®

Check for
updates

Scheduling Parallelizable Jobs Online
to Maximize Throughput

Kunal Agrawal!, Jing Li2, Kefu Lu’®™) and Benjamin Moseley®

! Washington University in St. Louis, St. Louis, MO 63130, USA
kefulu@wustl.edu
2 New Jersey Institute of Technology, Newark, NJ 07102, USA
3 Carnegie Mellon University, Forbes Avenue, Pittsburgh, PA 15213, USA
moseleyb@andrew.cmu.edu

Abstract. In this paper, we consider scheduling parallelizable jobs
online to maximize the throughput or profit of the schedule. In par-
ticular, a set of n jobs arrive online and each job J; arriving at time 7;
has an associated function p;(¢) which is the profit obtained for finishing
job J; at time t + r;. Each job can have its own arbitrary non-increasing
profit function. We consider the case where each job is a parallel job that
can be represented as a directed acyclic graph (DAG). We give the first
non-trivial results for the profit scheduling problem for DAG jobs and
show O(1)-competitive algorithms using resource augmentation.

1 Introduction

Scheduling preemptive jobs online to meet deadlines is a fundamental problem
and, consequently, the area has been extensively studied. In a typical setting,
there are n jobs that arrive over time. Each job J; arrives at time r;, has a
deadline d;, relative deadline D; = d; — r; and a profit or weight p; that is
obtained if the job is completed by its deadline. The throughput of a schedule is
the total profit of the jobs completed by their deadlines and a popular scheduling
objective is to maximize the total throughput of the schedule.

In a generalization of the throughput problem, each job J; is associated with
a function p;(t) which specifies the profit obtained for finishing job J; at r; + t.
It is assumed that p; can be different for each job J; and that the functions
are arbitrary non-increasing functions. We call this problem the general profit
scheduling problem.

In this work, we consider the throughput and general profit scheduling prob-
lems in the preemptive online setting for parallel jobs. In this setting, the online
scheduler is only aware of the job at the time it arrives in the system, and a
job is preemptive if it can be started, stopped, and resumed from the previous
position later. We model parallel jobs as a directed acyclic graph (DAG) where
each job J; is represented as an independent DAG. Each node in the DAG is a
sequence of instructions that are to be executed and the edges in DAG represent
dependencies. A node can be executed if and only if all of its predecessors have
been completed. Therefore, two nodes can potentially be executed in parallel

© Springer International Publishing AG, part of Springer Nature 2018
M. A. Bender et al. (Eds.): LATIN 2018, LNCS 10807, pp. 755-776, 2018.
https://doi.org/10.1007/978-3-319-77404-6_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_55&domain=pdf

756 K. Agrawal et al.

if neither precedes the other in the DAG. In this setting, each job J; arrives
as a single independent DAG and a profit of p; is obtained if all nodes of the
DAG are completed by job J;’s deadline. The DAG model can represent parallel
programs written in many widely used parallel languages and libraries, such as
OpenMP [1], Cilk Plus [2], Intel TBB [3] and Microsoft Parallel Programming
Library [4].

Both the throughput and general profit scheduling problem have been studied
extensively for sequential jobs. In the simplest setting, each job J; has work or
processing time W; to be processed on a single machine (processor). It is known
that there exists a deterministic algorithm which is O(d)-competitive, where § is
the ratio of the maximum to minimum density of a job [5-8]. The density of job
Ji is i (the ratio of its profit to its work). In addition, this is the best possible
result for any deterministic online algorithm even in the case where all jobs have
unit profit and the goal is to complete as many jobs as possible by their deadline.
In the case where the algorithm can be randomized, ©(min{log J,log A}) is the
optimal competitive ratio [9,10]. Here A is the ratio of the maximum to minimum
job processing time.

These strong lower bounds on the competitive ratio on any online algorithm
makes it difficult to differentiate between algorithms and to discover the key
algorithmic ideas that work well in practice. To overcome this challenge, the
now standard form of analysis in scheduling theory is a resource augmentation
analysis [11,12]. In a resource augmentation analysis, the algorithm is given extra
resources over the adversary and the competitive ratio is bounded. A s-speed
c-competitive algorithm is given a processor s times faster than the optimal
solution and achieves a competitive ratio of ¢. The seminal scheduling resource
augmentation paper considered the throughput scheduling problem and gave the
best possible (1 + €)-speed O(1)-competitive algorithm for any fixed € > 0 [12].

Since this work, there has been an effort to understand and develop algo-
rithms for more general scheduling environments and objectives. In the identical
machine setting where the jobs can be scheduled on m identical parallel machines
(processors), a (1+¢)-speed O(1)-competitive algorithm is known for fixed € > 0
[13]. This has been extended to the case where the machines have speed scalable
processors and the scheduler is energy aware [14]. In the related machines and
unrelated machines settings, similar results have been obtained as well [15]. In
[16] similar results were obtained in a distributed model.

None of this prior work consider parallel jobs. Parallel jobs modeled as DAGs
have been widely considered in scheduling theory for other objectives [17-24].
There has been an extensive study in the real-time system community on how
to schedule parallelizable DAG jobs by their deadlines. See [17,18,25-31] for
pointers to relevant work. These works consider different (yet similar) objec-
tives, focusing on tests to determine if a given set of reoccurring jobs can all be
completed by their deadline, in contrast to optimizing throughput or profit.

Results: In this paper, we give the first non-trivial results for scheduling paral-
lelizable DAG jobs online to maximize throughput and then we generalize these
results to the general profit problem. Two important parameters in the DAG

Scheduling Parallelizable Jobs Online to Maximize Throughput 757

setting are the critical-path length L; of job J; (its execution time on an infinite
number of processors) and its total work W; (its uninterrupted execution time
on a single processor). The value of max{L;, W;/m} is a lower bound on the
amount of time any 1-speed scheduler takes to complete job J; on m cores. We
will focus on schedulers that are aware of the values of L; and W; when the
job arrives, but are unaware of the internal structure of the job’s DAG. That is,
besides L; and W;, the only other information a scheduler has on a job’s DAG
is which nodes are currently available to execute. We call such an algorithm
semi-non-clairvoyant—for DAG tasks, this is a reasonable model for the real
world programs written in languages mentioned above since the DAG generally
unfolds dynamically as the program executes. We first state a simple theorem
about these schedulers.

Theorem 1. There exists inputs where any semi-non-clairvoyant scheduler
requires speed augmentation of 2 — 1/m to be O(1)-competitive for mazimizing
throughput.

Roughly speaking, scheduling even a single DAG job in time smaller than
% + L; is a hard problem even offline when the entire job structure is known
in advance. This is captured by the classic problem of scheduling a precedence
constrained jobs to minimize the makespan. For this problem, there is no 2 — ¢
approximation assuming a variant of the unique games conjecture [32]. In par-
ticular, in Sect. 4, we will give an example DAG where any semi-non-clairvoyant
scheduler will take roughly % + L; time to complete, while a fully clair-
voyant scheduler can finish in time W;/m. By setting the relative deadline to
be D; = W;/m = L;, every semi-non-clairvoyant scheduler will require a speed
augmentation of 2 — 1/m to have bounded competitiveness.

