Overview of Some Advances in Higher Order
Frequency-Domain CEM Techniques

Branislav M. Notaros, Sanja B. Mani¢, Cam Key, Jake Harmon, and Donald Estep
Colorado State University, Fort Collins, CO 80523, USA
notaros@colostate.edu, smanic@colostate.edu, camkey@rams.colostate.edu, j.harmon@colostate.edu,
donald.estep@colostate.edu

Abstract—We present some advances in several major
components of higher order computational electromagnetics
(CEM) techniques based on the finite element method (FEM) and
the method of moments (MoM) in the surface integral equation
(SIE) formulation in the frequency domain. Examples include a
novel singularity extraction technique for curvilinear MoM-SIE
integration and novel application of adaptive FEM discretization
refinement based on adjoint-informed error estimation.
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I. INTRODUCTION

Both the finite element method (FEM) and the method of
moments (MoM) in conjunction with the surface integral
equation (SIE) formulation are extremely general and powerful
technologies for modeling and analysis of scattering and
radiation in computational electromagnetics (CEM) in the
frequency domain (FD) [1]. In spite of great recent advances in
mathematics, computing hardware and software infrastructure,
and numerical algorithms, there is a continuing and growing
demand for FEM and MoM-SIE tools that can handle
simulations of larger and more complex problems and provide
efficient, accurate, and reliable solutions using given
computing resources.

This paper presents some advances in several major
components of FEM and MoM-SIE FD modeling and
computation, within the context of higher order (also known as
the large-domain or entire-domain) computational approach,
which utilizes higher order basis functions. Higher order
modeling enables using large curved cells and patches, which
can greatly reduce the number of unknowns and enhance the
accuracy and efficiency of the computation [1]. Element orders
in the model, however, can also be low, so the low-order
modeling approach is actually included in the higher order
modeling.

II.  ADVANCES IN HIGHER ORDER FEM AND MOM-SIE FD
MODELING AND COMPUTATION

The FEM technique employs generalized curvilinear
interpolatory hexahedra of arbitrary geometrical orders as
volume elements for the approximation of geometry [Fig. 1(a)]
and hierarchical curl-conforming polynomial vector basis
functions of arbitrary orders for the approximation of fields
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within the elements. The FEM domain is truncated
implementing a novel anisotropic locally-conformal perfectly
matched layer (PML) method for electrically large curvilinear
meshes based on the higher order FEM modeling paradigm and
the concept of transformation electromagnetics [2]. The
method uses continuously varying anisotropic material
parameters, with the interpolatory parameterization of higher
order curvilinear geometries providing an interface to evaluate
the required Jacobian matrices.

(b)
Fig. 1. Curved parametric elements for geometrical modeling in the higher
order FEM and MoM-SIE techniques: (a) generalized hexahedron and (b)
generalized quadrilateral.

The higher order MoM-SIE FD modeling utilizes a
divergence-conforming 2-D version of FEM basis functions
defined on generalized curved quadrilateral patches [Fig. 1(b)].
A key component of higher order MoM-SIE computation is
accurate numerical evaluation of integrals defined on curved
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patches. We focus on singularity extraction consisting of
analytical integration of a principal singular part of the
integrand over a parallelogram whose surface is close to the
surface of the generalized curved quadrilateral near the singular
point, and numerical integration of the rest [3]. The
approximation function is defined using truncated Taylor’s
expansion over the difference between the curved quadrilateral
patch and the parallelogram taking into account both the
curvature of the element and the higher order of the basis
function.

Singular and hypersingular 4-D integrals, computed over
the testing and basis elements, are building blocks of the
matrix entries in the MoM-SIE FD technique. Their
calculation needs to be accurate and efficient in order to solve
for unknown coefficients in the current expansion. A novel
singularity extraction method has been developed for 2-D
integrals (over basis elements) to overcome the
(hyper)singular behavior of the integrand as well take into
account higher order properties of the current expansion and
geometry of the element. We are solving integrals of the
following forms:
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where ‘s” and ‘hs” stand for s1ngu1ar’ and ‘hypersingular’
respectively, u and v are local parametric coordinates, i and j
represent arbitrary polynomial orders of the basis functions, y
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is the propagation coefficient in the medium on either side of
the element, and R is the distance from the source point on the
basis element to the field point (on the testing element).

The extraction methods traditionally remove or mitigate
the (hyper)singularity by approximating the integrand by an
analytically integrable function. The difference between the
(hyper)singular function and the approximation can then
numerically be evaluated using Gauss-Legendre quadrature
formulas. In the new method, the approximated function is
computed through Taylor’s expansion series of the
(hyper)singular function and is defined over a parallelogram
that is tangential to the quadrilateral basis element at the so-
called closest projection point (CPP) with u, and v, being
coordinates in the u-v domain. CPP is the point on the infinite
parametric surface containing the basis element that is closest
to the field point. Analytically evaluated integral is computed
over four triangles forming the parallelogram, similarly to the
method developed in [4].

