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Abstract. In this paper, we consider scheduling parallelizable jobs
online to maximize the throughput or profit of the schedule. In par-
ticular, a set of n jobs arrive online and each job Ji arriving at time ri

has an associated function pi(t) which is the profit obtained for finishing
job Ji at time t + ri. Each job can have its own arbitrary non-increasing
profit function. We consider the case where each job is a parallel job that
can be represented as a directed acyclic graph (DAG). We give the first
non-trivial results for the profit scheduling problem for DAG jobs and
show O(1)-competitive algorithms using resource augmentation.

1 Introduction

Scheduling preemptive jobs online to meet deadlines is a fundamental problem
and, consequently, the area has been extensively studied. In a typical setting,
there are n jobs that arrive over time. Each job Ji arrives at time ri, has a
deadline di, relative deadline Di = di − ri and a profit or weight pi that is
obtained if the job is completed by its deadline. The throughput of a schedule is
the total profit of the jobs completed by their deadlines and a popular scheduling
objective is to maximize the total throughput of the schedule.

In a generalization of the throughput problem, each job Ji is associated with
a function pi(t) which specifies the profit obtained for finishing job Ji at ri + t.
It is assumed that pi can be different for each job Ji and that the functions
are arbitrary non-increasing functions. We call this problem the general profit
scheduling problem.

In this work, we consider the throughput and general profit scheduling prob-
lems in the preemptive online setting for parallel jobs. In this setting, the online
scheduler is only aware of the job at the time it arrives in the system, and a
job is preemptive if it can be started, stopped, and resumed from the previous
position later. We model parallel jobs as a directed acyclic graph (DAG) where
each job Ji is represented as an independent DAG. Each node in the DAG is a
sequence of instructions that are to be executed and the edges in DAG represent
dependencies. A node can be executed if and only if all of its predecessors have
been completed. Therefore, two nodes can potentially be executed in parallel
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if neither precedes the other in the DAG. In this setting, each job Ji arrives
as a single independent DAG and a profit of pi is obtained if all nodes of the
DAG are completed by job Ji’s deadline. The DAG model can represent parallel
programs written in many widely used parallel languages and libraries, such as
OpenMP [1], Cilk Plus [2], Intel TBB [3] and Microsoft Parallel Programming
Library [4].

Both the throughput and general profit scheduling problem have been studied
extensively for sequential jobs. In the simplest setting, each job Ji has work or
processing time Wi to be processed on a single machine (processor). It is known
that there exists a deterministic algorithm which is O(δ)-competitive, where δ is
the ratio of the maximum to minimum density of a job [5–8]. The density of job
Ji is pi

Wi
(the ratio of its profit to its work). In addition, this is the best possible

result for any deterministic online algorithm even in the case where all jobs have
unit profit and the goal is to complete as many jobs as possible by their deadline.
In the case where the algorithm can be randomized, Θ(min{log δ, log Δ}) is the
optimal competitive ratio [9,10]. Here Δ is the ratio of the maximum to minimum
job processing time.

These strong lower bounds on the competitive ratio on any online algorithm
makes it difficult to differentiate between algorithms and to discover the key
algorithmic ideas that work well in practice. To overcome this challenge, the
now standard form of analysis in scheduling theory is a resource augmentation
analysis [11,12]. In a resource augmentation analysis, the algorithm is given extra
resources over the adversary and the competitive ratio is bounded. A s-speed
c-competitive algorithm is given a processor s times faster than the optimal
solution and achieves a competitive ratio of c. The seminal scheduling resource
augmentation paper considered the throughput scheduling problem and gave the
best possible (1 + ε)-speed O( 1ε )-competitive algorithm for any fixed ε > 0 [12].

Since this work, there has been an effort to understand and develop algo-
rithms for more general scheduling environments and objectives. In the identical
machine setting where the jobs can be scheduled on m identical parallel machines
(processors), a (1+ε)-speed O(1)-competitive algorithm is known for fixed ε > 0
[13]. This has been extended to the case where the machines have speed scalable
processors and the scheduler is energy aware [14]. In the related machines and
unrelated machines settings, similar results have been obtained as well [15]. In
[16] similar results were obtained in a distributed model.

None of this prior work consider parallel jobs. Parallel jobs modeled as DAGs
have been widely considered in scheduling theory for other objectives [17–24].
There has been an extensive study in the real-time system community on how
to schedule parallelizable DAG jobs by their deadlines. See [17,18,25–31] for
pointers to relevant work. These works consider different (yet similar) objec-
tives, focusing on tests to determine if a given set of reoccurring jobs can all be
completed by their deadline, in contrast to optimizing throughput or profit.

Results: In this paper, we give the first non-trivial results for scheduling paral-
lelizable DAG jobs online to maximize throughput and then we generalize these
results to the general profit problem. Two important parameters in the DAG
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setting are the critical-path length Li of job Ji (its execution time on an infinite
number of processors) and its total work Wi (its uninterrupted execution time
on a single processor). The value of max{Li,Wi/m} is a lower bound on the
amount of time any 1-speed scheduler takes to complete job Ji on m cores. We
will focus on schedulers that are aware of the values of Li and Wi when the
job arrives, but are unaware of the internal structure of the job’s DAG. That is,
besides Li and Wi, the only other information a scheduler has on a job’s DAG
is which nodes are currently available to execute. We call such an algorithm
semi-non-clairvoyant—for DAG tasks, this is a reasonable model for the real
world programs written in languages mentioned above since the DAG generally
unfolds dynamically as the program executes. We first state a simple theorem
about these schedulers.

Theorem 1. There exists inputs where any semi-non-clairvoyant scheduler
requires speed augmentation of 2 − 1/m to be O(1)-competitive for maximizing
throughput.

Roughly speaking, scheduling even a single DAG job in time smaller than
Wi−Li

m +Li is a hard problem even offline when the entire job structure is known
in advance. This is captured by the classic problem of scheduling a precedence
constrained jobs to minimize the makespan. For this problem, there is no 2 − ε
approximation assuming a variant of the unique games conjecture [32]. In par-
ticular, in Sect. 4, we will give an example DAG where any semi-non-clairvoyant
scheduler will take roughly Wi−Li

m + Li time to complete, while a fully clair-
voyant scheduler can finish in time Wi/m. By setting the relative deadline to
be Di = Wi/m = Li, every semi-non-clairvoyant scheduler will require a speed
augmentation of 2 − 1/m to have bounded competitiveness.

With the previous theorem in place, we cannot hope for a (1+ε)-speed O(1)-
competitive algorithm. To circumvent this hurdle, one could hope to show O(1)-
competitiveness by either using more resource augmentation or by making an
assumption on the input. Intuitively, the hardness comes from having a relative
deadline Di close to max{Li,Wi/m}. In practice, this is unlikely to be the case.
We show that so long as Di ≥ (1 + ε)(Wi−Li

m + Li) then there is a O( 1
ε6 )-

competitive algorithm.