With the previous theorem in place, we cannot hope for a (14 €)-speed O(1)-
competitive algorithm. To circumvent this hurdle, one could hope to show O(1)-
competitiveness by either using more resource augmentation or by making an
assumption on the input. Intuitively, the hardness comes from having a relative
deadline D; close to max{L;, W;/m}. In practice, this is unlikely to be the case.
We show that so long as D; > (1 + €)(¥=2 + L;) then there is a O(%)-
competitive algorithm.

Theorem 2. If for every job J; it is the case that (1 + e)(% + L;) < D;,
then there is a O(e%)—competitive algorithm for maximizing throughput.

We note that this immediately implies the following corollary without any
assumptions on the input.

Corollary 1. There is a (2+¢€)-speed O (=)-competitive algorithm for mazimiz-
ing throughput.

Proof. No schedule can finish a job J; if its relative deadline is smaller than
max{L;, %} and we may assume that no such job exists. Using this, we have
that (Wi + L;) < 2D;. Consider transforming the problem instance giving the

m
m

758 K. Agrawal et al.

algorithm and the optimal solution together 2 + € speed. In this case, the condi-
tion of Theorem 2 is met since we can view this as scaling the work in each node
of the jobs by 2 + €. This scales the work and critical-path length by 2 + ¢. The
corollary follows by observing that in this case we are comparing to an optimal
solution with 2 + € speed which is only stronger than comparing to an optimal
solution with 1 speed. O

We note that the theorem also immediately implies the following corollary
for “reasonable jobs.”

Corollary 2. There is a (14¢€)-speed O(E%)-competitwe for mazximizing through-
put if (W; — L;)/m + L; < D; for all jobs J;.

This assumption on the deadlines is reasonable since, as we show in Sect. 4,
there exists inputs for which even the optimal semi-non-clairvoyant scheduler
has unbounded performance if the deadline is smaller.

We go on to consider the general profit scheduling problem. We first make
the following assumption, which is that for all jobs J; its general profit function
satisfies p;(d) = p;(z}), where 0 < d < =z} for some z} > (14 ¢)(¥ili + ;).
This assumption states that there is no additional benefit for completing a job
J; before time x, which is the natural generalization of our assumption in the
throughput case. The function is arbitrarily decreasing otherwise. Using this, we
show the following.

Theorem 3. If for everyjob J; itis the case thatp;(d) = p;(x}), where0 < d < x}
for some value of ¥ > (1 + e)(% + L;) then there is a O(%)-competitive
algorithm for the general profit objective.

This gives the following corollary, just as for throughput.

Corollary 3. There is a (2+¢€)-speed O(e%)-competitive algorithm for maximiz-
ing general profit.

2 Preliminaries

In the problem considered, there is a set J of n jobs {J1, Ja, ..., J, } which arrive
online. The jobs are scheduled on m identical processors. Job J; arrives at time
r;. Let p;(t) be an arbitrary non-negative non-increasing function for job J;. The
value of p;(t) is the profit obtained by completing job ¢ at time r; + ¢. Under
some schedule, let t; be the time it takes to complete J; after its arrival. The
goal is for the scheduler to maximize), pi(t:).

A special case of this problem is scheduling jobs with deadlines. In this prob-
lem, each job J; has a deadline d; and obtains a profit of p; if it is completed by
this time. In this case, we let D; = d; — r; be the relative deadline of the job. To
make the underlying ideas of our approach clear, we will first focus on proving
this case and the more general problem can be found in the Sect. 5.

Each job is represented by a Directed-Acyclic-Graph (DAG). A node in the
DAG is ready to execute if all its predecessors have completed. A job is completed

Scheduling Parallelizable Jobs Online to Maximize Throughput 759

only when all nodes in the job’s DAG have been processed. We assume the
scheduler knows the ready nodes for a job at any point in time, but does not
know the entire DAG structure a priori. Any set of ready nodes can be processed
at once, but each processor can only execute one node at a time.

A DAG job has two important parameters. The total work W; is the sum of
the processing time of the nodes in job i’s DAG. The span or critical-path-length
L; is the length of the longest path in job ¢’s DAG, where the length of the path
is the sum of the processing time of nodes on the path. To show Theorem 2 we
assume that (1 + €)(YiLti 4 ;) < D; for all jobs J; throughout the remainder
of the paper.

3 Jobs with Deadlines

First, we give an algorithm and analysis proving Theorem 2 when jobs have dead-
lines and profits. To aid the reader, a list of notation can be found in Tables1, 2
and 3. Throughout the proof, we let C© denote the jobs that the optimal solu-
tion completes by their deadline and let HCOH denote the total profit obtained
by the optimal solution. Our goal is to design a scheduler that achieves profit
close to HC’OH. Throughout the proof, it will be useful to discuss the aggregate
number of processors assigned to a job over all time. We define a processor step
to be a unit of time on a single processor.

Table 1. Notations and definitions throughout the paper

Notation Definition
OPT Optimal schedule and also optimal objective
m The number of processors
Wi The total work of job J;
L; The span of job J;
D; Relative deadline of job J;
T The arrival time of J;
d; The absolute deadline of J; (that is, r; + D;)
A(T,v1,v2) | All jobs in T with density within the range [v1, v2)
N(T,vi,v2) | = ZJ@'EA(T,WJ&) n;, the total number of processors required
by A(T,v1,v2)
v-dense If Job J; has density v; > v
0 <€/2
>1+ %
= (£ <1
“ — 1+ 22

760 K. Agrawal et al.

Table 2. Notations and definitions specific to jobs with deadlines

Notation | Definition

Di The profit of job J;

n; = %, the number of processors allocated to J;
Tf25 i

T = % + L;, the maximum execution time of J;

v; = -Pi_ the density of J;

Ling

d-good Job J; has D; > (14 26)x;
d-fresh | At time ¢, job J; has d; — ¢t > (1 + 6)z;

R The set of jobs started by S

C The set of jobs completed by S

U Unfinished jobs by S (that is, R\ C)
c° The set of jobs completed by OPT
J The set of all jobs

To(v,&) | The total work processed by the optimal schedule for the
jobs in £ that are v-dense

Ts(v,E) | The total number of processors steps S used for executing
jobs in £ that are v-dense

Table 3. Notations and definitions specific to jobs with general profit functions

Notation | Definition

pi(t) The profit of job J; if the job with arrival time 7; completes by r; + ¢
n; = (EW:;L”, the number of processors allocated to J;
Tras —Li
Ti = % + L;, the maximum execution time of J;
v = % the density of J;

3.1 Algorithm

In this section, we introduce our algorithm S. On every time step, S must decide
which jobs to schedule and which ready nodes of each job to schedule. When a
job J; arrives, S calculates n;—the number of processors “allocated” to J;. On
any time step when S decides to run J;, it will always allocate n; processors to J;.
In addition, since S is semi-non-clairvoyant, it is unable to distinguish between
ready nodes of J;; when it decides to allocate n; nodes to J;, it arbitrarily picks
n; ready nodes to execute if more than n; nodes are ready.
We first state some observations regarding work and critical-path length.