With increasing the size/complexity of CEM problems, the
need for quantitative error estimation and sensitivity analysis
techniques for FEM-PML and MoM-SIE has become
apparent. Such techniques allow for optimal remeshing [5],
adaptive discretization refinement, and many other such
improvements over the base FEM-PML or MoM-SIE method
that allow for decreased computation time and increased
accuracy. Toward this goal, we derive and formulate adjoint
problems [6] for variants of the FEM and SIE problem. We
furthermore demonstrate how these adjoint problems and their

solutions can be applied to modern, large-scale CEM problems
to obtain more-accurate results more quickly.

The adjoint problem is the dual of the forward problem. In
general, the adjoint operator is the operator which satisfies the
following identity:

{Lu,v) = (u,L*v), (1)

where (-} denotes the L? inner product. The adjoint problem
is solved with respect to linear (or linearized) functional
defining a relevant quantity of interest (Qol) from the forward
solution. We use the higher-order parameter sampling (HOPS)
and dual-weighted residual techniques to generate important
gradient and sensitivity information, and error estimates
throughout the discretization, including those localized to
elements or direction.

By applying adjoint-based error estimates towards
refinement, computational resources can be allocated
optimally. Indicators of the error in the Qol are used in
adaptive p- and h-refinement schemes, to determine how the
adaption is done, namely, how and where the new basis
function orders and/or new element sizes are assigned in a
new, refined FD higher order FEM or SIE model. This can
lead to an ability to control the quality of a solution, in terms
of the discretization of the mesh, both geometrically (k-
refinement) and with respect to basis functions (p-refinement).

The adjoint solutions can also be applied in computing Qol
gradients with respect to input parameters and in large-scale
optimization problems. Traditional methods for computing
gradients of a quantity of interest with respect to multiple
parameters are extremely costly. Instead of introducing small
perturbation in input parameters and resolving for a desired
Qol, this information can be generated simply and effectively
using the adjoint problem. Additionally, while Monte-Carlo
methods are simple to implement and effective, they require
significant computational resources and are impractical for
large problems. Adjoint based approaches, on the other hand,
are much more efficient; using HOPS, accurate sensitivity
information can be generated with just a handful of solves.

Adjoint based methods have so far found little use in
CEM, and particularly in FD higher order FEM and SIE
modeling. A goal of this paper is to promote the use of such
methods in FD CEM.

We discuss hierarchically semiseparable structures (HSS)
and analysis of large scattering problems using a fast scalable
parallel direct HSS solver combined with the rank-revealing
QR decomposition for memory compression and higher order
MoM-SIE modeling [7]. In addition, we discuss the higher
order fast multipole method (FMM) MoM-SIE technique, and
its multilevel (MLFMM) version, and explore the advantages,
shortcomings, and commonalities of all approaches. We
discuss combining MLFMM concepts with fast direct solvers,
in order to accelerate matrix compression and reduce the
computation cost but still maintain some benefits of direct over
iterative solvers.
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III. ILLUSTRATIVE RESULTS AND DISCUSSION

As an illustration of the results using the novel singularity
extraction SIE integration technique, one out of the six
second-order SIE elements modeling a sphere of unit radius is
tested for y = j0.7755 rad/m, for the distance between the field

point and the CPP point of d = 10" m, and different values of
projection point coordinates and i and j degrees. A corrected
new method is used for cases where the CPP point is outside
of the basis element domain. It creates a parallelogram at the
most singular point on the basis element rather than on the
whole parametric surface. The integration results are shown in
Figs. 2 and 3, where it can be observed that the new extraction
method shows higher accuracy for small numbers of
integration points, which is especially pronounced for higher
order polynomial basis functions.
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Fig. 2. Convergence results for the geometrically second-order element
modeling a sixth of a sphere and uy= 0.1, vo = —0.1 (inside the parametric
domain): (a)i=0,;=0;(b)i=6,;=6.
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Fig. 3. Convergence results for the geometrically second-order element (sixth
of a sphere) and uy= 1.2, vo = 1.2 (outside the parametric domain): (a) i =0, j
=0; (b)i=6,/=6.

By intelligently targeting error in the discretization using
adjoint-based error estimation, the accuracy can be improved
very effectively, even for very poor initial discretizations.
Traditional element selection schemes typically apply a
magnitude-based refinement, in which elements with the
largest Qol error estimates are prioritized for refinement.
However, the magnitude refinement scheme fails to consider
the interaction and error cancellation between elements in the
discretization. We have developed a minimum sum grouping
(MSGQG) strategy which provides a computational inexpensive
method to relate the error between elements for refinement
and groups them accordingly. Figure 4 shows an example of
this technique, for adaptive p-refinement for spherical
scatterers of various material parameters.

As seen in Fig. 4, for all three cases of spherical scatterers
of various material parameters, both the magnitude and MSG
approaches quickly reduce the error in the solution with
respect to the Mie Series computation of the bistatic RCS
across a wide-range of reception directions. In each case, the
initial discretization is extremely poor. Both the magnitude
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and MSG selection schemes are hybridized with a genetic
algorithm (GA) optimizer for choosing expansion orders
between 3 and 5 for each element based on the Qol error
estimates. At each iteration, the maximum number of
unknowns is increased incrementally. MSG achieves much
greater stability, reducing the error near monotonically.
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Fig. 4. Average percent error w.r.t. Mie Series for adaptive p-refinement for
spherical scatterers of various material parameters.
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