Theorem 2. If for every job Ji it is the case that (1 + ε)(Wi−Li

m + Li) ≤ Di,
then there is a O( 1

ε6 )-competitive algorithm for maximizing throughput.

We note that this immediately implies the following corollary without any
assumptions on the input.

Corollary 1. There is a (2+ε)-speed O( 1
ε6 )-competitive algorithm for maximiz-

ing throughput.

Proof. No schedule can finish a job Ji if its relative deadline is smaller than
max{Li,

Wi

m } and we may assume that no such job exists. Using this, we have
that (Wi

m + Li) ≤ 2Di. Consider transforming the problem instance giving the
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algorithm and the optimal solution together 2+ ε speed. In this case, the condi-
tion of Theorem 2 is met since we can view this as scaling the work in each node
of the jobs by 2 + ε. This scales the work and critical-path length by 2 + ε. The
corollary follows by observing that in this case we are comparing to an optimal
solution with 2 + ε speed which is only stronger than comparing to an optimal
solution with 1 speed. ��

We note that the theorem also immediately implies the following corollary
for “reasonable jobs.”

Corollary 2. There is a (1+ε)-speed O( 1
ε6 )-competitive for maximizing through-

put if (Wi − Li)/m + Li ≤ Di for all jobs Ji.

This assumption on the deadlines is reasonable since, as we show in Sect. 4,
there exists inputs for which even the optimal semi-non-clairvoyant scheduler
has unbounded performance if the deadline is smaller.

We go on to consider the general profit scheduling problem. We first make
the following assumption, which is that for all jobs Ji its general profit function
satisfies pi(d) = pi(x∗

i ), where 0 < d ≤ x∗
i for some x∗

i ≥ (1 + ε)(Wi−Li

m + Li).
This assumption states that there is no additional benefit for completing a job
Ji before time x∗

i , which is the natural generalization of our assumption in the
throughput case. The function is arbitrarily decreasing otherwise. Using this, we
show the following.

Theorem 3. If for every job Ji it is the case that pi(d) = pi(x∗
i ), where 0 < d ≤ x∗

i

for some value of x∗
i ≥ (1 + ε)(Wi−Li

m + Li) then there is a O( 1
ε6 )-competitive

algorithm for the general profit objective.

This gives the following corollary, just as for throughput.

Corollary 3. There is a (2+ε)-speed O( 1
ε6 )-competitive algorithm for maximiz-

ing general profit.

2 Preliminaries

In the problem considered, there is a set J of n jobs {J1, J2, . . . , Jn} which arrive
online. The jobs are scheduled on m identical processors. Job Ji arrives at time
ri. Let pi(t) be an arbitrary non-negative non-increasing function for job Ji. The
value of pi(t) is the profit obtained by completing job i at time ri + t. Under
some schedule, let ti be the time it takes to complete Ji after its arrival. The
goal is for the scheduler to maximize

∑
i∈[n] pi(ti).

A special case of this problem is scheduling jobs with deadlines. In this prob-
lem, each job Ji has a deadline di and obtains a profit of pi if it is completed by
this time. In this case, we let Di = di − ri be the relative deadline of the job. To
make the underlying ideas of our approach clear, we will first focus on proving
this case and the more general problem can be found in the Sect. 5.

Each job is represented by a Directed-Acyclic-Graph (DAG). A node in the
DAG is ready to execute if all its predecessors have completed. A job is completed
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only when all nodes in the job’s DAG have been processed. We assume the
scheduler knows the ready nodes for a job at any point in time, but does not
know the entire DAG structure a priori. Any set of ready nodes can be processed
at once, but each processor can only execute one node at a time.

A DAG job has two important parameters. The total work Wi is the sum of
the processing time of the nodes in job i’s DAG. The span or critical-path-length
Li is the length of the longest path in job i’s DAG, where the length of the path
is the sum of the processing time of nodes on the path. To show Theorem 2 we
assume that (1 + ε)(Wi−Li

m + Li) ≤ Di for all jobs Ji throughout the remainder
of the paper.

3 Jobs with Deadlines

First, we give an algorithm and analysis proving Theorem2 when jobs have dead-
lines and profits. To aid the reader, a list of notation can be found in Tables 1, 2
and 3. Throughout the proof, we let CO denote the jobs that the optimal solu-
tion completes by their deadline and let

∥
∥CO

∥
∥ denote the total profit obtained

by the optimal solution. Our goal is to design a scheduler that achieves profit
close to

∥
∥CO

∥
∥. Throughout the proof, it will be useful to discuss the aggregate

number of processors assigned to a job over all time. We define a processor step
to be a unit of time on a single processor.

Table 1. Notations and definitions throughout the paper

Notation Definition

OPT Optimal schedule and also optimal objective

m The number of processors

Wi The total work of job Ji

Li The span of job Ji

Di Relative deadline of job Ji

ri The arrival time of Ji

di The absolute deadline of Ji (that is, ri + Di)

A(T, v1, v2) All jobs in T with density within the range [v1, v2)

N(T, v1, v2) =
∑

Ji∈A(T,v1,v2)
ni, the total number of processors required

by A(T, v1, v2)

v-dense If Job Ji has density vi ≥ v

δ < ε/2

c ≥ 1 + 1
εδ

b = ( 1+2δ
1+ε

)1/2 < 1

a = 1 + 1+2δ
ε−2δ
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Table 2. Notations and definitions specific to jobs with deadlines

Notation Definition

pi The profit of job Ji

ni = (Wi−Li)
Di

1+2δ
−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi
xini

the density of Ji

δ-good Job Ji has Di ≥ (1 + 2δ)xi

δ-fresh At time t, job Ji has di − t ≥ (1 + δ)xi

R The set of jobs started by S

C The set of jobs completed by S

U Unfinished jobs by S (that is, R \ C)

CO The set of jobs completed by OPT

J The set of all jobs

TO(v, E) The total work processed by the optimal schedule for the
jobs in E that are v-dense

TS(v, E) The total number of processors steps S used for executing
jobs in E that are v-dense

Table 3. Notations and definitions specific to jobs with general profit functions

Notation Definition

pi(t) The profit of job Ji if the job with arrival time ri completes by ri + t

ni = (Wi−Li)
x∗

i
1+2δ

−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji

vi = pi(Di)
xini

the density of Ji

3.1 Algorithm

In this section, we introduce our algorithm S. On every time step, S must decide
which jobs to schedule and which ready nodes of each job to schedule. When a
job Ji arrives, S calculates ni—the number of processors “allocated” to Ji. On
any time step when S decides to run Ji, it will always allocate ni processors to Ji.
In addition, since S is semi-non-clairvoyant, it is unable to distinguish between
ready nodes of Ji; when it decides to allocate ni nodes to Ji, it arbitrarily picks
ni ready nodes to execute if more than ni nodes are ready.

