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Abstract — This paper presents extraction technique
applied to the double higher order surface integral
equation method of moments and discusses the
numerical results compared with previously implemented
extraction method and numerical Gauss-Legendre
integration.
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[.INTRODUCTION

This paper presents our ongoing study of
convergence behavior of near-singular (potential) and
near-hypersingual (field) integrals for double higher
order large-domain surface integral equation method of
moments (SIE-MoM). The fast and accurate integral
computation that will effectively give the MoM matrix
entries is essential in the computational electromagnetics
(CEM). The main challenge arises with small source-to-
field distances which often occur in microstrip and
printed circuit design but are part of almost any model
analysis. The technique for integral evaluation presented
here uses the singularity extraction method. The
analytically evaluated integral of the principal singular
part is computed over a parallelogram which surface is
defined to be similar to the surface of the generalized
quadrilateral in the near area of the singular point.
Numerical integrals over parallelogram and quadrilateral
are using Gauss-Legendre quadrature formula.

II. THE METHOD

A. 2D double higher order (DHO) integrals

In the DHO SIE-MoM the 2D surface integrals
are defined on the Lagrange-type generalized curved
parametric quadrilateral MoM-SIE surface elements (in
Fig. 1) defined in the parametric u-v domain as [1]:

Kl,l KV
r(u,v) = ZZrklukvl , for -1<u,v<I, (1

k=01=0
where ry are vector coefficients and K, and K,
are geometrical orders (K,, K, = 1). The current is
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approximated by higher order polynomial basis functions
[1] leading to 2D integrals over the quadrilateral having
the following form:

Loy o e IR . iR
I;ZJ'J'uve dudv’I;s:J'J'uv(lJr][iR)e dudv, (2)

o 4nR ad 4nR
where s and hs represent singular and hypersingular
integrals respectively, i and j are arbitrary polynomial
orders of the basis functions, [} is propagation
coefficient, f is the operating frequency, € and p are
permittivity and permeability of the dielectric medium
respectively and R is the distance of the source point
from the field point.

Fig. 1. Quadrilateral element.

B. Parallelogram for the extraction technique

The quadrilateral element and the parallelogram
constructed at projection point (uo, vo) are shown in Fig.
2. The distance of the point on the parallelogram and
singular point is defined as:

Rf7 =d® +alNi* + 2NV +2a,0, cosaturv,  (3)

where a,, a, and cosa are computed to take into account
the curvature of the quadrilateral element, Au = u-uy,
Av = v-vp and d is the distance between singular point
and the close point projection on the quadrilateral element.

C. Taylor’s expansion and analytic integration
The relation between quadrilateral and parallelogram
parametric surfaces is given by:

R@,v) =Ry (u,v) +1(,v) , R(u,v) = Rpa[14 x(u,v) 5 (4)

where x(u,v) = #(u,v)/R,2(u,v). The singular and
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hypersingular parts of integrands for the integration
over the parallelogram are represented through Taylor’s
expansion over x having in mind (4). Analytical integrals
are computed by dividing parallelogram into triangles
and using recursive formulas similarly to the procedure
described in [2].

Fig. 2. Quadrilateral patch and parallelogram constructed
at projected point.

D. Projected points outside of the patch

For the case of large and negative 2a,a.cosaAulv
contribution in (3), |x(u,v)] becomes large because
Ry2(u,v) is taking a small value. As a result, the Taylor’s
expansion over x does not approximate the (hyper)
singular function well. In this situation, when the
projection point is outside of the element domain, the
parallelogram is constructed using parameters at the
closest point, i.e., the most singular point on the
quadrilateral. For the large values of |x(u,v)|, the patch
is divided into four parts and the extraction method is
applied to each part separately (example in Fig. 5).
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Fig. 3. Singular integral convergence for uy = 0.1,
vo=-0.1 and i=0, j/=0 orders of the basis function.

II. RESULTS
The results shown in Figs. 3-5 are computed for
second order curvilinear patch (one of the six patches
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modeling 1 m radius sphere) shown in Fig. 2. The
integral convergence is obtained for d=5e-7 and
=0.77546 and results are compared to Gauss-Legendre
numerical integration and previously implemented
traditional (old) extraction technique.

Singular integral
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Fig. 4. Singular integral convergence for up = 0.1,
vo=-0.1 and i=6, j=6 orders of the basis function.

The NGL label on the graphs represents the square
root of the number of Gauss-Legendre points used
for the numerical integration over quadrilateral or
parallelogram. The relative convergence error is

computed as § :10g10‘1 -1 ‘ / ‘7 , where 7 is the integral

obtained using described extraction method with high
value of Gauss-Legendre points and 7 represents the
integrals as function of NGL.

Results in Fig. 5 are computed for the point
described in part D of previous section and the
improvement in convergence is shown for the divided
patch method.

Hypersingular integral

0
-2
4
-6
= 8
-10 =MNew Extracton
=0ld Exlraclion
12 = (Gauss-Legandre integration
B Divided New Extraction
-14
-16
2 4 6 8 10 12 14 16 18 20

Fig. 5. Hypersingular integral convergence comparison
for up = 1.1, vo=1.1 and =0, j=0 orders of the basis
function. Patch is divided at (0.8, 0.8) point in #-v domain.
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IV. CONCLUSION

New extraction method is introduced and the
method is verified with results. The convergence
improvement is shown compared to the traditional
extraction technique as well as further improvements
achieved by dividing the patch. The convergence
improvement is due the integral of the difference of the
two functions defined over the constructed parallelogram
and quadrilateral being accurately evaluated with small
number of integration points.
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