Observation 1. If a job J; has all of its v ready nodes being executed by a
schedule with speed s on m processors, where r < m, then the remaining critical-
path length of J; decreases at a rate of s.

Scheduling Parallelizable Jobs Online to Maximize Throughput 761

As mentioned earlier, we assume that the deadline for each job follows the
condition that (1 + e)(W —Li 1 [;) < D; for some positive constant €.
We define the followmg constants. Let § < ¢/2,¢ > 1+ 5 and b =

(1++26)1/2 < 1 be fixed constants. For each job J;, the algorithm calculates n; as

M The value of n; is the number of processors our algorithm will give to
1+2o g
job J; if we decide to execute J; on some time step.

Let z; := WizLi 4t I, By Observation 1 it is the case that if n; processors are
given to job ¢ for x; units of time then the job will be completed regardless of
the order the nodes are executed in. We will consider this to be Observation 2.

Observation 2. Job J; can meet its deadline if it is given n; dedicated proces-
sors for x; time steps in the interval [r;, di].

We define the density of a job as v; = o standard
definition of density. We define the den51ty as $n instead of 5; , because we
will think of job i requiring x;n; processor steps to complete by Scheduler S.
Thus, this definition of density indicates the potential profit per processor step
that S can obtain by executing J;.

The scheduler S maintains jobs that have arrived but are unfinished in two
priority queues. A priority queue @ stores all the jobs that have been started
by S. In the priority queue, the jobs are sorted according to the density from
high to low. Another priority queue P stores all the jobs that have arrived but
have not been started by S. Jobs in P are also sorted according to their densities
from high to low.

Job Execution: At each time step ¢, S picks a set of jobs in @ to execute,
in order from highest to lowest density. If a job J; has been completed or if
its absolute deadline d; has passed (d; > t), S removes the job from @. When
considering job J;, if the number of unallocated processors is at least n; the
scheduler assigns n; processors to J; for execution. Otherwise, it continues on to
the next job. S stops this procedure when either all jobs have been considered
or when there are no remaining processors to allocate.

We introduce some notations to describe how jobs are moved from queue
P to Q. A job J; is é-good if D; > (1 + 2)z;. A job is d-fresh at time ¢
if di —t > (14 §)x;. For any set T of jobs, let the set A(T,v1,vs) contains
all jobs in T" with density within the range [v1,v2). We define N(T,vq,vs) =
ZJiEA(T71)17U2) n;. This is the total number of processors that S allocates to jobs
in A(T,v1,v2). We will say that the set of job A(T,v1,vs) requires N(T,v1,vs)
Processors.

Adding Jobs to @: There are two types of events that may cause S to add

a job to (). These events occur when either a job arrives or S completes a job.

When a job J; arrives, S adds it to queue (@ if it satisfies the following conditions:

(1) J; is é-good;

(2) For all job J; € QU {J;} it is the case that N (QU {J;},v;,cv;) < bm
In words, the total number of processors required by jobs in Q U {J;} with
density in the range [v;, cv;) is no more than bm.

762 K. Agrawal et al.

If these conditions are met, then J; is inserted into queue @; otherwise, job
J; is inserted into queue P. When a job is added to @), we say that the job is
started by S.

At the completion of a job, S considers the jobs in P from highest to lowest
density. S first removes all jobs with absolute deadlines that have already passed.
Then S checks if a job J; in P can be moved to queue @ by checking whether
job J; is d-fresh and condition (2) from above. If both the conditions are met,
then J; is moved from queue P to queue Q.

Remark: Note that the Scheduler S pre-computes a fixed number of processors
n; assigned to each job, which may seem strange at first glance. This is because
that n; is approximately the minimum number of dedicated cores job J; requires
to complete by % — D;, without knowing J;’s DAG structure. In addition, as
long as J; can complete by its deadline, it obtains the same profit p;. Therefore,
there is no need to complete J; earlier by executing J; on more dedicated cores.
Moreover, by carefully assigning n;, we are able to bound the number of processor
steps spent on job J; as shown in Lemma 3, which is critical for bounding the
profit obtained by the optimal solution.

Outline of the Analysis of S: Our goal is to bound the total profit that S
obtains. We first discuss some basic properties of S in Sect.3.2. In Sect. 3.3 be
bound the total profit of all the jobs S starts by the total profit of jobs that .S
completes. Then in Sect. 3.4 we bound the total profit of the jobs the optimal
solution completes by the total profit of jobs that S starts. Putting these two
together, we are able to bound the performance of S.

3.2 Properties of the Scheduler

We begin by showing some structural properties for .S that we will leverage in
the proof. We first bound the number of processors n; that S will allocate to

Lemma 1. For every job J; we have that n; < b*m.

Proof. By assumption we know that D; > (1 + e)(% + L;). The definition
of n; gives the following.

W; —L; W; — L; 1+26
i = Tp, S T WL = =
Tros — Li 1+25(# +Li) = Li 14

Lemma 2. FEvery job J; is §-good, i.e. x;(1+29) < D;.

Proof. Note that L; < %-ﬁ-eDi by definition. Since n; = Vgi’L].:' , we have z;(1 +
Tz i

20) = (Wirki + L;)(1+26) = (1255 — Li + Li)(1 4+ 20) < D;. O

Scheduling Parallelizable Jobs Online to Maximize Throughput 763

The next lemma bounds the total number of processor steps occupied by a
job.

Lemma 3. z;n; < aW;, where a is 1 + ifgg
Proof. By definition we have
W; — L; W; — L; D;
xing =W; — Li+niLi < Wi+ —5——L; < W; + — D; ()
i], i i 1+e
1+26 z 1426 1+e
(W; — L;)D;(1 4 26) Wi (1 4+ 26) 1426
<Ww; <W;+ ——=< Wi<1 7)
- + D;(e — 20) - + €e—20 +6—2(5

O

Observation 3. At any time and for any v > 0, the total number of processors
required by all the jobs J; that are in queue @ and have density v < v; < cv is
no more than bm, i.e. N(Q,v;,cv;) < bm.

Proof. Jobs are only added to queue (Q when a new job arrives or a job completes.
According to algorithm S, at both times, a job is only added to @ when this
condition is satisfied. O

3.3 Bounding the Profit of Jobs S Completes by All Jobs Started
by S

In this section, we bound the profit of jobs completed by S compared to the
profit of all jobs it ever starts (adds to Q). Let R denote the set of jobs S starts
(that is, the set of jobs added to queue Q). Among the jobs in R, let C be the
set of jobs it completes and U be the set of jobs that are unfinished. We say job
J; (and its assigned processors) is v-dense, if its density v; > v. For any set A
of jobs, define [|Al| as } ;. 4 pi, the sum of the profits of jobs in the set.