We first state some observations regarding work and critical-path length.

Observation 1. If a job Ji has all of its r ready nodes being executed by a
schedule with speed s on m processors, where r ≤ m, then the remaining critical-
path length of Ji decreases at a rate of s.
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As mentioned earlier, we assume that the deadline for each job follows the
condition that (1 + ε)(Wi−Li

m + Li) ≤ Di for some positive constant ε.
We define the following constants. Let δ < ε/2, c ≥ 1 + 1

δε and b =
(1+2δ

1+ε )1/2 < 1 be fixed constants. For each job Ji, the algorithm calculates ni as
(Wi−Li)

Di
1+2δ −Li

. The value of ni is the number of processors our algorithm will give to

job Ji if we decide to execute Ji on some time step.
Let xi := Wi−Li

ni
+Li. By Observation 1 it is the case that if ni processors are

given to job i for xi units of time then the job will be completed regardless of
the order the nodes are executed in. We will consider this to be Observation 2.

Observation 2. Job Ji can meet its deadline if it is given ni dedicated proces-
sors for xi time steps in the interval [ri, di].

We define the density of a job as vi = pi

xini
. Note that this is a non-standard

definition of density. We define the density as pi

xini
instead of pi

Wi
, because we

will think of job i requiring xini processor steps to complete by Scheduler S.
Thus, this definition of density indicates the potential profit per processor step
that S can obtain by executing Ji.

The scheduler S maintains jobs that have arrived but are unfinished in two
priority queues. A priority queue Q stores all the jobs that have been started
by S. In the priority queue, the jobs are sorted according to the density from
high to low. Another priority queue P stores all the jobs that have arrived but
have not been started by S. Jobs in P are also sorted according to their densities
from high to low.

Job Execution: At each time step t, S picks a set of jobs in Q to execute,
in order from highest to lowest density. If a job Ji has been completed or if
its absolute deadline di has passed (di > t), S removes the job from Q. When
considering job Ji, if the number of unallocated processors is at least ni the
scheduler assigns ni processors to Ji for execution. Otherwise, it continues on to
the next job. S stops this procedure when either all jobs have been considered
or when there are no remaining processors to allocate.

We introduce some notations to describe how jobs are moved from queue
P to Q. A job Ji is δ-good if Di ≥ (1 + 2δ)xi. A job is δ-fresh at time t
if di − t ≥ (1 + δ)xi. For any set T of jobs, let the set A(T, v1, v2) contains
all jobs in T with density within the range [v1, v2). We define N(T, v1, v2) =∑

Ji∈A(T,v1,v2)
ni. This is the total number of processors that S allocates to jobs

in A(T, v1, v2). We will say that the set of job A(T, v1, v2) requires N(T, v1, v2)
processors.

Adding Jobs to Q: There are two types of events that may cause S to add
a job to Q. These events occur when either a job arrives or S completes a job.
When a job Ji arrives, S adds it to queue Q if it satisfies the following conditions:

(1) Ji is δ-good;
(2) For all job Jj ∈ Q ∪ {Ji} it is the case that N (Q ∪ {Ji}, vj , cvj) ≤ bm.

In words, the total number of processors required by jobs in Q ∪ {Ji} with
density in the range [vj , cvj) is no more than bm.
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If these conditions are met, then Ji is inserted into queue Q; otherwise, job
Ji is inserted into queue P . When a job is added to Q, we say that the job is
started by S.

At the completion of a job, S considers the jobs in P from highest to lowest
density. S first removes all jobs with absolute deadlines that have already passed.
Then S checks if a job Ji in P can be moved to queue Q by checking whether
job Ji is δ-fresh and condition (2) from above. If both the conditions are met,
then Ji is moved from queue P to queue Q.

Remark: Note that the Scheduler S pre-computes a fixed number of processors
ni assigned to each job, which may seem strange at first glance. This is because
that ni is approximately the minimum number of dedicated cores job Ji requires
to complete by Di

1+2δ → Di, without knowing Ji’s DAG structure. In addition, as
long as Ji can complete by its deadline, it obtains the same profit pi. Therefore,
there is no need to complete Ji earlier by executing Ji on more dedicated cores.
Moreover, by carefully assigning ni, we are able to bound the number of processor
steps spent on job Ji as shown in Lemma 3, which is critical for bounding the
profit obtained by the optimal solution.

Outline of the Analysis of S: Our goal is to bound the total profit that S
obtains. We first discuss some basic properties of S in Sect. 3.2. In Sect. 3.3 be
bound the total profit of all the jobs S starts by the total profit of jobs that S
completes. Then in Sect. 3.4 we bound the total profit of the jobs the optimal
solution completes by the total profit of jobs that S starts. Putting these two
together, we are able to bound the performance of S.

3.2 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in
the proof. We first bound the number of processors ni that S will allocate to
job Ji.

Lemma 1. For every job Ji we have that ni ≤ b2m.

Proof. By assumption we know that Di ≥ (1 + ε)(Wi−Li

m + Li). The definition
of ni gives the following.

ni =
Wi − Li

Di

1+2δ − Li

≤ Wi − Li

1+ε
1+2δ (Wi−Li

m + Li) − Li

≤ 1 + 2δ

1 + ε
m = b2m

��
Lemma 2. Every job Ji is δ-good, i.e. xi(1 + 2δ) ≤ Di.

Proof. Note that Li ≤ 1
1+εDi by definition. Since ni = Wi−Li

D
1+2δ −Li

, we have xi(1 +

2δ) = (Wi−Li

ni
+ Li)(1 + 2δ) = ( Di

1+2δ − Li + Li)(1 + 2δ) ≤ Di. ��
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The next lemma bounds the total number of processor steps occupied by a
job.

Lemma 3. xini ≤ aWi, where a is 1 + 1+2δ
ε−2δ .

Proof. By definition we have

xini = Wi − Li + niLi ≤ Wi +
Wi − Li

Di

1+2δ − Li

Li ≤ Wi +
Wi − Li

Di

1+2δ − Di

1+ε

( Di

1 + ε

)

≤ Wi +
(Wi − Li)Di(1 + 2δ)

Di(ε − 2δ)
≤ Wi +

Wi(1 + 2δ)
ε − 2δ

≤ Wi

(
1 +

1 + 2δ

ε − 2δ

)

��
Observation 3. At any time and for any v > 0, the total number of processors
required by all the jobs Ji that are in queue Q and have density v ≤ vi < cv is
no more than bm, i.e. N(Q, vi, cvi) ≤ bm.

