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Abstract. Cardiac magnetic resonance imaging (CMRI) provides high
resolution images ideal for assessing cardiac function and diagnosis of
cardiovascular diseases. To assess cardiac function, estimation of ejection
fraction, ventricular volume, mass and stroke volume are crucial, and the
segmentation of left ventricle from CMRI is the first critical step. Fully
convolutional neural network architectures have proved to be very effi-
cient for medical image segmentation, with U-Net inspired architecture
as the current state-of-the-art. Generative adversarial networks (GAN)
inspired architectures have recently gained popularity in medical image
segmentation with one of them being SegAN, a novel end-to-end adver-
sarial neural network architecture. In this paper, we investigate SegAN
with three different types of U-Net inspired architectures for left ventricle
segmentation from cardiac MRI data. We performed our experiments on
the 2017 ACDC segmentation challenge dataset. Our results show that
the performance of U-Net architectures is better when trained in the
SegAN framework than when trained stand-alone. The mean Dice scores
achieved for three different U-Net architectures trained in the SegAN
framework was on the order of 93.62%, 92.49% and 94.57%, showing
a significant improvement over their Dice scores following stand-alone
training - 92.58%, 91.46% and 93.81%, respectively.

Keywords: Image Segmentation - Deep Learning · Cine Magnetic Res-
onance Image · Cardiac Image Analysis · Left Ventricle Segmentation.

1 Introduction

Cardiac magnetic resonance imaging (CMRI) is considered as the benchmark for
analysis of the cardiac function and quantification of the ventricular volume [6].
The analysis of the function of the ventricles, described by their ejection fraction
(EF), stroke volume, mass and wall thickness are crucial in clinical cardiology
for diagnosis, evaluating risks and planning therapy [2] [14]. In particular, the
function of left ventricle is a very good predictor of myocardial damage, cardiac
failure, etc. Therefore, accurate and robust segmentation of left ventricle from
the MRI data plays an important role in a large number of cardiac problems.

Manual segmentation can be a very laborious task prone to significant user
variability. Therefore, semi-automatic or fully automated segmentation methods
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Fig. 1. SegAN Architecture Inspired from GAN [15]

would be very useful to cardiologists in the decision making process [8]. Some of
the challenges in automated segmentation of the left ventricles are delineation
between the myocardium of the left ventricle and other surrounding chambers,
high contrast plus brightness heterogeneity in the ventricular cavity due to the
presence of blood, the presence of papillary muscles, noise due to motion arti-
facts, and the variable structure of the heart [2].

A number of methods for automatic segmentation of the left ventricle from
MRI images have been proposed. Traditional algorithms such as thresholding,
edge detection, region growing, clustering, etc., were proposed initially [8]. These
algorithms work decently for mid-ventricle slices, but often fail in the basal and
apical slices. Also, they require considerable user-intervention. In graph based
segmentation algorithms [7], graphs are created and a cost is assigned to each
pixel or node. A minimum cost path is found using a graph searching algorithm to
segment the left ventricle. These methods fail in complex cardiac structures, like
papillary and trabecular muscles (PTMs). In [11], active shape models (ASM)
are used to segment the left ventricles using the energy minimization of rigidity
and elasticity internally, and edges externally. It is difficult to segment left ven-
tricle from low contrast images using ASMs. In spite of all these research in left
ventricle segmentation from MRI images, the accuracy of existing algorithms is
not sufficient for clinical applications.
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With the increase in popularity of deep learning due to the availability of
resources for training, medical image segmentation has benefited immensely.
Convolutional neural networks (CNNs) work outstandingly well for image clas-
sification where the output of the CNN to an image is a class label. The avail-
ability of large number of CMRI images enabled the use of deep learning for left
ventricular segmentation. Several international challenges have been organized
in the past few years to develop and evaluate segmentation algorithms for both
ventricles [13], [12], [9]. The top ten results of the 2017 automated cardiac diag-
nosis challenge (ACDC) have all used CNNs for segmentation of the ventricles
[2].

Ronneberger et al. [10] proposed U-Net, an elegant network architecture using
fully convolutional network. U-Net is void of any fully connected layers and the
convolutional layer labels each pixel in the image allowing segmentation with
fewer training images [10].

Generative adversarial networks (GAN) [3] are becoming increasingly popu-
lar for medical image segmentation as training these generative models enable
latent representations, which can serve as useful features. Eule et al. [4] show
that segmentation of epithelial tissue using cycle-GAN outperforms the state-of-
the-art U-Net. Xue et al. [15] proposed a GAN inspired end-to-end architecture,
called segmentation adversarial network (SegAN), for semantic segmentation.
They achieved better Dice score and precision compared to the state-of-the-art
U-Net architecture in the segmentation of the MICCAI BRATS (2013 and 2015)
brain tumor segmentation challenge [15].