Lemma 4. For a job J; € U = R\ C that was added to queue @ but does not
complete by its deadline, S must have run cv;-dense jobs for at least dx; time
steps where J; is in Q using at least (1 — b)m processors at each such time.

Proof. Since J; is at least d-fresh when added to @ and it does not complete
by its deadline, there are at least dx; time steps where S is not executing J; by
Observation 2. In each of these the time steps, all the m processors are executing
vi-dense jobs.

By Observation 3, jobs in @ with density in range [v;, cv;) require at most
N(Q,v;, cv;) < bm processors to execute. Therefore, for each of the dz; time
steps, there are at least (1 — b)m processors executing cv;-dense jobs. So the
total number processor steps where cv;-dense jobs are executing is at least
dx; (1 —b)ym. O

We now bound the profit of the jobs completed by their deadline under S by
those started.

764 K. Agrawal et al.

Lemma 5. €] > (e — ¢5) | Bl

Proof. We use a charging scheme with credit transfers between the jobs. We give
each job J; € R a bank account B;. Initially, all completed jobs (in C) are given
p; credits and other jobs (in U) have 0 credit. We will transfer credits between
jobs in C and jobs in U. We want to show that after the credit transfer, every
job J; in R will have B; > (e — ﬁ)pi. This implies ||C|| > (e — m) | R]].

Now we explain how credits are transferred. For each time step, a processor
executing J; will transfer ?bZi credits from B; to every job J; in queue) that
has density v; < %

For every job J; € U, Lemma4 implies that there are at least dz; time steps
where at least (1 — b)m processors are executing cv;-dense jobs. By our credit
transfer strategy J; will receive at least ”J i credits from each processor in a
time step. Therefore the total credits J; receives is at least

551~ Bym() = vyainy () = ().

This bounds the total amount of credit each job receives. We now show that
not too much credit is transferred out of each job’s account. We bound this on a
job by job basis. Fix a job J; € R and consider how many credits it transfers to
other jobs during its execution. By Observation 2, we know that .J; can execute
for at most x; time steps on n; dedicated processors before its completion.

The job J; will transfer credit to all jobs in @ with density less than “* at
any point in time where J; is being processed. These are the jobs in A(Q,0, %).
Fix an integer | > 1 and consider the set of jobs A(Q, 27, %) in Q that have
density within the range [- ﬂl , %) Note that the total number of processors
required by them is N(Q, &+, %) < bm by Observation 3. Knowing that a job
Jj in A(Q, &+, %) has density v; < % by definition it is the case that the total
credlts that J; gives to jobs in A(Q, i+, %) per processor assigned to J; during

any time step is at most

vin; Zn; v;
1
7 < 'y 2 ; n;
2 Gm 2 em dmd 2
T E€AQ T) 1 €AQ it) T €AQ it)
Uj Vi Vs Vi V3

= Sbmd N@ c+’ 7> — dbmct bm = dcb

This bounds the total credit transferred to jobs in A(Q, %7, %) during a
time step for each processor assigned to J;. We sum this quantity over all [> 1
and all n; processors assigned to ¢ to bound the total credit transferred from job
J; during a time step. Recall that ¢ > 1 by definition.

e} 1
n;v; l _ (Tli’Ui> < B (Tlﬂjz) 1
5 = d\s/1-2 V6§ Je-1

Therefore, the total credits J; transfers to all the jobs in A(Q,0, %) over all
times it is executed is at most (Z%i)_L. = = 1)5 due to the fact that a job
will be executed for at most x; time steps in S’s schedule.

Scheduling Parallelizable Jobs Online to Maximize Throughput 765

Now we put these two observations together. Each job receives at least p,»lT*b
credit and pays at most (cfiil)&. After the credit transfer, the credits that a job
J; has is at least

PiT—m—pi(e_m)

By our setting of ¢, this quantity is always positive. Therefore, we conclude
that €]l > (¢ - 255) IR 0

3.4 Bounding the Profit of Jobs OPT Completes by All Jobs
Started by S

In this section, we bound the profit of the jobs OPT completes by all of the
jobs that S starts. Our high level goal is to first bound the total amount of time
OPT spends processing jobs that S does not complete by the time S spends
processing jobs. Then using this and properties of S we will be able to bound
the total profit of jobs OPT completes. At a high level, this follows since S
focuses on processing high density jobs and OPT and S spend a similar amount
of time processing jobs. We begin by showing that if not too many processors
are executing “‘-dense jobs then all such jobs must be currently executing.

Lemma 6. For any density v; and time, if there are less than b(1 — b)m pro-

cessors executing “*-dense jobs then all %%-dense jobs in queue Q are erecuting
and N(Q, %, 00) < b(1 —b)m

Proof. By definition, there are at least m — b(1 — b)m > bm — b(1 — b)m = b*m
processors executing jobs with density less than “4. For the sake of contradiction,
suppose there is a “*-dense job J; that is not executlng by S. By Lemma 1l we
know that n; < b?m. Therefore, Jj would have been executed by S on the b?m
processors that are executing lower density jobs, a contradiction.

Now we know all “i-dense jobs in queue @) are executing. By assumption
they are using less than b(1 — b)m processors and the lemma follows. a

In the next lemma, we show that if not too many processors are running
“-dense jobs then when a job arrives or completes, the schedule S will start
processing a v;-dense job that is o-fresh, for any density v; (if such a job exists).
In particular, the job J; will pass condition (2) of for adding jobs to @ in the
definition of S.

Lemma 7. Fiz a density v;. At a time where a new job arrives or a job com-
pletes if there are less than b(1 — b)m processors executing “:-dense jobs, then a
d-fresh v;-dense job J; (arriving or in queue P) will be added to Q by S assuming
such a job J; exists.

Proof. By Lemma 6, we know that all “*-dense jobs in queue @) are executing on
less than b(1 —b)m processors. By Lemma 1, we know that n; < b*m. Therefore,

NQU{J;}, %,oo) < b(1 — b)ym + b?m = bm

766 K. Agrawal et al.

Consider any J-fresh job J; that is also v;-dense. Consider any job Jj, where
J;j € A(QU {J;}, vk, cug). By definition of J; being v;-dense it must be the
case that A(Q U {Ji},vx,cvr) € A(Q U {J;},%,00). The above implies that
N(QU{Ji}, vk, cop) < N(QU{J;}, %, 00) < bm. Thus, the condition (2) in our
algorithm is satisfied. O

For an arbitrary set of jobs £ and any v > 0 let Tp(v,E) denote the total
work processed by the optimal schedule for the jobs in £ that are v-dense. We
similarly let Ts(v, £) be the total number of processors steps .S used for executing
jobs in £ that are v-dense over all time. Now we are ready to bound the time
that OPT spends on jobs that S never adds to @.