Proof. Jobs are only added to queue Q when a new job arrives or a job completes.
According to algorithm S, at both times, a job is only added to Q when this
condition is satisfied. ��

3.3 Bounding the Profit of Jobs S Completes by All Jobs Started
by S

In this section, we bound the profit of jobs completed by S compared to the
profit of all jobs it ever starts (adds to Q). Let R denote the set of jobs S starts
(that is, the set of jobs added to queue Q). Among the jobs in R, let C be the
set of jobs it completes and U be the set of jobs that are unfinished. We say job
Ji (and its assigned processors) is v-dense, if its density vi ≥ v. For any set A
of jobs, define ‖A‖ as

∑
i∈A pi, the sum of the profits of jobs in the set.

Lemma 4. For a job Ji ∈ U = R \ C that was added to queue Q but does not
complete by its deadline, S must have run cvi-dense jobs for at least δxi time
steps where Ji is in Q using at least (1 − b)m processors at each such time.

Proof. Since Ji is at least δ-fresh when added to Q and it does not complete
by its deadline, there are at least δxi time steps where S is not executing Ji by
Observation 2. In each of these the time steps, all the m processors are executing
vi-dense jobs.

By Observation 3, jobs in Q with density in range [vi, cvi) require at most
N(Q, vi, cvi) ≤ bm processors to execute. Therefore, for each of the δxi time
steps, there are at least (1 − b)m processors executing cvi-dense jobs. So the
total number processor steps where cvi-dense jobs are executing is at least
δxi(1 − b)m. ��

We now bound the profit of the jobs completed by their deadline under S by
those started.
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Lemma 5. ‖C‖ ≥ (ε − 1
(c−1)δ ) ‖R‖.

Proof. We use a charging scheme with credit transfers between the jobs. We give
each job Ji ∈ R a bank account Bi. Initially, all completed jobs (in C) are given
pi credits and other jobs (in U) have 0 credit. We will transfer credits between
jobs in C and jobs in U . We want to show that after the credit transfer, every
job Ji in R will have Bi ≥ (ε − 1

(c−1)δ )pi. This implies ‖C‖ ≥ (ε − 1
(c−1)δ ) ‖R‖.

Now we explain how credits are transferred. For each time step, a processor
executing Ji will transfer vjnj

δbm credits from Bi to every job Jj in queue Q that
has density vj ≤ vi

c .
For every job Jj ∈ U , Lemma 4 implies that there are at least δxj time steps

where at least (1 − b)m processors are executing cvj-dense jobs. By our credit
transfer strategy Jj will receive at least vjnj

δbm credits from each processor in a
time step. Therefore, the total credits Jj receives is at least

δxj(1 − b)m(
vjnj

δbm
) = vjxjnj(

1 − b

b
) = pi(

1 − b

b
).

This bounds the total amount of credit each job receives. We now show that
not too much credit is transferred out of each job’s account. We bound this on a
job by job basis. Fix a job Ji ∈ R and consider how many credits it transfers to
other jobs during its execution. By Observation 2, we know that Ji can execute
for at most xi time steps on ni dedicated processors before its completion.

The job Ji will transfer credit to all jobs in Q with density less than vi

c at
any point in time where Ji is being processed. These are the jobs in A(Q, 0, vi

c ).
Fix an integer l ≥ 1 and consider the set of jobs A(Q, vi

cl+1 , vi

cl ) in Q that have
density within the range [ vi

cl+1 , vi

cl ). Note that the total number of processors
required by them is N(Q, vi

cl+1 , vi

cl ) ≤ bm by Observation 3. Knowing that a job
Jj in A(Q, vi

cl+1 , vi

cl ) has density vj ≤ vi

cl by definition it is the case that the total
credits that Ji gives to jobs in A(Q, vi

cl+1 , vi

cl ) per processor assigned to Ji during
any time step is at most

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl )

vjnj

δbm
≤

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl )

vi

cl nj

δbm
=

vi

δbmcl

∑

Jj∈A(Q,
vi

cl+1 ,
vi
cl )

nj

=
vi

δbmcl
N(Q,

vi

cl+1
,
vi

cl
) ≤ vi

δbmcl
bm =

vi

δcl
.

This bounds the total credit transferred to jobs in A(Q, vi

cl+1 , vi

cl ) during a
time step for each processor assigned to Ji. We sum this quantity over all l ≥ 1
and all ni processors assigned to i to bound the total credit transferred from job
Ji during a time step. Recall that c > 1 by definition.

nivi

δ

∞∑

l=1

1
cl

=
(nivi

δ

) 1
c

1 − 1
c

=
(nivi

δ

) 1
c − 1

Therefore, the total credits Ji transfers to all the jobs in A(Q, 0, vi

c ) over all
times it is executed is at most (xinivi

δ ) 1
c−1 = pi

(c−1)δ due to the fact that a job
will be executed for at most xi time steps in S’s schedule.
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Now we put these two observations together. Each job receives at least pi
1−b

b
credit and pays at most pi

(c−1)δ . After the credit transfer, the credits that a job
Ji has is at least

pi
1 − b

b
− pi

(c − 1)δ
= pi(ε − 1

(c − 1)δ
)

By our setting of c, this quantity is always positive. Therefore, we conclude
that ‖C‖ ≥ (ε − 1

(c−1)δ ) ‖R‖. ��

3.4 Bounding the Profit of Jobs OPT Completes by All Jobs
Started by S

In this section, we bound the profit of the jobs OPT completes by all of the
jobs that S starts. Our high level goal is to first bound the total amount of time
OPT spends processing jobs that S does not complete by the time S spends
processing jobs. Then using this and properties of S we will be able to bound
the total profit of jobs OPT completes. At a high level, this follows since S
focuses on processing high density jobs and OPT and S spend a similar amount
of time processing jobs. We begin by showing that if not too many processors
are executing vi

c -dense jobs then all such jobs must be currently executing.

Lemma 6. For any density vi and time, if there are less than b(1 − b)m pro-
cessors executing vi

c -dense jobs, then all vi

c -dense jobs in queue Q are executing
and N(Q, vi

c ,∞) < b(1 − b)m.

Proof. By definition, there are at least m − b(1 − b)m > bm − b(1 − b)m = b2m
processors executing jobs with density less than vi

c . For the sake of contradiction,
suppose there is a vi

c -dense job Jj that is not executing by S. By Lemma 1 we
know that nj ≤ b2m. Therefore, Jj would have been executed by S on the b2m
processors that are executing lower density jobs, a contradiction.

Now we know all vi

c -dense jobs in queue Q are executing. By assumption
they are using less than b(1 − b)m processors and the lemma follows. ��

In the next lemma, we show that if not too many processors are running
vi

c -dense jobs then when a job arrives or completes, the schedule S will start
processing a vi-dense job that is δ-fresh, for any density vi (if such a job exists).
In particular, the job Jj will pass condition (2) of for adding jobs to Q in the
definition of S.

Lemma 7. Fix a density vi. At a time where a new job arrives or a job com-
pletes if there are less than b(1 − b)m processors executing vi

c -dense jobs, then a
δ-fresh vi-dense job Jj (arriving or in queue P ) will be added to Q by S assuming
such a job Jj exists.

