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Abstract�We present some advances in several major 
components of higher order computational electromagnetics 
(CEM) techniques based on the finite element method (FEM) and 
the method of moments (MoM) in the surface integral equation 
(SIE) formulation in the frequency domain. Examples include a
novel singularity extraction technique for curvilinear MoM-SIE 
integration and novel application of adaptive FEM discretization 
refinement based on adjoint-informed error estimation.   
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I. INTRODUCTION

Both the finite element method (FEM) and the method of 
moments (MoM) in conjunction with the surface integral 
equation (SIE) formulation are extremely general and powerful 
technologies for modeling and analysis of scattering and 
radiation in computational electromagnetics (CEM) in the 
frequency domain (FD) [1]. In spite of great recent advances in 
mathematics, computing hardware and software infrastructure, 
and numerical algorithms, there is a continuing and growing 
demand for FEM and MoM-SIE tools that can handle 
simulations of larger and more complex problems and provide 
efficient, accurate, and reliable solutions using given 
computing resources. 

This paper presents some advances in several major 
components of FEM and MoM-SIE FD modeling and 
computation, within the context of higher order (also known as 
the large-domain or entire-domain) computational approach,
which utilizes higher order basis functions. Higher order 
modeling enables using large curved cells and patches, which 
can greatly reduce the number of unknowns and enhance the 
accuracy and efficiency of the computation [1]. Element orders 
in the model, however, can also be low, so the low-order 
modeling approach is actually included in the higher order 
modeling. 

II. ADVANCES IN HIGHER ORDER FEM AND MOM-SIE FD
MODELING AND COMPUTATION

The FEM technique employs generalized curvilinear 
interpolatory hexahedra of arbitrary geometrical orders as 
volume elements for the approximation of geometry [Fig. 1(a)]
and hierarchical curl-conforming polynomial vector basis 
functions of arbitrary orders for the approximation of fields 

within the elements. The FEM domain is truncated 
implementing a novel anisotropic locally-conformal perfectly 
matched layer (PML) method for electrically large curvilinear 
meshes based on the higher order FEM modeling paradigm and 
the concept of transformation electromagnetics [2]. The 
method uses continuously varying anisotropic material 
parameters, with the interpolatory parameterization of higher 
order curvilinear geometries providing an interface to evaluate 
the required Jacobian matrices.

  
(a) 

(b) 
Fig. 1.  Curved parametric elements for geometrical modeling in the higher 
order FEM and MoM-SIE techniques: (a) generalized hexahedron and (b) 
generalized quadrilateral.  

The higher order MoM-SIE FD modeling utilizes a
divergence-conforming 2-D version of FEM basis functions 
defined on generalized curved quadrilateral patches [Fig. 1(b)].
A key component of higher order MoM-SIE computation is 
accurate numerical evaluation of integrals defined on curved 
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patches. We focus on singularity extraction consisting of 
analytical integration of a principal singular part of the 
integrand over a parallelogram whose surface is close to the 
surface of the generalized curved quadrilateral near the singular 
point, and numerical integration of the rest [3]. The 
approximation function is defined using truncated Taylor�s 
expansion over the difference between the curved quadrilateral 
patch and the parallelogram taking into account both the 
curvature of the element and the higher order of the basis 
function.

Singular and hypersingular 4-D integrals, computed over 
the testing and basis elements, are building blocks of the 
matrix entries in the MoM-SIE FD technique. Their 
calculation needs to be accurate and efficient in order to solve 
for unknown coefficients in the current expansion. A novel 
singularity extraction method has been developed for 2-D
integrals (over basis elements) to overcome the 
(hyper)singular behavior of the integrand as well take into 
account higher order properties of the current expansion and 
geometry of the element. We are solving integrals of the 
following forms:
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where �s� and �hs� stand for �singular� and �hypersingular�
respectively, u and v are local parametric coordinates, i and j
represent arbitrary polynomial orders of the basis functions, 
is the propagation coefficient in the medium on either side of 
the element, and R is the distance from the source point on the 
basis element to the field point (on the testing element).  

The extraction methods traditionally remove or mitigate 
the (hyper)singularity by approximating the integrand by an 
analytically integrable function. The difference between the 
(hyper)singular function and the approximation can then 
numerically be evaluated using Gauss-Legendre quadrature 
formulas. In the new method, the approximated function is 
computed through Taylor�s expansion series of the 
(hyper)singular function and is defined over a parallelogram 
that is tangential to the quadrilateral basis element at the so-
called closest projection point (CPP) with u0 and v0 being 
coordinates in the u-v domain. CPP is the point on the infinite 
parametric surface containing the basis element that is closest 
to the field point. Analytically evaluated integral is computed 
over four triangles forming the parallelogram, similarly to the 
method developed in [4].  

With increasing the size/complexity of CEM problems, the 
need for quantitative error estimation and sensitivity analysis 
techniques for FEM-PML and MoM-SIE has become 
apparent. Such techniques allow for optimal remeshing [5],
adaptive discretization refinement, and many other such 
improvements over the base FEM-PML or MoM-SIE method 
that allow for decreased computation time and increased 
accuracy. Toward this goal, we derive and formulate adjoint 
problems [6] for variants of the FEM and SIE problem. We 
furthermore demonstrate how these adjoint problems and their 

solutions can be applied to modern, large-scale CEM problems 
to obtain more-accurate results more quickly.  

