en}

holds, which immediately implies the controllability of
the system in (5) on Rn. Otherwise, pick any r ∈
Zn\{k1, . . . , km2

}, by the assumption that
⋃m2

l=1(〈ι(S)〉 ·
kl) = Zn for some S ⊆ {Ωi1j1 , . . . ,Ωim1 jm1

}, there exists

some l ∈ {1, . . . ,m2} such that r ∈ 〈ι(S)〉 · kl. Because
r �= kl by the choice of r, 〈ι(S)〉 · kl contains at least
two elements r and kl, or equivalently, ι(S) has an orbit
containing both of r and kl, which indicates Ωrkl

∈ Lie(S).
Since [Ωrkl

x, ekl
] = er, the proof is completed. �

In addition to the controllability examination, if a system
in the form of (5) is not controllable on Rn, the orbits of
the action of ι(S) on Zn also characterizes the controllable
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In the following, we will develop a control strategy to
simultaneously steer the system in (4) from I to XF and
the system in (5) from 0 to xF in three steps. First, because
the system in (4) is controllable on SO(n), the control
inputs u1, . . . , um1 can be appropriately designed to steer
the system in (4) from I to A−1XF , and simultaneously,
the system in (5) stays at the origin by setting v1 = · · · =
vm2 = 0. Then, we set u1 = · · · = um1 = 0 and apply
v1, . . . , vm2 to steer the system in (5) from the origin to z.
In this step, the system in (4) stays at A−1XF . At last,
u1, . . . , um2 can be turned on again to steer the system in
(4) from A−1XF to XF . Since xF = Az, the system in (5)
will be simultaneously steered to xF from z, and then the
proof is done. �

The proof of Theorem 4 provides a systematic control
design procedure to simultaneously accomplish transitions
of the systems in (4) and (5) between desired states, which
concludes the controllability of the system in (3). Alterna-
tively, the proof can also be carried out algebraically by
computing the Lie algebras generated by the control vector
fields of these systems, which will be the main focus of the
next section through a symmetric group approach.

3.3 Controllability Characterization of Systems on SE(n)
via Symmetric Group Actions

In this section, we aim to illustrate the application of the
symmetric group approach of characterizing controllability
to bilinear systems defined on the non-compact Lie group
SE(n). At first, recall that, for such a system, its rotational
component is exactly governed by a system on SO(n) in
the form of (2). As a result, the algebraic controllability
condition represented in terms of the length of permuta-
tion cycles shown in Theorem 2 can be directly adopted to
evaluate the controllability of the rotational component in
(4). Now, according to Theorem 4, in order to analyze the
controllability of the whole system on SE(n), we only need
to focus on the translational component in (5). As shown in
the proof of Theorem 4, the translational component in (5)
contains the action of SO(n) on Rn, which motivates the
leverage of the action of Sn on Zn = {1, . . . , n} to study
its controllability. To this end, let’s first briefly recap some
basics of the group action of Sn on Zn.

For any σ ∈ Sn, let 〈σ〉 = {σr ∈ Sn : r = 0,±1, . . . }
denote the cyclic subgroup of Sn generated by σ and
σ = σ1 · · ·σl be its decomposition into a product of
disjoint cycles. By the definition of Sn, every element
σr ∈ 〈σ〉 ⊆ Sn is a bijective function on Zn. Then, for
any k ∈ Zn, we define the orbit of k under the group
action of 〈σ〉 on Zn to be the set of images of k under all
of the functions in 〈σ〉, denoted by 〈σ〉 · k = {π(k) : π ∈
〈σ〉} = {σr(k) : r = 0,±1, . . . }. It can be checked that
〈σ〉 ·k = Oσi

for an unique i = 1, . . . , l, where Oσi
denotes

the nontrivial orbit of the cycle σi.

With the brief survey of the group action of Sn on Zn

above, we are able to explore the relationship between the
actions of SO(n) on Rn and Sn on Zn. Corresponding to
the Lie bracket relation [Rij , Tk] = δjkTi − δikTj shown in
Lemma 3, it can be checked that [Ωijx, ek] = δjkei − δikej
holds for any x ∈ Rn. Specifically, [Ωijx, ek], as well as
[Rij , Tk], vanishes unless k = i or k = j. On the other
hand, for the action of Sn on Zn, 〈(i, j)〉 · k = {i, j} holds

if k = i or k = j, and 〈(i, j)〉 · k = {k} is the trivial
action otherwise. Therefore, the Lie bracket [Ωijx, ek] can
be represented by using ι as

[Ωijx, ek] =

{
∓eι(Ωij)·k, if k = i or k = j,

0, otherwise.