Proof. By Lemma 6, we know that all vi

c -dense jobs in queue Q are executing on
less than b(1− b)m processors. By Lemma 1, we know that nj ≤ b2m. Therefore,

N(Q ∪ {Jj},
vi

c
,∞) < b(1 − b)m + b2m = bm
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Consider any δ-fresh job Jj that is also vi-dense. Consider any job Jk where
Jj ∈ A(Q ∪ {Ji}, vk, cvk). By definition of Jj being vi-dense it must be the
case that A(Q ∪ {Ji}, vk, cvk) ⊆ A(Q ∪ {Jj}, vi

c ,∞). The above implies that
N(Q ∪ {Ji}, vk, cvk) ≤ N(Q ∪ {Jj}, vi

c ,∞) ≤ bm. Thus, the condition (2) in our
algorithm is satisfied. ��

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total
work processed by the optimal schedule for the jobs in E that are v-dense. We
similarly let TS(v, E) be the total number of processors steps S used for executing
jobs in E that are v-dense over all time. Now we are ready to bound the time
that OPT spends on jobs that S never adds to Q.

Lemma 8. Consider the jobs in J \ R, the jobs that are never added to Q. For
all v > 0, TO(v,J \ R) ≤ 1+2δ

δb(1−b)TS(v
c ,J ).

Proof. Let {Ik = [sk, ek]} be the set of maximal time intervals where at least
b(1 − b)m processors are running v

c -dense jobs in S’s schedule. Notice that by
definition

∑∞
k=1(ek − sk)b(1 − b)m ≤ TS(v

c ,J ).
Consider a job in Ji ∈ J \R that is both δ-good and v-dense and additionally

arrives during [sk, sk+1). Note that during the intervals [ek, sk+1], less than b(1−
b)m processors are executing v

c -dense jobs. Lemma 7 implies that if Ji arrives
during [ek, sk+1] it will be added to Q. This contradicts the assumption that
Ji ∈ J \ R. Therefore, Ji must arrive during [sk, ek) and is in queue P at
time ek.

Note that at time ek, the number of processors executing v
c -dense jobs

decreases, so there must be a job that completes at time ek. Again, by Lemma 7
if Ji is δ-fresh at time ek then it will be added to Q at this time. Again, this
contradicts Ji ∈ J \ R. Thus, the only reason that S does not add Ji to Q is
because Ji is not δ-fresh at time ek. Knowing that Ji is δ-good at ri and is not
δ-fresh at ek, we have ek − sk ≥ ek − ri ≥ δxi.

At time ek, Ji is not δ-fresh, so di − ek < (1 + δ)xi < 1+δ
δ (ek − sk).

Let Kk be the set of v-dense jobs that arrive during [sk, sk+1) but are not
completed by S. Because OPT can only execute all jobs in Kk during [sk, di] on
at most m processors, we get

TO(v,Kk) ≤(di − sk)m = ((di − ek) + (ek − sk))m ≤ 1 + 2δ

δ
(ek − sk)m

This completes the proof, as

TO(v, U) =
∞∑

k=1

TO(v,Kk) ≤
∞∑

k=1

(
1 + 2δ

δ
)m(ek − sk) ≤ 1 + 2δ

δ

1
b(1 − b)

TS(
v

c
,J )

��
Using the previous lemma, we can bound the profit of jobs completed by

OPT by the profit of jobs started by S.
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Lemma 9.

∥
∥CO

∥
∥ ≤

(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
1 + 2δ

δb(1 − b)

)

‖R‖ .

Proof. We may assume WLOG that the adversary completes all jobs it starts.
First we partition CO, the jobs that the adversary completes, into CO

R and CO
S

where CO
S = CO ∩ R, that is, our algorithm started the job at some point.

The remaining jobs are placed in CO
R . Clearly

∥
∥CO

S

∥
∥ ≤ ‖R‖. Now it remains to

bound
∥
∥CO

R

∥
∥.

Consider every job in CO
R and let the set of densities of these jobs be

{μ1, μ2, . . . , μm} from high to low and for notational simplicity let μ0 = ∞
and μm+1 = 0. Recall the adversary completed all jobs it started. Thus for each
job with density μi, the adversary ran the job for a corresponding Wi processor
steps. Let βi denote the number of processor steps our algorithm takes to run
jobs with densities within (μi−1

c , μi

c ].
We have TO(v,J \ R) ≤ 1+2δ

δb(1−b)TS(v
c ,J ) from Lemma 8 for all densities v.

Equivalently for any given density v:

TO(v,J \ R) =
v∑

i=1

Wi ≤ 1 + 2δ

δb(1 − b)

v∑

i=1

βi =
1 + 2δ

δb(1 − b)
TS(

v

c
,J )

We then sum over all densities. The subtraction of densities is necessary to
insure that each density is only counted a single time.

m∑

v=1

(

(μv − μv+1)
v∑

i=1

Wi

)

≤
m∑

v=1

(

(μv − μv+1)
1 + 2δ

δb(1 − b)

v∑

i=1

βi

)

The LHS can be simplified:

m∑

v=1

(

(μv − μv+1)

v∑

i=1

Wi

)

=

m∑

i=1

Wi

m∑

v=i

(μv − μv+1) =

m∑

i=1

Wi(μi − μm+1) =

m∑

i=1

Wiμi

The RHS similarly simplifies to 1+2δ
δb(1−b)

∑m
i=1 βiμi, leading to the inequality

that
∑m

i=1 Wiμi ≤ 1+2δ
δb(1−b)

∑m
i=1 βiμi. Recall that densities such as μi are defined

by μi = pi

xini
and xini ≤ aWi. Therefore:

m∑

i=1

Wiμi =
m∑

i=1

Wipi

xini
≥

m∑

i=1

Wipi

aWi
≥

m∑

i=1

pi

(1 + 1+2δ
ε−2δ )

=
1

(1 + 1+2δ
ε−2δ )

∥
∥CO

R

∥
∥

And also, by the definition of βi, we know that
∑m

i=1 βi
μi

c ≤ ‖R‖.
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Combining these results, we get:

1
(1 + 1+2δ

ε−2δ )

∥
∥CO

R

∥
∥ ≤

m∑

i=1

Wiμi ≤ 1 + 2δ

δb(1 − b)

m∑

i=1

βiμi ≤ 1 + 2δ

δb(1 − b)
c ‖R‖

⇒∥
∥CO

R

∥
∥ ≤

(

1 +
1 + 2δ

ε − 2δ

)(
1 + 2δ

δb(1 − b)

)

c ‖R‖

⇒∥
∥CO

∥
∥ =

∥
∥CO

R

∥
∥ +

∥
∥CO

S

∥
∥ ≤

(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
1 + 2δ

δb(1 − b)

)

‖R‖
��

Finally we are ready to complete the proof, bounding the profit OPT obtains
by the total profit the algorithm obtains for jobs it completed.
Lemma 10.