The adjoint problem is the dual of the forward problem. In 
general, the adjoint operator is the operator which satisfies the 
following identity: 

,                              (1) 

where  denotes the L2 inner product. The adjoint problem 
is solved with respect to linear (or linearized) functional 
defining a relevant quantity of interest (QoI) from the forward 
solution. We use the higher-order parameter sampling (HOPS) 
and dual-weighted residual techniques to generate important 
gradient and sensitivity information, and error estimates 
throughout the discretization, including those localized to 
elements or direction. 

By applying adjoint-based error estimates towards 
refinement, computational resources can be allocated 
optimally. Indicators of the error in the QoI are used in 
adaptive p- and h-refinement schemes, to determine how the 
adaption is done, namely, how and where the new basis 
function orders and/or new element sizes are assigned in a 
new, refined FD higher order FEM or SIE model. This can 
lead to an ability to control the quality of a solution, in terms 
of the discretization of the mesh, both geometrically (h-
refinement) and with respect to basis functions (p-refinement).  

The adjoint solutions can also be applied in computing QoI 
gradients with respect to input parameters and in large-scale 
optimization problems. Traditional methods for computing 
gradients of a quantity of interest with respect to multiple 
parameters are extremely costly. Instead of introducing small 
perturbation in input parameters and resolving for a desired 
QoI, this information can be generated simply and effectively 
using the adjoint problem. Additionally, while Monte-Carlo 
methods are simple to implement and effective, they require 
significant computational resources and are impractical for 
large problems. Adjoint based approaches, on the other hand, 
are much more efficient; using HOPS, accurate sensitivity 
information can be generated with just a handful of solves.  

Adjoint based methods have so far found little use in 
CEM, and particularly in FD higher order FEM and SIE 
modeling. A goal of this paper is to promote the use of such 
methods in FD CEM.  

We discuss hierarchically semiseparable structures (HSS) 
and analysis of large scattering problems using a fast scalable 
parallel direct HSS solver combined with the rank-revealing 
QR decomposition for memory compression and higher order 
MoM-SIE modeling [7]. In addition, we discuss the higher 
order fast multipole method (FMM) MoM-SIE technique, and 
its multilevel (MLFMM) version, and explore the advantages, 
shortcomings, and commonalities of all approaches. We 
discuss combining MLFMM concepts with fast direct solvers, 
in order to accelerate matrix compression and reduce the 
computation cost but still maintain some benefits of direct over 
iterative solvers.
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III. ILLUSTRATIVE  RESULTS AND DISCUSSION

As an illustration of the results using the novel singularity 
extraction SIE integration technique, one out of the six 
second-order SIE elements modeling a sphere of unit radius is 
tested for  j0.7755 rad/m, for the distance between the field 
point and the CPP point of d = 10-5 m, and different values of 
projection point coordinates and i and j degrees. A corrected 
new method is used for cases where the CPP point is outside 
of the basis element domain. It creates a parallelogram at the 
most singular point on the basis element rather than on the 
whole parametric surface. The integration results are shown in 
Figs. 2 and 3, where it can be observed that the new extraction 
method shows higher accuracy for small numbers of 
integration points, which is especially pronounced for higher 
order polynomial basis functions.  

(a) 

(b) 
Fig. 2. Convergence results for the geometrically second-order element 
modeling a sixth of a sphere and u0 = 0.1, v0 = 0.1 (inside the parametric 
domain): (a) i = 0, j = 0; (b) i = 6, j = 6. 

  

(a) 

(b) 
Fig. 3. Convergence results for the geometrically second-order element (sixth 
of a sphere) and u0 = 1.2, v0 = 1.2 (outside the parametric domain): (a) i = 0, j 
= 0; (b) i = 6, j = 6. 

By intelligently targeting error in the discretization using 
adjoint-based error estimation, the accuracy can be improved 
very effectively, even for very poor initial discretizations. 
Traditional element selection schemes typically apply a 
magnitude-based refinement, in which elements with the 
largest QoI error estimates are prioritized for refinement. 
However, the magnitude refinement scheme fails to consider 
the interaction and error cancellation between elements in the 
discretization. We have developed a minimum sum grouping 
(MSG) strategy which provides a computational inexpensive 
method to relate the error between elements for refinement 
and groups them accordingly. Figure 4 shows an example of 
this technique, for adaptive p-refinement for spherical 
scatterers of various material parameters.  

As seen in Fig. 4, for all three cases of spherical scatterers 
of various material parameters, both the magnitude and MSG 
approaches quickly reduce the error in the solution with 
respect to the Mie Series computation of the bistatic RCS 
across a wide-range of reception directions. In each case, the 
initial discretization is extremely poor. Both the magnitude 

 
1332



and MSG selection schemes are hybridized with a genetic 
algorithm (GA) optimizer for choosing expansion orders 
between 3 and 5 for each element based on the QoI error 
estimates. At each iteration, the maximum number of 
unknowns is increased incrementally. MSG achieves much 
greater stability, reducing the error near monotonically.  

Fig. 4. Average percent error w.r.t. Mie Series for adaptive p-refinement for 
spherical scatterers of various material parameters.  
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