Lemma 8. Consider the jobs in J \ R, the jobs that are never added to Q. For
allv >0, To(v, T\ R) < 525 Ts(2, 7).

Proof. Let {I; = [sk,ex]} be the set of maximal time intervals where at least
b(1 — b)m processors are running “-dense jobs in S’s schedule. Notice that by
definition > (e — sp)b(1 —b)ym < Ts(%,T).

Consider a job in J; € J\ R that is both §-good and v-dense and additionally
arrives during [sg, Sg+1). Note that during the intervals [ey, Sk41], less than b(1—
b)m processors are executing ?-dense jobs. Lemma 7 implies that if J; arrives
during [eg, sg+1] it will be added to @. This contradicts the assumption that
Ji € J\ R. Therefore, J; must arrive during [sk,er) and is in queue P at
time ey.

Note that at time ey, the number of processors executing <-dense jobs
decreases, so there must be a job that completes at time ej. Again, by Lemma 7
if J; is d-fresh at time ej then it will be added to @ at this time. Again, this
contradicts J; € J \ R. Thus, the only reason that S does not add J; to @ is
because J; is not é-fresh at time e;. Knowing that J; is d-good at r; and is not
O-fresh at ey, we have e, — s > e, — r; > 0x;.

At time ey, J; is not d-fresh, so d; — e, < (14 6)a; < 1%‘s(ek — Sk)-

Let Kj, be the set of v-dense jobs that arrive during [sg, Sg4+1) but are not
completed by S. Because OPT can only execute all jobs in K} during [sg, d;] on
at most m processors, we get

1426
To (v, Ki) <(d; — si)m = ((d; — ex) + (e — s))m < 3 (ex — sK)m
This completes the proof, as
= 1426 1425 1 v
To(v,U) =) _To(v, Ki) < 3 (—5=)mlex = i) < —5— a5 Ts(5,)
k=1 k=1

a

Using the previous lemma, we can bound the profit of jobs completed by
OPT by the profit of jobs started by S.

Scheduling Parallelizable Jobs Online to Maximize Throughput 767
Lemma 9.

||CO||§<1+(1+1+25 1 1+25)>”R”

55 & an

Proof. We may assume WLOG that the adversary completes all jobs it starts.
First we partition C'©, the jobs that the adversary completes, into C’g and Csov
where Cg = C9 N R, that is, our algorithm started the job at some point.
The remaining jobs are placed in C. Clearly ||C§|| < ||R||. Now it remains to
bound HCOH

Consider every job in C§ and let the set of densities of these JObb be
{p1, 2, - -, b} from high to low and for notational simplicity let py = oo
and p,,+1 = 0. Recall the adversary completed all jobs it started. Thus for each
job with density pu;, the adversary ran the job for a corresponding W; processor
steps. Let §3; denote the number of processor steps our algorithm takes to run
jobs with densities within (#=2, ££].

We have To(v, J \ R) < 51)1(12517) Ts(%,J) from Lemmag8 for all densities v.
Equivalently for any given density v:

v

1426 1+25
To(v, T\ R) = ZWz_éb Zﬁz— —5 7507

We then sum over all densities. The subtraction of densities is necessary to
insure that each density is only counted a single time.

> ((Nv — fvt1) ZW1> < 2—31 < — Hot1) 5; 2 Z@)

The LHS can be simplified:

m m

> L« < — Ho+t1) ZW> ZW Z(Mv — prot1) = > Wils — fim1) ZWM

v=1 =1

The RHS similarly simplifies to 5bl+125b) S Bipis leading to the inequality
that ZZ 1 Wi < 6;*{2‘1 Zl 1 Bipvi- Recall that densities such as p; are defined

by p; = -2 and x;n; < aW Therefore:

Tring

m Wipi Wipi i 1
ZWiﬂi = Z xlpl z Z 2 = Z (1 +p1+26) - 1+726) ”C’gH
=1

i=1 (1+ €e—20

And also, by the definition of 3;, we know that Y .-, 3;& < ||R|.

c —

768 K. Agrawal et al.

Combining these results, we get:

1425 1+25
@ OH<ZWMZ—5b Zﬂz Hi = o —py I

1+26 1420
ol < (141 25) (5b(1b>>cllR|

1+26 1. 1+26
25)(1 + 6)61)(1)) |2l

=0 = llegll + g < (1+a+ 2
O

Finally we are ready to complete the proof, bounding the profit OPT obtains
by the total profit the algorithm obtains for jobs it completed.

Lemma 10.

HCOH < (1+(1+ 23 1+ %) 57225) el

€~ =13

Proof. This is just by combination of Lemmas5 and 9. O

Therefore, we prove Theorem?2 by showing that scheduler S is O(iﬁ)
competitive for jobs with deadlines and profits, when (1+¢)(¥i-ti + ;) < D;.

4 Examples

In this section, we will give some example DAGs to show why Theorem 2 is close
to the best theorem we can hope for using two examples. The first example,
shown in Fig. 1, shows the limitations of semi-non-clairvoyance. In particular,
a semi-non-clairvoyant scheduler does not know the structure of the DAG in
advance since the DAG unfolds dynamically. At any time step, the scheduler only
knows the ready nodes available for execution. Given this limitation, consider
the DAG shown in Fig. 1. This job has one sequential chain with length L = %,
where W is the total work of the job and m is the number of processors. The
remaining W — W/m work are fully parallelizable in a block and can also be
done in parallel with the chain. Therefore, L is the span of the jobs.

Since a semi-non-clairvoyant scheduler cannot distinguish between ready
nodes, it may make unlucky choices and execute the entire block of W —W/m =
W — L ready nodes first in (W — L)/m time steps and then execute the chain
of L nodes sequentially—leading to a total time of (W — L)/m + L. On the
other hand, a fully clairvoyant scheduler can execute the entire DAG in W/m
time. Therefore, a semi-non-clairvoyant scheduler needs at least 2 — 1/m speed
augmentation to ensure that it can complete the DAG at the same time as OPT.

We now show another example DAG indicating that it would be reasonable
to always set deadlines as D > (W — L)/m + L if we do not know the structure
of the DAG a priori. Figure 2 shows an example DAG, which consists of a chain
of L — € nodes followed by W — L + € nodes that can run in parallel. Each
node in the DAG takes ¢ time to run, so the total work of the DAG is W
and the span is L. For such a DAG, even a fully clairvoyant scheduler needs
L—e+W=kde = W=L [¢(1— L) which approaches to £+ I when e — 0.

Scheduling Parallelizable Jobs Online to Maximize Throughput 769

W/m |

0000~ 5
0000 .
0000 O-0O--00
0000

W(1-1/m)

Fig. 1. Example 1 Fig. 2. Example 2

5 Jobs with General Profit Functions

In this section, we focus on a more general case. In particular, each job J; has a
non-negative non-increasing profit function p;(t) indicating its profit if the job
with arrival time r; completes by r; + ¢t. Our goal is to design a scheduler that
maximizes the profit to make it close to what the optimal solution can obtain,
denoted as ||O].