Following from this observation, if ι(S) = (a1, . . . , al) is an
l-cycle for some S ⊂ B with no redundant element, then,
because of Lie(S) = span{Ωij : i, j = a1, . . . , al} (Zhang
and Li, 2017), for any Ωij ∈ S, [Ωijx, ek] �= 0 if and only
if k ∈ Oι(S), and consequently, Lie(S · x) = span{ek : k ∈
Oι(S)}, where Oι(S) = {a1, . . . , al} denotes the nontrivial
orbit of ι(S) and S · x = {Ωijx : Ωij ∈ S} is the set of
vector fields on Rn induced by the action of S on Rn. On
the symmetric group level, we have

〈ι(S)〉 · k =

{
Oι(S), if k ∈ {a1, . . . , al},
{k}, otherwise,

i.e., 〈ι(S)〉 · k is nontrivial if and only if k ∈ Oι(S). Similar
to the case of systems defined on SO(n) shown in Theorem
2, the above relationship between the actions of SO(n) on
Rn and Sn on Zn immediately gives rise to a symmetric
group approach to characterizing controllability of systems
induced by the action of SO(n) on Rn in the form of (5).

Theorem 5. A bilinear system defined on Rn in the form
of (5), i.e.,

d

dt
x(t) =

[
m1∑
s=1

us(t)Ωisjs

]
x(t) +

m2∑
l=1

vl(t)ekl
, x(0) = 0,

is controllable if and only if there exists S ⊆ {Ωisjs : s =
1, . . . ,m1} such that

⋃m2

l=1(〈ι(S)〉 · kl) = Zn.

Proof. (Necessity): Under the condition that the system
in (5) is controllable on Rn, it suffices to show Zn ⊆⋃m2

l=1(〈ι(S)〉 · kl), or equivalently, any r ∈ Zn satisfies
r ∈ 〈ι(S)〉 · kl for some kl.

Let S be a subset of {Ωi1j1 , . . . ,Ωim1
jm1

} such that it

does not contain redundant element and satisfies Lie(S) =
Lie{Ωi1j1 , . . . ,Ωim1 jm1

}. Pick any r ∈ Zn, if r = kl for

some l = 1, . . . ,m2, then r ∈ 〈ι(S)〉 · kl holds trivially.
Otherwise, because the system in (5) is controllable on
Rn, there must exist Ωαβ ∈ Lie(S) and ekγ

for some
γ = 1, . . . ,m2 such that [Ωαβx, ekγ

] = er, which then
implies r ∈ 〈ι(S)〉 · kγ .
(Sufficiency): We need to show that any standard basis
element er of Rn can be generated by iterated Lie brackets
of the control vector fields of the system in (5).

If {k1, . . . , km2
} = Zn, then {ek1

, . . . , ekm2
} = {e1, . . . , en}

holds, which immediately implies the controllability of
the system in (5) on Rn. Otherwise, pick any r ∈
Zn\{k1, . . . , km2

}, by the assumption that
⋃m2

l=1(〈ι(S)〉 ·
kl) = Zn for some S ⊆ {Ωi1j1 , . . . ,Ωim1 jm1

}, there exists

some l ∈ {1, . . . ,m2} such that r ∈ 〈ι(S)〉 · kl. Because
r �= kl by the choice of r, 〈ι(S)〉 · kl contains at least
two elements r and kl, or equivalently, ι(S) has an orbit
containing both of r and kl, which indicates Ωrkl

∈ Lie(S).
Since [Ωrkl

x, ekl
] = er, the proof is completed. �

In addition to the controllability examination, if a system
in the form of (5) is not controllable on Rn, the orbits of
the action of ι(S) on Zn also characterizes the controllable
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submanifold of the system as shown in the following
corollary.

Corollary 6. The controllable submanifold of a bilinear
system defined on Rn in the form of (5) is the linear
subspace of Rn spanned by {er : r ∈

⋃m2

l=1(〈ι(S)〉 · kl)}
for some S ⊆ {Ωi1j1 , . . . ,Ωim1 jm1

}.

