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Abstract—We present a higher order quadrilateral surface
remeshing approach for application to the method of moments.
We briefly introduce the motivation for high-quality
quadrilateral meshes for accurate and efficient application of
cutting edge integration and singularity extraction approaches.
Results are demonstrated for simple surfaces and compared with
a common quadrilateral remeshing algorithm.
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I. INTRODUCTION

One of the key challenges in numerical methods,
geometric discretization, profoundly affects accuracy of a
given simulation. An unnecessarily fine discretization (for a
given frequency) produces an unnecessarily large number of
unknowns, and therefore a correspondingly large linear
system. Conversely, accurate geometric modeling of curved
surfaces is essential for an overall optimal higher order
solution [1]. In addition, even integration procedures strongly
depend on the geometric discretization of a structure. Namely,
improved singularity extraction and integration techniques
have recently shown promise toward further improving the
method of moments (MoM) in the surface integral equation
(SIE) formulation based on higher order quadrilateral
modeling; these novel approaches, however, are subject to
increasing error as patch corner angles exceed ~120 degrees
[2], [3]. Existing quadrilateral remeshing techniques,
meanwhile, often neglect the corner angles of clements. A
method, therefore, to efficiently remesh surfaces to
quadrilaterals with concern for electrical size and corner
angles provides benefits in terms of improving the
applicability of these new integration schemes.

This paper focuses on the application of a geometrically
conformal (angle preserving, explicitly biholomorphic)
quadrilateral remeshing approach for computational
electromagnetics problems to address these concerns. In
particular, we provide examples in comparison to a non-
conformal approach.

II. CONFORMAL REMESHING
To produce a quadrilateral mesh with the desired
properties, we begin, in general, with a point cloud describing
the surface. The construction begins with a triangle meshing;
Giesen, et al. provides a triangle meshing algorithm which
offers several attractive guarantees, namely preservation of

topology [4]. Following the reconstruction with an isotropic
refinement assists in the parameterization.

Many methods exist to parameterize a surface, conformal
or otherwise. However, for our application we require a
conformal mapping. Conformal mappings such as discrete
Ricci-flow [5], least squares conformal [6], and discrete
conformal [7], each provide a means to map a surface to a
parametric domain, ideally preserving the angles of the
mapped surface. In this paper we show results using discrete-
conformal mapping. Barycentric coordinates, unique on
triangles, are then used to lift a sample pattern from a
parametric domain to the original surface to produce vertices
of the completed quadrilateral mesh. Crucially, as Barycentric
coordinates depend on the corner angles of the triangles,
conformality is preserved.

This method of remeshing provides several key
advantages, especially for the higher order MoM-SIE. With a
precomputed parameterization, additional remeshing is
computed inexpensively; when coupled with adaptive
sampling of the parametric domain, this permits a rapid means
to adjust the clectrical size of the patches for a given
frequency. Additionally, curvilinear meshing arises naturally;
given a sceparate sampling density for the patches and the
interpolation points, quadrilateral-curvilinear patches can be
generated identically to the linear case, with vertices used
instead as geometric sample points for interpolation.

III. RESULTS AND DISCUSSION

To demonstrate the viability of our implementation, we
show results for two geometries: spherical and toroidal. For
each case, we present several tiers of sampling density in the
parametric domain to simulate a frequency-dependent
remeshing.

As a comparison, we test against the 4 to 8 Subdivision
method included in MeshLab [8].

Fig. 1. Sphere quadrilateral remeshing for 2000 sample points (left) and 200
sample points (right).
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We observe in Fig. 1 that a coarser sampling preserves the
general constraints on the corner angles of the patches. Patch
size decreases at the seams of the surface to maintain
conformality. Note also that the quadrilateral remeshing does
not exactly replicate the boundary of the original triangular
surface mesh, with small distortions occurring; however, this
effect is realized primarily for very coarse sampling or abrupt
changes in curvature and is largely inconsequential.
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Fig. 2. Corner angle histogram for conformal remeshing and 4 to 8
subdivision for a sphere.

As seen in Fig. 2, the conformal remeshing distributes
corner angles well within the desired range. In contrast, 4 to 8
subdivision—for the same number of patches—forces most
angles outside this range. With further iterations of 4 to 8
subdivision, the distribution of corner angles improves, but at
the expense of significantly greater element count compared to
conformal remeshing.

Fig. 3. Torus quadrilateral remeshing for 10000 sample points (left) and 4000
sample points (right).

As in Fig. 1, the torus of Fig. 3 exhibits similar behavior
when varying sampling density. However, the change in
quadrilateral size as a function of the curvature is much more
apparent, note that in the center of the torus, the patch size
shrinks rapidly to preserve conformality.

In terms of angle distribution, the histogram in Fig. 4
illustrates again the quality of the quadrilateral elements

generated by a conformal remeshing. For the same number of
elements, 4 to 8 subdivision produces many more nearly-
degenerate quadrilateral elements, or clements with three
collinear vertices.
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Fig. 4. Comner angle histogram for conformal remeshing and 4 to 8
subdivision for a torus.

By precomputing a conformal parameterization for a
scatterer, new quadrilateral meshes with optimal corner angles
can be constructed efficiently. The shape of the parent
triangular mesh is also preserved well in the quadrilateral
reconstruction. In principle, quadrilateral patches can be flat or
curved, described by arbitrary geometric orders in parametric
coordinates.
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