First, we present our scheduler S parameterized using a fixed constant 0 <
€ < 1. Similar to Sect. 3.1, let § < €/2,¢>1+4 4 and b= (11"’—_~_2€5)1/2 < 1 be fixed
constants.

Upon the arrival of a job J;, the scheduler S assigns a number of allocated
cores n;, a relative deadline D; and a set of time steps I; to J; (according to
the assignment procedure described below). In each time step ¢ in I;, we say
that J; is assigned to t. Scheduler S always executes the highest density jobs
that is assigned to t. If S decides to execute J; in a time step, it will give n;
processors to J;. Let z; := % + L;. We define the density of a job as

v; =L x(lgl) = W, _f_’(fl?_)l) - We now formally specify the algorithm of scheduler

S for job assignment and execution.

Assigning cores, deadlines and slots to jobs: When a job J; arrives, the
scheduler will assign a relative deadline D; and a set of time steps I; with n;
processors. These time steps are the only time steps in which J; is allowed to run.

Recall (from Theorem 3) that we assume that the profit function stays the
same until some value z} > (Wi=Li 4 [;)(1 + ¢). The number of assigned pro-

cessors n; is calculated as n; = 2i=Li The assignment for D; is determined
z 7L
1426 2

by searching all the potential deadlines D to find the minimum valid deadline.
The set of time steps I; is determined using the chosen deadline D;.

For each potential relative deadline D > (1 + €)L;, scheduler S checks
whether it is a valid deadline by the following steps. First, it selects a set of time
steps I. Assuming D is assigned to J;, then the density of J; is v = %.
For each time step ¢ from r; to r;+ D, let ||I(¢)]| be the number of time steps that
have already been added to I before considering time step ¢. Let J(¢) denote the
set of jobs that are currently has time ¢ among its assignments. We only add t to
the set I if it satisfies the following condition: For every job J; € J(t), it is the
case that N (J(t) U{J;},v;,cv;) < bm. In words, the total number of processors

770 K. Agrawal et al.

required by jobs in J(¢) U {J;} with density in the range [v;, cv;) is no more
than bm.

I contains all the time steps during [r;,r; + D;) that can be assigned to J;.
If ||I]| > (14 9) (% + L,»), which is at least § times longer than the time J;
required to run on n; processors, then the deadline D is said to be valid. Note
that a valid assignment always exists by setting the deadline large enough.

Among all the valid assignments, S chooses the smallest valid deadline for
J;, which results in the highest profit. Given this deadline D;, J; will be assigned
with the corresponding set I;. Because D; is the minimum valid deadline, the
corresponding set I; must satisfy ||I;]| = (1 + 0) <% + Li); otherwise, there
must exist a shorter deadline D that is also valid. Intuitively, with this assign-
ment, J; can complete by its deadline if no other jobs interfere. Note that J;
may not be completed by its deadline as we will allow higher density jobs that
arrive after J; to be scheduled during I;.

Executing jobs: At each time step t, S picks a set of jobs in J(¢) to execute
in order from highest to lowest density, where J(t) are the set of jobs that have
been assigned to time step ¢t. That is, jobs J; where ¢ € I;. When considering
job J;, if the number of unallocated processors is at least n;, then the scheduler
allocates m; processors to J;. Otherwise, it continues on to the next job in J(¢).
S stops this procedure when either all jobs have been considered or when there
are no remaining processors to allocate.

Remark: Unlike the scheduler for jobs with deadlines, here we try to complete
a job J; by a calculated deadline D; that is as close to z} as possible. This
is because the obtained profit decreases as the completion time increases but
there is no additional benefit for completing a job J; before time z. With a
carefully designed deadline D;, we are able to prove the performance bound of
the scheduler. Similarly to Sect. 3, we start by stating the basic properties of the
scheduler S, followed by bounding the total profit obtained by S. However, the
proofs that bound the profit of jobs that are completed by OPT differ greatly
from that for jobs with deadlines. This is because in addition to losing the profit
of jobs that do not complete by their assigned deadlines, scheduler S can also
loses profit compared to OPT if the completion time of a job under S is later
than under OPT. By taking into account all these jobs, we are able to bound
the performance of S for jobs with general profit functions.

5.1 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in
the proof and can be obtained directly from the algorithm of scheduler S. Note
that these lemmas are similar to the lemmas shown in Sect. 3.2 if we replace x;*
with D;. We state them here again for completeness.

Scheduling Parallelizable Jobs Online to Maximize Throughput 771

1+25)1/2'

Lemma 11. For every job J; we have that n; < b*m, where b = (e

Proof. By definition, we know that x} > (1 +e)(% + L;). Therefore, we have

Wi — Ly W, — L; 1425)
i = %7 S T WL =3 m = b’*m
755 — Li Tias (Tt + Li) — Li +e

O

Lemma 12. Under scheduler S, we have x;n; < aW; and v; > %(75?), where

a=1+4 152

Proof. By definition, =} > L;(1 4 €). Therefore, we have

W, — L; W, —Li [a
zing =W; — Li+ni Ly =W; + ———L; <W; + — *(xl)
1125 i 1125 The
(W; — L)z (1 + 26) 1+ 26
< W, i < Wi(l)
= Wit xf (e —20) - +€725
Therefore, we have v; = % > pz'l(ivgj"). O

Lemma 13. For every job J; with the assignment n;, D; and I;, Job J; can
meet its deadline D;, if it is executed by S for at least x; time steps in I; (on n;
dedicated processors).

Lemma 14. For every job J;, x;(1 + 20) < x}.

Proof. Note that L; < %ﬂDi by requirement of potential assignment. Since

n; = L*LL , we have ;(1426) = (Wi=ti 4 1;)(1426) < (o —Li+Li) (1+420) =
Tte i

(1 +26) < a7 0

Lemma 15. At any time step t during the execution and for any density range
[v, cv), the total number of cores required by all the jobs J; € J(t) (that have been
assigned to t) with density v < v; < cv is no more than bm, i.e. N (J(t),v;, cv;) <
bm.

5.2 Bounding the Profit of Jobs S Completes

Similar to Sect. 3.3, we bound the profit of jobs completed by scheduler S com-
pared to the profit of all jobs. Let J denote the set of jobs arrived during the
execution, C' denote the set of jobs that actually complete before their deadlines
assigned by S, and U = J \ C be the set of jobs that didn’t finish by their
deadlines assigned by S. We say job J; (and its assigned processors during exe-
cution) is v-dense, if its density v; > v. For any set A of jobs, define ||A|| as
> 7.caPi(D;), the sum of the profits of jobs in the set under S.

Lemma 16. For a job J; € J \ C that does not complete by its deadline, the
number of time steps in I; where S runs cv;-dense jobs using at least (1 — b)m
processors is at least dx;.