Proof. At first, we pick S ⊆ {Ωi1j1 , . . . ,Ωim1 jm1
} such

that it does not contain redundant element and satisfies
Lie(S) = Lie{Ωi1j1 , . . . ,Ωim1 jm1

}. Furthermore, let ι(S) =
σ1 · · ·σs with σi pairwise disjoint cycles and Oi denote the
nontrivial orbit of σi for each i = 1, . . . , s. Then, the Lie
subalgebra of so(n) generated by S can be decomposed
as Lie(S) = ⊕s

i=1span{Ωαβ : α, β ∈ Oi} (Zhang and Li,
2017), where ⊕ denotes the direct sum of vector spaces.
For each component Vi = span{Ωαβ : α, β ∈ Oi}, Theorem
5 implies that the Lie algebra generated by e1, . . . , em2

and Vi · x is span{er : r ∈
⋃m2

l=1(〈σi〉 · kl)}. On the
other hand, because σi are pairwise disjoint, the subgroups
〈σi〉 of Sn have trivial intersection. Consequently, for each
kl ∈ Zn, there is an unique σi such that 〈ι(S)〉 · kl =
〈σi〉 · kl. Therefore, the controllable submanifold of the
system in (5) is the linear subspace of Rn spanned by⋃s

i=1{er : r ∈
⋃m2

l=1(〈σi〉 · kl)} = {er : r ∈
⋃s

i=1

⋃m2

l=1(〈σi〉 ·
kl)} = {er : r ∈

⋃m2

l=1(〈ι(S)〉 · kl)}. �

Now, we will integrate the controllability characterization
of the translational component on Rn shown in Theorem
5 with that of the rotational component on SO(n) shown
in Lemma 1 to yield an algebraic controllability condition
of the whole system on SE(n).

Corollary 7. A bilinear system on SE(n) in the form of
(3), i.e.,

d

dt

[
X(t) x(t)
0 1

]
=

(
m1∑
s=1

us(t)

[
Ωisjs 0
0 0

]

+

m2∑
l=1

vl(t)

[
0 ekl

0 0

])[
X(t) x(t)
0 1

]
,

(x(0), X(0)) = (0, I),

is controllable if and only if there exists a subset S of
{Ωi1j1 , . . . ,Ωim1 jm1

} such that ι(S) is an n-cycle and
m2 ≥ 1.

Proof. (Necessity): It is equivalent to showing that if one
of the two conditions, i.e., ι(S) is an n-cycle for some
S ⊆ {Ωi1j1 , . . . ,Ωim1 jm1

} and m2 ≥ 1, violates, then the

system in (3) is not controllable on SE(n).

By Lemma 1, if there does not exist any subset S ⊆
{Ωi1j1 , . . . ,Ωim1 jm1

} such that ι(S) is an n-cycle, then

the rotational component of the system in (3), i.e., the
system in (4), fails to be controllable on SO(n). On the
other hand, m2 = 0 results in uncontrollability of the
translational component in (5) on Rn as discussed in the
proof of Theorem 4. Both of these two situations will
lead to uncontrollability of the system in (3) on SE(n)
according to Theorem 4, which then proves the necessity
of the two conditions.

(Sufficiency): By Theorem 4, it suffices to show that both
of the systems in (4) and (5) are controllable providing that
ι(S) is an n-cycle for some S ⊆ {Ωi1j1 , . . . ,Ωim1

jm1
} and

m2 ≥ 1. Moreover, Lemma 1 has revealed that ι(S) being
an n-cycle guarantees the controllability of the rotational
component in (4) on SO(n). Then, it remains to show that
the translational component in (5) is controllable on Rn

under the additional condition m2 ≥ 1.

Note that an n-cycle in Sn has only one orbit Zn. Hence,
〈ι(S)〉 · kl = Zn holds for any l = 1, . . . ,m2. This implies
that the system in (5) is controllable on Rn by Theorem
5, which also concludes the proof. �

4. CONCLUSION

In this paper, we introduce a novel algebraic approach to
characterizing controllability of bilinear systems evolving
on Lie groups. Specifically, we leverage the structural
properties of the system on the compact and connected
Lie group SO(n) and the symmetric group to establish a
transparent controllability analysis through permutation
orbits. For systems evolving on the non-compact Lie group
SE(n) induced by the Lie group action of SO(n) on Rn,
we explore the relationship between the action of so(n) on
Rn and Sn on a set of n elements, which leads to an al-
gebraic characterization of controllability and controllable
submanifolds of such systems in terms of the orbits of the
symmetric group action. The established methodology for
analyzing controllability not only provides an alternative
to the canonical controllability condition LARC, but also
takes an important step toward understanding geometric
control from an algebraic perspective.