∥
∥CO

∥
∥ ≤ (1+(1+ 1+2δ

ε−2δ )(1+
1
εδ )

1+2δ
δb(1−b) )

ε− 1
(c−1)δ

‖C‖
Proof. This is just by combination of Lemmas 5 and 9. ��

Therefore, we prove Theorem 2 by showing that scheduler S is O( 1
ε6 )-

competitive for jobs with deadlines and profits, when (1 + ε)(Wi−Li

m + Li) ≤ Di.

4 Examples

In this section, we will give some example DAGs to show why Theorem 2 is close
to the best theorem we can hope for using two examples. The first example,
shown in Fig. 1, shows the limitations of semi-non-clairvoyance. In particular,
a semi-non-clairvoyant scheduler does not know the structure of the DAG in
advance since the DAG unfolds dynamically. At any time step, the scheduler only
knows the ready nodes available for execution. Given this limitation, consider
the DAG shown in Fig. 1. This job has one sequential chain with length L = W

m ,
where W is the total work of the job and m is the number of processors. The
remaining W − W/m work are fully parallelizable in a block and can also be
done in parallel with the chain. Therefore, L is the span of the jobs.

Since a semi-non-clairvoyant scheduler cannot distinguish between ready
nodes, it may make unlucky choices and execute the entire block of W −W/m =
W − L ready nodes first in (W − L)/m time steps and then execute the chain
of L nodes sequentially—leading to a total time of (W − L)/m + L. On the
other hand, a fully clairvoyant scheduler can execute the entire DAG in W /m
time. Therefore, a semi-non-clairvoyant scheduler needs at least 2 − 1/m speed
augmentation to ensure that it can complete the DAG at the same time as OPT.

We now show another example DAG indicating that it would be reasonable
to always set deadlines as D ≥ (W − L)/m + L if we do not know the structure
of the DAG a priori. Figure 2 shows an example DAG, which consists of a chain
of L − ε nodes followed by W − L + ε nodes that can run in parallel. Each
node in the DAG takes ε time to run, so the total work of the DAG is W
and the span is L. For such a DAG, even a fully clairvoyant scheduler needs
L−ε+ W−L+ε

m = W−L
m +L−ε(1− 1

m ), which approaches to W−L
m +L when ε → 0.
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Fig. 1. Example 1 Fig. 2. Example 2

5 Jobs with General Profit Functions

In this section, we focus on a more general case. In particular, each job Ji has a
non-negative non-increasing profit function pi(t) indicating its profit if the job
with arrival time ri completes by ri + t. Our goal is to design a scheduler that
maximizes the profit to make it close to what the optimal solution can obtain,
denoted as ‖O‖.

First, we present our scheduler S parameterized using a fixed constant 0 <
ε < 1. Similar to Sect. 3.1, let δ < ε/2, c ≥ 1+ 1

δε and b = (1+2δ
1+ε )1/2 < 1 be fixed

constants.
Upon the arrival of a job Ji, the scheduler S assigns a number of allocated

cores ni, a relative deadline Di and a set of time steps Ii to Ji (according to
the assignment procedure described below). In each time step t in Ii, we say
that Ji is assigned to t. Scheduler S always executes the highest density jobs
that is assigned to t. If S decides to execute Ji in a time step, it will give ni

processors to Ji. Let xi := Wi−Li

ni
+ Li. We define the density of a job as

vi = pi(Di)
xini

= pi(Di)
Wi+(ni−1)Li

. We now formally specify the algorithm of scheduler
S for job assignment and execution.

Assigning cores, deadlines and slots to jobs: When a job Ji arrives, the
scheduler will assign a relative deadline Di and a set of time steps Ii with ni

processors. These time steps are the only time steps in which Ji is allowed to run.
Recall (from Theorem 3) that we assume that the profit function stays the

same until some value x∗
i ≥ (Wi−Li

m + Li)(1 + ε). The number of assigned pro-
cessors ni is calculated as ni = Wi−Li

x∗
i

1+2δ −Li

. The assignment for Di is determined

by searching all the potential deadlines D to find the minimum valid deadline.
The set of time steps Ii is determined using the chosen deadline Di.

For each potential relative deadline D > (1 + ε)Li, scheduler S checks
whether it is a valid deadline by the following steps. First, it selects a set of time
steps I. Assuming D is assigned to Ji, then the density of Ji is v = pi(D)

Wi+(ni−1)Li
.

For each time step t from ri to ri+D, let ‖I(t)‖ be the number of time steps that
have already been added to I before considering time step t. Let J(t) denote the
set of jobs that are currently has time t among its assignments. We only add t to
the set I if it satisfies the following condition: For every job Jj ∈ J(t), it is the
case that N (J(t) ∪ {Ji}, vj , cvj) ≤ bm. In words, the total number of processors
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required by jobs in J(t) ∪ {Ji} with density in the range [vj , cvj) is no more
than bm.

I contains all the time steps during [ri, ri + Di) that can be assigned to Ji.
If ‖I‖ ≥ (1 + δ)

(
Wi−Li

ni
+ Li

)
, which is at least δ times longer than the time Ji

required to run on ni processors, then the deadline D is said to be valid. Note
that a valid assignment always exists by setting the deadline large enough.

Among all the valid assignments, S chooses the smallest valid deadline for
Ji, which results in the highest profit. Given this deadline Di, Ji will be assigned
with the corresponding set Ii. Because Di is the minimum valid deadline, the
corresponding set Ii must satisfy ‖Ii‖ = (1 + δ)

(
Wi−Li

ni
+ Li

)
; otherwise, there

must exist a shorter deadline D that is also valid. Intuitively, with this assign-
ment, Ji can complete by its deadline if no other jobs interfere. Note that Ji

may not be completed by its deadline as we will allow higher density jobs that
arrive after Ji to be scheduled during Ii.

Executing jobs: At each time step t, S picks a set of jobs in J(t) to execute
in order from highest to lowest density, where J(t) are the set of jobs that have
been assigned to time step t. That is, jobs Ji where t ∈ Ii. When considering
job Ji, if the number of unallocated processors is at least ni, then the scheduler
allocates ni processors to Ji. Otherwise, it continues on to the next job in J(t).
S stops this procedure when either all jobs have been considered or when there
are no remaining processors to allocate.