772 K. Agrawal et al.

Proof. From Lemma 13, we know that job J; can complete if it can execute
for x; time steps by S. Also note that according to the assignment process
(1 +0)z; = ||I;]|, where ||I;|| is the number of time steps assigned to J; during
[ri,r; + D;]. Since it does not complete by its deadline, there are at least dx;
time steps in I; where S does not execute J;. Consider each of these time steps
t. According to Lemma 15, jobs in J(t) with density in range [v;, cv;) require at
most N (J(t),v;, cv;) < bm processors to execute. Therefore, there must be at
least (1 — b)m processors executing cv;-dense jobs. Otherwise, S would execute
all jobs in A (J(t), v, cv;), which includes job J;. O

Lemma 17. ||C| > (e — ﬁ) 71

The proof is similar to that of Lemma5 and is omitted for brevity.

5.3 Bounding the Profit of Jobs OPT Completes

Similar to Sect. 3.4, we will now bound the profit of the jobs OPT completes.
We are first going to consider the number of processor steps OPT spends on
jobs that S finishes later than OPT. For these jobs, we assume that S makes no
profit since the profit function may become 0 as soon as OPT finishes it. Our
high level goal is to first bound the total number of processor steps OPT spends
on these jobs, which will allow us to bound OPT’s profit. This section of the
proof differ greatly from the throughput case.

We begin by showing that if not too many processors are executing “-dense
jobs then all such jobs must be currently processed under S.

Lemma 18. Consider a job J; and a time t* < D;. For any time stept € [r;, r;+
t*]\1; (that is not added to I; by S), the total number of processors required by -
dense jobs in J(t) must be more than b(1—b)m, i.e., N(J(t), %, 00) > b(1—b)m.
Proof. Because t € [r;,r; +t*] \ I; and t* < D;, we know that time step ¢ is
before D;.

Since t is not added to I;, it must be the case that for some density v; €
(%,v;], the required condition is not true, i.e., N (J(t) U{J;},vj,cv;) > bm.
Note that v; must be in the range (%, v;]. This is because without assigning .J;
to time step ¢ it is true that N (J(t),v;, cv;) < bm according to S, therefore J;
must have a density within the range of [v;, cv;) in order to make impact.

By Lemma 11, we know that n; < b>m. Thus, we have

N (J(t),vj,cv;) = N (J(t) U{J;}, v, c0;) —ng > bm — b?m = b(1 — b)m

Therefore, we obtain N (J(t), %, 00) > N (J(t),vj,cv;) > b(1 — b)m. O

Let O be the set of jobs completed by OPT. For each job J; € O, let d be
the difference between J;’s completion time and arrival time under OPT; the
profit of J; under OPT is p;(d). According to the assumption in Theorem 3, we
know that if d < 7, then p;(d) = p;(z}) for some z} > (Wili 4 [;)(1 + ¢).
Therefore, we can assume that OPT assigns a relative deadline D} to J;, where
Dy = max{d, z}}. Thus, OPT obtains a profit of p;(d) = p;(D}).

Scheduling Parallelizable Jobs Online to Maximize Throughput 773

Lemma 19. Consider a job J; such that D; assigned by scheduler S is larger
than the deadline D} assigned by OPT, i.e., D; > D}, the number of time steps
during [ri,m; + D}) where scheduler S is actwely executing “*-dense jobs on at

least b(1 — b)m cores is at least 1+25D*

Proof. By definition of D} and Lemma 14, we know that D} > z7.

Consider the number of time steps in time interval [r;, r; + D] that are added
to I;, it must be less than (149) (% + Li) = (140)z;; otherwise, D} would
be a valid deadline under scheduler S with higher profit. Therefore, the number
of time steps in [r;,7; + Df] \ I; is more than D} — (14 6)x; > D} — %xj >
Dy - %sz - 1-325D*

By Lemma 18, we know that for each time step t € [r;,r; + D} \ I;, the
total number of processors required by “-dense jobs in J(t) must be more than
b(1 — b)m. Therefore, there must be at least b(1 — b)m cores executing “-dense
jobs under scheduler S at time step ¢ and the number of such steps is at least
1-325 Dy =

Among the jobs in O, let O; be the set of jobs that the deadline D; assigned
by scheduler S is no larger than that assigned by OPT, i.e., D; < D} < oo.
In other words, the obtained profit of these jobs under scheduler S is no less
than that under OPT, i.e., p;(D;) > p;(D}), since the profit function p;(t) is
non-increasing. Let Oy be the remaining jobs Oy = O\ O;. Let || X||" be the
total profit that OPT obtains from jobs in X and || X|| be the total profit that
S obtains from jobs in X. For jobs in Oy, we have ||O1]|" < ||O4]|.

For an arbitrary set of jobs £ and any v > 0 let Tp(v,E) denote the total
work processed by the optimal schedule for the jobs in £ that are v-dense. Let
0B; denote the total number of time steps where S is actively processing job J;.
By definition, we have 3; < {%. We similarly let T's(v, &) be the summation of
Bin; over all jobs i in £ that are v-dense. Note that this counts the total number
of processor steps S executes jobs in £ that are v-dense over all time.

Now we are ready to bound the time that OPT spends on jobs Oy that
scheduler S obtains less profit than OPT.

Lemma 20. Consider a job J; in O, the deadline D; assigned by scheduler
S is longer than deadline D} assigned by OPT. For all v > 0, To(v,03) <
Srig Ts (2. 7)-

Proof. For any job J; € Oz, we denote the lifetime of J; under OPT as the time
interval [r;, r;+ D), where D7 is the deadline assigned by OPT. For any density
v > 0, let [be the number of time steps of the union of the lifetimes of all jobs
in A(O3,v,00). By definition, Tp (v, O2) < Im, since OPT can execute them on
at most m processors.

Let M C Oy be the minimum subset of O, that the union of the lifetimes
of jobs in M covers the same time intervals of jobs in Os. By the minimality
of M, we know that at any time ¢, there are at most two jobs in M that cover
time t. Therefore, we can further partition M into two sets My and Ms, where

774 K. Agrawal et al.

for any two jobs in M; or any two jobs in Ma, their lifetimes do not overlap.
By definition, either M; or My has a union lifetime that is at least {/2 and we
assume WLOG it is M;.

Consider J; € M; and let k; be the number of time steps during its lifetime
[ri,7i + Dj) where scheduler S is actively executing “-dense jobs on at least
b(1 —b)m cores. By Lemma 19, we know &k > 1JF%D Therefore during [r;, r; +
Dy) the number of processor steps where S is processing “*-dense jobs is at least
b(1 — b)mH%D*

Let K =) a1, ki, be the total number of processor steps where S is processing
2-dense jobs (since v; > v) during the intervals in M;. Thus, by definition,

Sb(1 — b) L =b) L 8b(1-b)

>——=m Y Df>———mx o>
1+25 e 1426 2 = 2(1+ 20)

To(v,Oz)

Clearly, by adding additional intervals that are not in M;j, we have

Ts(%,7) > K > 32’&223 o(v, 02), which gives us the bound. O

Lemma 21.