In this paper, we combine three U-Net models with SegAN adversarial ar-
chitecture to segment the left ventricle on the 2017 automated cardiac diagnosis
challenge (ACDC) dataset. The objective of this paper is to test if SegAN, when
combined with different U-Net architectures, produces better segmentation re-
sults than when stand-alone U-Net architectures are trained.

2 Methodology

Inspired by GAN, Xue et al. have come up with SegAN, an adversarial net-
work that has two networks, segmentor and critic, analagous to generator and
discriminator in GAN, respectively. The segmentor, a fully convolutional neural
network, takes in raw images as input and outputs a probability label map. The
critic network, which is the encoder part of the fully convolutional neural net-
work needs two inputs - the masked image by the ground truth labels and the
masked image by predicted labels obtained from the segmentor. The aim of the
segmentor network is to minimize the L1 loss function and that of critic network
is to maximize the L1 loss function [15].

2.1 Conventional GAN Models

In GANs, the loss function is defined as -

min
θG

max
θD

L(θG, θD) = Ex∼Pdata
[logD(x)] + Ez∼Pz

[log(1−D(G(z)))]. (1)
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In the above equation, θG and θD are the parameters of generator G and dis-
criminator D, respectively. x and z are real image from unknown distribution
Pdata and random input for G from probability distribution Pz, respectively.
The generator G outputs a high dimensional vector which is the input to the
discriminator D. The discriminator D is trained to maximize the probability of
assigning the correct label to the training data and the data generated from G.
The generator G is simultaneously trained to minimize the objective function
log(1−D(G(z))) to generate images that are difficult to differentiate for D [3].
The aim of the generator is to produce images that are as similar as possible
to the real image and the aim of the discriminator is to successfully distinguish
between the real image and the fake image produced by the generator.

2.2 Loss Function in SegAN

In SegAN, the aim is to solve the mapping between input images and their
segmentation masks. The loss function L for SegAN is given by -

min
θS

max
θC

L(θS , θC) =
1

N

N∑
n=1

lmae(fC(xn ◦ S(xn)), fC(xn ◦ yn)). (2)

In this equation, θS and θC are the parameters of segmentor S and critic C,
respectively and N represents the number of training images. (xn ◦ S(xn)) and
(xn ◦ yn) are input images masked with segmentor predicted label map and
ground truth, respectively. fc(x) are the features extracted from image x by
critic and lmae is the mean absolute error (MAE) given by -

lmae(fC(x), fC(x′)) =
1

L

L∑
i=1

||f iC(x)− f iC(x′)||1, (3)

with L representing the number of layers in the critic network [15].
The segmentor and critic networks are trained alternatively, just like GAN.

The difference between GAN and SegAN is that GAN has two seperate losses
for generator and discriminator, while, the SegAN has only one multi-scale L1

loss funtion for both segmentor and critic.

2.3 Segmentor and Critic

We use three different segmentor networks to predict the segmented mask and
compare their results. The first one is the original U-Net [10]. The second one
is a U-Net architecture with skip connection used in [15] (U-Net A). The third
segmentor used is a modified version of the U-Net architecture inspired from
[5] (U-Net B). The input to all these three networks are raw images and the
output is a predicted mask.

For the critic network, we used a similar structure to the downsampling part
of the corresponding segmentor network to extract hierarchical features from
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multiple layers of the network. We then concatenated all these features extracted
across multiple layers and computed the overall L1 loss using the concatenated
feature vector [15]. The input to the critic network are two images - input image
masked with predicted class map and input image masked with the ground truth
class map; and output is a feature vector.

2.4 Training U-Net and SegAN Models

Our experiments involve three different U-Net architectures - the original U-Net
from [10], the encoder-decoder network used as segmentor in [15] (U-Net A),
and a modified U-Net inspired from [5] (U-Net B), which is the current state-
of-the-art for left ventricle segmentation in the ACDC 2017 dataset. The U-Net
models are trained with cross entropy loss function. We experimented with Dice
loss but cross entropy loss gave us better results. This is supported by results in
[1], too.

