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Abstract  This paper presents extraction technique 
applied to the double higher order surface integral 
equation method of moments and discusses the 
numerical results compared with previously implemented 
extraction method and numerical Gauss-Legendre 
integration. 
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I. INTRODUCTION 
This paper presents our ongoing study of 

convergence behavior of near-singular (potential) and 
near-hypersingual (field) integrals for double higher 
order large-domain surface integral equation method of 
moments (SIE-MoM). The fast and accurate integral 
computation that will effectively give the MoM matrix 
entries is essential in the computational electromagnetics 
(CEM). The main challenge arises with small source-to-
field distances which often occur in microstrip and 
printed circuit design but are part of almost any model 
analysis. The technique for integral evaluation presented 
here uses the singularity extraction method. The 
analytically evaluated integral of the principal singular 
part is computed over a parallelogram which surface is 
defined to be similar to the surface of the generalized 
quadrilateral in the near area of the singular point. 
Numerical integrals over parallelogram and quadrilateral 
are using Gauss-Legendre quadrature formula.  
 

II. THE METHOD 
A. 2D double higher order (DHO) integrals 

In the DHO SIE-MoM the 2D surface integrals  
are defined on the Lagrange-type generalized curved 
parametric quadrilateral MoM-SIE surface elements (in 
Fig. 1) defined in the parametric u-v domain as [1]: 

 ,   for , (1) 

where rkl are vector coefficients and Ku and Kv  
are geometrical orders (Ku, Kv  1). The current is 

approximated by higher order polynomial basis functions 
[1] leading to 2D integrals over the quadrilateral having 
the following form: 

, , (2) 

where s and hs represent singular and hypersingular 
integrals respectively, i and j are arbitrary polynomial 
orders of the basis functions, 
coefficient, f 
permittivity and permeability of the dielectric medium 
respectively and R is the distance of the source point 
from the field point.  
 

 
 
Fig. 1. Quadrilateral element. 
 
B. Parallelogram for the extraction technique  

The quadrilateral element and the parallelogram 
constructed at projection point (u0, v0) are shown in Fig. 
2. The distance of the point on the parallelogram and 
singular point is defined as: 
 , (3) 
where au, av and cos  are computed to take into account 
the curvature of the quadrilateral element, u = u-u0,  

v = v-v0 and d is the distance between singular point 
and the close point projection on the quadrilateral element. 
 
C.  

The relation between quadrilateral and parallelogram 
parametric surfaces is given by: 
 , ),(1),( vuxRvuR P , (4) 
where x(u,v) = t(u,v)/Rp

2(u,v). The singular and  
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hypersingular parts of integrands for the integration 
over the par
expansion over x having in mind (4). Analytical integrals 
are computed by dividing parallelogram into triangles 
and using recursive formulas similarly to the procedure 
described in [2]. 
 

 
 
Fig. 2. Quadrilateral patch and parallelogram constructed 
at projected point. 
 
D. Projected points outside of the patch 

For the case of large and negative 2auavcos u v 
contribution in (3), |x(u,v)| becomes large because 
Rp

2(u,v) is taking a small value. As a result, the Taylor  
expansion over x does not approximate the (hyper) 
singular function well. In this situation, when the 
projection point is outside of the element domain, the 
parallelogram is constructed using parameters at the 
closest point, i.e., the most singular point on the 
quadrilateral. For the large values of |x(u,v)|, the patch 
is divided into four parts and the extraction method is 
applied to each part separately (example in Fig. 5). 
 

 
 
Fig. 3. Singular integral convergence for u0 = 0.1,  
v0=-0.1 and i=0, j=0 orders of the basis function. 
 

III. RESULTS 
The results shown in Figs. 3-5 are computed for 

second order curvilinear patch (one of the six patches 

modeling 1 m radius sphere) shown in Fig. 2. The 
integral convergence is obtained for d=5e-7 and 

0.77546 and results are compared to Gauss-Legendre 
numerical integration and previously implemented 
traditional (old) extraction technique. 
 

 
 
Fig. 4. Singular integral convergence for u0 = 0.1,  
v0=-0.1 and i=6, j=6 orders of the basis function. 
 

The NGL label on the graphs represents the square 
root of the number of Gauss-Legendre points used  
for the numerical integration over quadrilateral or 
parallelogram. The relative convergence error is 
computed as , where  is the integral 

obtained using described extraction method with high 
value of Gauss-Legendre points and I represents the 
integrals as function of NGL. 

Results in Fig. 5 are computed for the point 
described in part D of previous section and the 
improvement in convergence is shown for the divided 
patch method. 
 

 
 
Fig. 5. Hypersingular integral convergence comparison 
for u0 = 1.1, v0=1.1 and i=0, j=0 orders of the basis 
function. Patch is divided at (0.8, 0.8) point in u-v domain. 
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IV. CONCLUSION 
New extraction method is introduced and the 

method is verified with results. The convergence 
improvement is shown compared to the traditional 
extraction technique as well as further improvements 
achieved by dividing the patch. The convergence 
improvement is due the integral of the difference of the 
two functions defined over the constructed parallelogram 
and quadrilateral being accurately evaluated with small 
number of integration points. 
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