Remark: Unlike the scheduler for jobs with deadlines, here we try to complete
a job Ji by a calculated deadline Di that is as close to x∗

i as possible. This
is because the obtained profit decreases as the completion time increases but
there is no additional benefit for completing a job Ji before time x∗

i . With a
carefully designed deadline Di, we are able to prove the performance bound of
the scheduler. Similarly to Sect. 3, we start by stating the basic properties of the
scheduler S, followed by bounding the total profit obtained by S. However, the
proofs that bound the profit of jobs that are completed by OPT differ greatly
from that for jobs with deadlines. This is because in addition to losing the profit
of jobs that do not complete by their assigned deadlines, scheduler S can also
loses profit compared to OPT if the completion time of a job under S is later
than under OPT. By taking into account all these jobs, we are able to bound
the performance of S for jobs with general profit functions.

5.1 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in
the proof and can be obtained directly from the algorithm of scheduler S. Note
that these lemmas are similar to the lemmas shown in Sect. 3.2 if we replace xi∗
with Di. We state them here again for completeness.
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Lemma 11. For every job Ji we have that ni ≤ b2m, where b = (1+2δ
1+ε )1/2.

Proof. By definition, we know that x∗
i ≥ (1+ε)(Wi−Li

m +Li). Therefore, we have

ni =
Wi − Li

x∗
i

1+2δ − Li

≤ Wi − Li

1+ε
1+2δ (Wi−Li

m + Li) − Li

≤ 1 + 2δ

1 + ε
m = b2m

��
Lemma 12. Under scheduler S, we have xini ≤ aWi and vi ≥ pi(Di)

aWi
, where

a = 1 + 1+2δ
ε−2δ .

Proof. By definition, x∗
i > Li(1 + ε). Therefore, we have

xini = Wi − Li + niLi = Wi +
Wi − Li

x∗
i

1+2δ − Li

Li ≤ Wi +
Wi − Li

x∗
i

1+2δ − x∗
i

1+ε

( x∗
i

1 + ε

)

≤ Wi +
(Wi − Li)x∗

i (1 + 2δ)
x∗

i (ε − 2δ)
≤ Wi

(
1 +

1 + 2δ

ε − 2δ

)

Therefore, we have vi = pi(Di)
xini

≥ pi(Di)
aWi

. ��
Lemma 13. For every job Ji with the assignment ni, Di and Ii, Job Ji can
meet its deadline Di, if it is executed by S for at least xi time steps in Ii (on ni

dedicated processors).

Lemma 14. For every job Ji, xi(1 + 2δ) ≤ x∗
i .

Proof. Note that Li ≤ 1
1+εDi by requirement of potential assignment. Since

ni = Wi−Li
x∗

i
1+ε −Li

, we have xi(1+2δ) = (Wi−Li

ni
+Li)(1+2δ) ≤ ( x∗

i

1+ε−Li+Li)(1+2δ) =

x∗
i

1+ε (1 + 2δ) ≤ x∗
i . ��

Lemma 15. At any time step t during the execution and for any density range
[v, cv), the total number of cores required by all the jobs Ji ∈ J(t) (that have been
assigned to t) with density v ≤ vi < cv is no more than bm, i.e. N (J(t), vi, cvi) ≤
bm.

5.2 Bounding the Profit of Jobs S Completes

Similar to Sect. 3.3, we bound the profit of jobs completed by scheduler S com-
pared to the profit of all jobs. Let J denote the set of jobs arrived during the
execution, C denote the set of jobs that actually complete before their deadlines
assigned by S, and U = J \ C be the set of jobs that didn’t finish by their
deadlines assigned by S. We say job Ji (and its assigned processors during exe-
cution) is v-dense, if its density vi ≥ v. For any set A of jobs, define ‖A‖ as∑

Ji∈A pi(Di), the sum of the profits of jobs in the set under S.

Lemma 16. For a job Ji ∈ J \ C that does not complete by its deadline, the
number of time steps in Ii where S runs cvi-dense jobs using at least (1 − b)m
processors is at least δxi.
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Proof. From Lemma 13, we know that job Ji can complete if it can execute
for xi time steps by S. Also note that according to the assignment process
(1 + δ)xi = ‖Ii‖, where ‖Ii‖ is the number of time steps assigned to Ji during
[ri, ri + Di]. Since it does not complete by its deadline, there are at least δxi

time steps in Ii where S does not execute Ji. Consider each of these time steps
t. According to Lemma 15, jobs in J(t) with density in range [vi, cvi) require at
most N (J(t), vi, cvi) ≤ bm processors to execute. Therefore, there must be at
least (1 − b)m processors executing cvi-dense jobs. Otherwise, S would execute
all jobs in A (J(t), vi, cvi), which includes job Ji. ��
Lemma 17. ‖C‖ ≥ (ε − 1

(c−1)δ ) ‖J ‖.
The proof is similar to that of Lemma 5 and is omitted for brevity.

5.3 Bounding the Profit of Jobs OPT Completes

Similar to Sect. 3.4, we will now bound the profit of the jobs OPT completes.
We are first going to consider the number of processor steps OPT spends on
jobs that S finishes later than OPT. For these jobs, we assume that S makes no
profit since the profit function may become 0 as soon as OPT finishes it. Our
high level goal is to first bound the total number of processor steps OPT spends
on these jobs, which will allow us to bound OPT’s profit. This section of the
proof differ greatly from the throughput case.

We begin by showing that if not too many processors are executing vi

c -dense
jobs then all such jobs must be currently processed under S.

Lemma 18. Consider a job Ji and a time t∗ < Di. For any time step t ∈ [ri, ri+
t∗]\Ii (that is not added to Ii by S), the total number of processors required by vi

c -
dense jobs in J(t) must be more than b(1−b)m, i.e., N(J(t), vi

c ,∞) > b(1−b)m.

Proof. Because t ∈ [ri, ri + t∗] \ Ii and t∗ < Di, we know that time step t is
before Di.

Since t is not added to Ii, it must be the case that for some density vj ∈
(vi

c , vi], the required condition is not true, i.e., N (J(t) ∪ {Ji}, vj , cvj) > bm.
Note that vj must be in the range (vi

c , vi]. This is because without assigning Ji

to time step t it is true that N (J(t), vj , cvj) ≤ bm according to S, therefore Ji

must have a density within the range of [vj , cvj) in order to make impact.
By Lemma 11, we know that ni ≤ b2m. Thus, we have

N (J(t), vj , cvj) = N (J(t) ∪ {Ji}, vj , cvj) − ni > bm − b2m = b(1 − b)m

Therefore, we obtain N(J(t), vi

c ,∞) ≥ N (J(t), vj , cvj) > b(1 − b)m. ��
Let O be the set of jobs completed by OPT. For each job Ji ∈ O, let d be

the difference between Ji’s completion time and arrival time under OPT; the
profit of Ji under OPT is pi(d). According to the assumption in Theorem3, we
know that if d ≤ x∗

i , then pi(d) = pi(x∗
i ) for some x∗

i ≥ (Wi−Li

m + Li)(1 + ε).
Therefore, we can assume that OPT assigns a relative deadline D∗

i to Ji, where
D∗

i = max{d, x∗
i }. Thus, OPT obtains a profit of pi(d) = pi(D∗

i ).
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Lemma 19. Consider a job Ji such that Di assigned by scheduler S is larger
than the deadline D∗

i assigned by OPT, i.e., Di > D∗
i , the number of time steps

during [ri, ri + D∗
i ) where scheduler S is actively executing vi

c -dense jobs on at
least b(1 − b)m cores is at least δ

1+2δ D∗
i .