« " " 1+26 1.2(1+26
101 = [lox]" + 02l <(1+<1+ ()>||J|

5t S i)

Proof. First, by the definition of O; and O, we have ||O|* = ||O1]|" + ||O2|*
and ||O1||" < [|01]| < ||7]|- Now it remains to bound ||Os]].

We have Tp(v,02) < ggtﬁg;Ts(%,j) from Lemma 20 for all densities v.
The remaining proof for the lemma is similar to that in Lemma9, except for
a different constant. Therefore, |Oz]|" < (1 + ifgg)ci&fg) |7]|- Taking the

summation of ||O1]|" + ||Oz||* completes the proof. O

Finally we are ready to complete the proof, bounding the profit OPT obtains
by the total profit the algorithm obtains for jobs it completed.
1+ac

LB oy,

Lemma 22. HCOH < m_—

Proof. This is just by combination of Lemmas 17 and 21. O

6 Conclusion

Scheduling jobs online to maximize throughput is a fundamental problem, yet
there has been little study of this topic when jobs are parallelizable and repre-
sented as DAGs. We give the first non-trivial result showing that a scheduling
algorithm is provably good for maximizing throughput. In addition, we extend
the result and give an algorithm for the general profit scheduling problem with
DAG jobs.

There are several directions for future work. First, we want to design and
implement more practical schedulers that have similar theoretical performance

Scheduling Parallelizable Jobs Online to Maximize Throughput 775

but are work-conserving and require fewer preemptions. Second, in this paper
we focus on semi-non-clairvoyant algorithms that do not have any knowledge of
the internal structure of the DAG. This lets us to provide very general results.
However, it is possible that by using the internal structure one could design
algorithms with better performance for some special DAG structures. Finally,
we are also interested in exploring whether fully non-clairvoyant algorithms can
have comparable performance for throughput.

References

10.

11.

12.

13.

14.

15.

16.

OpenMP: OpenMP Application Program Interface v4.0, July 2013. http://www.
openmp.org/mp-documents/OpenMP4.0.0.pdf

Intel: Intel CilkPlus, September 2013. https://www.cilkplus.org/

Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O'Reilly Media, Inc., Sebastopol (2010)

Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++:
Design Patterns for Decomposition and Coordination on Multicore Architectures.
Microsoft Press, Redmond (2011)

Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E.,
Shasha, D., Wang, F.: On the competitiveness of on-line real-time task scheduling.
Real-Time Syst. 4(2), 125-144 (1992)

Baruah, S.K., Koren, G., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D.,
Wang, F.: On-line scheduling in the presence of overload. In: Symposium on Foun-
dations of Computer Science, pp. 100-110 (1991)

Koren, G., Shasha, D.: Dover: an optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318-339 (1995)
Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5-16 (1994)

Kalyanasundaram, B., Pruhs, K.: Fault-tolerant real-time scheduling. Algorithmica
28(1), 125-144 (2000)

Koren, G., Shasha, D.: MOCA: a multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci. 128(1&2), 75-97 (1994)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202-208 (1985)

Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617-643 (2000)

Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date schedul-
ing. Algorithmica 59(4), 569-582 (2011)

Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Serna,
M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM 2010. LNCS,
vol. 6302, pp. 352-365. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15369-3_27

Im, S., Moseley, B.: General profit scheduling and the power of migration on hetero-
geneous machines. In: Symposium on Parallelism in Algorithms and Architectures
(2016)

Lucier, B., Menache, 1., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs: extended abstract. In: 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2013, pp. 305-314 (2013)

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://www.cilkplus.org/
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27

776

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. Agrawal et al.

Saifullah, A.; Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.D.: Parallel real-time
scheduling of dags. IEEE Trans. Parallel Distrib. Syst. 25(12), 3242-3252 (2014)

Li, J., Chen, J.-J., Agrawal, K., Lu, C., Gill, C.D., Saifullah, A.: Analysis of feder-
ated and global scheduling for parallel real-time tasks. In: ECRTS 2014, pp. 85-96
(2014)

Agrawal, K., He, Y., Hsu, W.J., Leiserson, C.E.: Adaptive task scheduling with
parallelism feedback. In: Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP) (2006)

Agrawal, K., He, Y., Leiserson, C.E.: Adaptive work stealing with parallelism feed-
back. In: Proceedings of the Annual ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), March 2007

He, Y., Hsu, W.-J., Leiserson, C.E.: Provably efficient online non-clairvoyant adap-
tive scheduling. In: IPDPS (2007)

Ma, L., Chamberlain, R.D., Agrawal, K.: Performance modeling for highly-
threaded many-core GPUs. In: Proceedings of the International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 84-91,
June 2014

Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallel DAG jobs online
to minimize average flow time. In: Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, pp. 176-189 (2016)

Robert, J., Schabanel, N.: Non-clairvoyant scheduling with precedence constraints.
In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, pp. 491-500 (2008)

Baruah, S.: Improved multiprocessor global schedulability analysis of sporadic
DAG task systems. In: 26th Euromicro Conference on Real-Time Systems, ECRTS
2014, Madrid, Spain, 8-11 July 2014, pp. 97-105 (2014)

Baruah, S.: Federated scheduling of sporadic DAG task systems. In: 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyder-
abad, India, 25-29 May 2015, pp. 179-186 (2015)

Baruah, S.: The federated scheduling of systems of conditional sporadic DAG tasks.
In: 2015 International Conference on Embedded Software, EMSOFT 2015, Ams-
terdam, Netherlands, 4-9 October 2015, pp. 1-10 (2015)

Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling
of systems of conditional sporadic DAG tasks. In: 27th Euromicro Conference on
Real-Time Systems, ECRTS 2015, pp. 222-231 (2015)

Baruah, S.: The federated scheduling of constrained-deadline sporadic DAG task
systems. In: Proceedings of the 2015 Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2015, pp. 1323-1328 (2015)

Li, J., Agrawal, K., Lu, C., Gill, C.: Analysis of global EDF for parallel tasks. In:
ECRTS (2013)

Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., Wiese, A.: Feasibility analysis
in the sporadic DAG task model. In: ECRTS (2013)

Svensson, O.: Conditional hardness of precedence constrained scheduling on iden-
tical machines. In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, pp. 745-754 (2010)

	Scheduling Parallelizable Jobs Online to Maximize Throughput
	1 Introduction
	2 Preliminaries
	3 Jobs with Deadlines
	3.1 Algorithm
	3.2 Properties of the Scheduler
	3.3 Bounding the Profit of Jobs S Completes by All Jobs Started by S
	3.4 Bounding the Profit of Jobs OPT Completes by All Jobs Started by S

	4 Examples
	5 Jobs with General Profit Functions
	5.1 Properties of the Scheduler
	5.2 Bounding the Profit of Jobs S Completes
	5.3 Bounding the Profit of Jobs OPT Completes

	6 Conclusion
	References