Appendix A. LIE ALGEBRA RANK CONDITION

Theorem 8. Let G be a compact and connected Lie group
and g be its Lie algebra, then a bilinear system on G of
the form

Ẋ(t) = B0X(t) +

(
m∑
i=1

ui(t)Bi

)
X(t), X(0) = I,

where X(t) ∈ G, Bi ∈ g, ui(t) ∈ R are piecewise constant,
and I is the identity element of G, is controllable if and
only if Lie{B0, . . . , Bm} = g.

Proof. See (Brockett, 1972) and (Jurdjevic and Suss-
mann, 1972).

Appendix B. BASICS OF THE SYMMETRIC GROUP
THEORY

A symmetric group on n letters, denoted by Sn, is the
group of all bijective maps defined on a set containing
n elements, in which the group operation is the compo-
sition of functions and elements of Sn are called permu-
tations. Conventionally, the set of n elements is denoted
by Zn = {1, . . . , n}. For any σ ∈ Sn, we further define an
equivalence relation on Zn by a ∼ b if and only if b = σk(a)
for a, b ∈ Zn, and then the equivalence classes determined
by this equivalence relation are called the orbits of σ. A
permutation σ ∈ Sn is said to be a cycle if it has at most
one orbit containing more than one element, and its length
is defined to be the number of elements in its nontrivial
orbit. A cycle of length k is also named as a k-cycle,
and, in particular, a 2-cycle is also called a transposition.
It can be shown that every permutation is a product of
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disjoint cycles, i.e., cycles whose nontrivial orbits have
empty intersection, and a k-cycle can be decomposed into
a product of no less than k−1 transpositions (Lang, 2002).
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O. Schedletzky, N.C.N., Sørensen, O.W., and Griesinger,
C. (1998). Unitary control in quantum ensembles,
maximizing signal intensity in coherent spectroscopy.
Science, 280, 421–424.

Hermann, R. and Krener, A. (1977). Nonlinear control-
lability and observability. IEEE Transactions on Auto-
matic Control, 22(5), 728–740.

Huang, G.M., Tarn, T.J., and Clark, J.W. (1983). On the
controllability of quantum-mechanical systems. Journal
of Mathematical Physics, 24(11), 2608–2618.

Isidori, A. (1995). Nonlinear Control Systems. Com-
munications and Control Engineering. Springer-Verlag
London, 3rd edition.

Jurdjevic, V. (1996). Geometric Control Theory. Cam-
bridge University Press, New York.

Jurdjevic, V. and Sussmann, H. (1972). Control systems
on lie groups. Journal of Differential Equations, 12(2),
313 – 329.

Lang, S. (2002). Algebra, volume 211 of Graduate Texts
in Mathematics. Springer-Verlag New York, New York,
3rd edition.

Lee, J.M. (2003). Introduction to Smooth Manifolds,
volume 218 ofGraduate Texts in Mathematics. Springer-
Verlag New York, New York, 2nd edition.

Li, J.S. and Khaneja, N. (2006). Control of inhomogeneous
quantum ensembles. Physical Review A, 73, 030302.

Li, J.S., Ruths, J., Yu, T.Y., Arthanari, H., and Wagner,
G. (2011). Optimal pulse design in quantum control:
A unified computational method. Proceedings of the
National Academy of Sciences, 108(5), 1879–1884.

Mohler, R.R. and Kolodziej, W. (1980). An overview of
bilinear system theory and applications. IEEE Trans-
actions on Systems, Man, and Cybernetics, 10(10), 683
– 688.

Mohler, R.R. and Ruberti, A. (1978). Recent Develop-
ments in Variable Structure Systems, Economics and
Biology, volume 162 of Lecture Notes in Economics and
Mathematical Systems. Springer-Verlag Berlin Heidel-
berg.

Zhang, W. and Li, J.S. (2017). Analyzing controllability
of bilinear systems on symmetric groups: Mapping lie
brackets to permutations. arXiv:1708.02332v1.

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

667