Proof. By definition of D∗
i and Lemma 14, we know that D∗

i ≥ x∗
i .

Consider the number of time steps in time interval [ri, ri+D∗
i ] that are added

to Ii, it must be less than (1+δ)
(

Wi−Li

ni
+ Li

)
= (1+δ)xi; otherwise, D∗

i would
be a valid deadline under scheduler S with higher profit. Therefore, the number
of time steps in [ri, ri + D∗

i ] \ Ii is more than D∗
i − (1 + δ)xi ≥ D∗

i − 1+δ
1+2δ x∗

i ≥
D∗

i − 1+δ
1+2δ D∗

i = δ
1+2δ D∗

i .
By Lemma 18, we know that for each time step t ∈ [ri, ri + D∗

i ] \ Ii, the
total number of processors required by vi

c -dense jobs in J(t) must be more than
b(1 − b)m. Therefore, there must be at least b(1 − b)m cores executing vi

c -dense
jobs under scheduler S at time step t and the number of such steps is at least

δ
1+2δ D∗

i . ��
Among the jobs in O, let O1 be the set of jobs that the deadline Di assigned

by scheduler S is no larger than that assigned by OPT, i.e., Di ≤ D∗
i < ∞.

In other words, the obtained profit of these jobs under scheduler S is no less
than that under OPT, i.e., pi(Di) ≥ pi(D∗

i ), since the profit function pi(t) is
non-increasing. Let O2 be the remaining jobs O2 = O \ O1. Let ‖X‖∗ be the
total profit that OPT obtains from jobs in X and ‖X‖ be the total profit that
S obtains from jobs in X. For jobs in O1, we have ‖O1‖∗ ≤ ‖O1‖.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total
work processed by the optimal schedule for the jobs in E that are v-dense. Let
βi denote the total number of time steps where S is actively processing job Ji.
By definition, we have βi ≤ xi

1+ε . We similarly let TS(v, E) be the summation of
βini over all jobs i in E that are v-dense. Note that this counts the total number
of processor steps S executes jobs in E that are v-dense over all time.

Now we are ready to bound the time that OPT spends on jobs O2 that
scheduler S obtains less profit than OPT.

Lemma 20. Consider a job Ji in O2, the deadline Di assigned by scheduler
S is longer than deadline D∗

i assigned by OPT. For all v > 0, TO(v,O2) ≤
2(1+2δ)
δb(1−b)TS(v

c ,J ).

Proof. For any job Ji ∈ O2, we denote the lifetime of Ji under OPT as the time
interval [ri, ri+D∗

i ), where D∗
i is the deadline assigned by OPT. For any density

v > 0, let l be the number of time steps of the union of the lifetimes of all jobs
in A(O2, v,∞). By definition, TO(v,O2) ≤ lm, since OPT can execute them on
at most m processors.

Let M ⊆ O2 be the minimum subset of O2 that the union of the lifetimes
of jobs in M covers the same time intervals of jobs in O2. By the minimality
of M , we know that at any time t, there are at most two jobs in M that cover
time t. Therefore, we can further partition M into two sets M1 and M2, where
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for any two jobs in M1 or any two jobs in M2, their lifetimes do not overlap.
By definition, either M1 or M2 has a union lifetime that is at least l/2 and we
assume WLOG it is M1.

Consider Ji ∈ M1 and let ki be the number of time steps during its lifetime
[ri, ri + D∗

i ) where scheduler S is actively executing vi

c -dense jobs on at least
b(1− b)m cores. By Lemma 19, we know k ≥ δ

1+2δ D∗
i . Therefore, during [ri, ri +

D∗
i ) the number of processor steps where S is processing vi

c -dense jobs is at least
b(1 − b)m δ

1+2δ D∗
i .

Let K =
∑

M1
ki, be the total number of processor steps where S is processing

v
c -dense jobs (since vi ≥ v) during the intervals in M1. Thus, by definition,

K ≥ δb(1 − b)
1 + 2δ

m
∑

Ji∈M1

D∗
i >

δb(1 − b)
1 + 2δ

m × l

2
≥ δb(1 − b)

2(1 + 2δ)
TO(v,O2)

Clearly, by adding additional intervals that are not in M1, we have
TS(v

c ,J ) ≥ K > δb(1−b)
2(1+2δ)TO(v,O2), which gives us the bound. ��

Lemma 21.

‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ ≤
(

1 + (1 +
1 + 2δ

ε − 2δ
)(1 +

1
εδ

)
2(1 + 2δ)
δb(1 − b)

)

‖J ‖

Proof. First, by the definition of O1 and O2, we have ‖O‖∗ = ‖O1‖∗ + ‖O2‖∗

and ‖O1‖∗ ≤ ‖O1‖ ≤ ‖J ‖. Now it remains to bound ‖O2‖.
We have TO(v,O2) ≤ 2(1+2δ)

δb(1−b)TS(v
c ,J ) from Lemma 20 for all densities v.

The remaining proof for the lemma is similar to that in Lemma 9, except for
a different constant. Therefore, ‖O2‖∗ ≤ (1 + 1+2δ

ε−2δ )c 2(1+2δ)
δb(1−b) ‖J ‖. Taking the

summation of ‖O1‖∗ + ‖O2‖∗ completes the proof. ��
Finally we are ready to complete the proof, bounding the profit OPT obtains

by the total profit the algorithm obtains for jobs it completed.

Lemma 22.
∥
∥CO

∥
∥ ≤ 1+ac

2(1+2δ)
δb(1−b)

ε− 1
(c−1)δ

‖C‖.

Proof. This is just by combination of Lemmas 17 and 21. ��

6 Conclusion

Scheduling jobs online to maximize throughput is a fundamental problem, yet
there has been little study of this topic when jobs are parallelizable and repre-
sented as DAGs. We give the first non-trivial result showing that a scheduling
algorithm is provably good for maximizing throughput. In addition, we extend
the result and give an algorithm for the general profit scheduling problem with
DAG jobs.

There are several directions for future work. First, we want to design and
implement more practical schedulers that have similar theoretical performance
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but are work-conserving and require fewer preemptions. Second, in this paper
we focus on semi-non-clairvoyant algorithms that do not have any knowledge of
the internal structure of the DAG. This lets us to provide very general results.
However, it is possible that by using the internal structure one could design
algorithms with better performance for some special DAG structures. Finally,
we are also interested in exploring whether fully non-clairvoyant algorithms can
have comparable performance for throughput.
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