The segmentor and the critic network are trained alternately using back-
propagation and the loss function. First, the segmentor outputs a predicted
class map. Then, the segmentor is fixed and the critic is trained in the next step
using gradients calculated from the loss function. After that, the critic is fixed
and the segmentor is trained using gradients from the loss function passed to
the segmentor from the critic [15]. As explained in GANs, this process resembles
a min-max game, where the segmentor aims to minimize the loss and the critic
tries to maximize it. Provided additional data and more epochs, the segmentor
will produce segmented masks i.e. labelled maps that are similar to the ground
truth. For each U-Net model we use as segmentor, we use the encoder part of
that particular U-Net model as critic.

We train the U-Net and SegAN models by resizing each slice to a 224x224
image and feeding it into the network with a learning rate of 0.0008, a batch size
of 8, a decay of 0.5, a beta value of 0.5, one GPU and 50 epochs.

2.5 Dataset

The Automated Cardiac Diagnosis Challenge (ACDC) dataset was released
during the MICCAI 2017 conference in conjunction with the STACOM work-
shop. The images were acquired using two different MRI scanners with different
magnetic strength - 1.5 T and 3.0 T. The short axis slices cover the left ventricle
from base to apex such that we get one image every 5 mm to 10 mm. A complete
cardiac cycle is usually covered by 28 to 40 images. Their spatial resolution is
1.37 to 1.68 mm2/pixel [2]. The training dataset is composed of 100 subjects
and the test dataset is composed of 50 subjects.

The image dataset corresponding to each subject consists of two image vol-
umes, one at end-diastole and one at end-systole, with each containing 10 slices,
therefore leading to a total of 1, 902 images. Since we do not have the ground
truth for the 50 test subjects, we divide the training dataset into 80 subjects for
training and 20 subjects for validation. The Dice score and the IoU in this paper
are the result of 5-fold cross validation of the training dataset.
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Table 1. Segmentation evaluation, mean (std-dev) for end diastole (ED) and end sys-
tole (ES) left ventricle segmentation in the 2017 ACDC dataset. Statistical significance
(T-test) of the results of SegAn architecture compared against U-Net models are repre-
sented by * for p < 0.1 and ** for p < 0.05. The best Dice values achieved are labeled
in bold.

Dice (ED) (%) IoU (ED) (%) Dice (ES) (%) IoU (ES) (%)

U-Net 93.41 (4.23) 87.25 (3.12) 91.75 (2.26) 83.64 (4.01)

SegAN + U-Net 94.71 (1.24)** 89.55 (2.46)** 92.54 (3.89) 84.91 (5.75)

U-Net A 92.62 (2.75) 85.27 (1.81) 90.30 (7.11) 81.58 (5.60)

SegAN + U-Net A 93.88 (2.86)* 88.54 (1.12) 91.10 (4.15)* 82.74 (5.71)

U-Net B 94.91 (2.40) 91.55 (3.23) 92.72 (4.71) 87.44 (3.81)

SegAN + U-Net B 95.87 (1.71)** 92.94 (3.27)* 93.14 (2.56)* 88.94 (3.92)

Fig. 2. Comparison of (a) mean Dice scores and (b) mean IoU values U-Net models
and its corresponding SegAN architecture

3 Experiments and Results

The focus of our experiment is to compare the results of a stand-alone 2D U-Net
architecture with a SegAN architecture. For example, we obtain segmentation
results using U-Net [10] with cross entropy loss as cost function. Then, we use this
U-Net [10] as segmentor and the downsampling part of the U-Net as critic in the
SegAN architecture with multi-scale L1 loss as cost function. The results of these
two networks are compared to determine if the SegAN architecture improves the
segmentation results of the U-Net model. Experiments are performed with three
variants of 2D U-Net architectures - an original U-Net [10], the encoder-decoder
network used as segmentor in [15] (U-Net A) and a modified U-Net inspired
from [5] (U-Net B), the current state-of-the-art for left ventricle segmentation
in the ACDC 2017 dataset.
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Fig. 3. Examples of segmentation of the left ventricle in mid, apical and basal slice (top
to bottom). The white, red and blue regions represent true positives, false positives
and false negatives, respectively.

Table 1 summarizes the segmentation performance of the investigated frame-
works with and without the SegAN integration. The results are obtained using
80% of the training subjects as training dataset and the 20% of the training
subjects as validation dataset.

In Table 1, we can observe that the mean Dice scores and mean IoU values
of the three SegAN architectures are higher than their corresponding U-Net
models. To compare the performance the three stand-alone U-Net models with
their SegAN frameworks, we conducted a statistical significance (T-test) test.
The mean Dice score showed significant improvement (p < 0.05) from 93.41%
(U-Net) to 94.71% (SegAN + U-Net), (p < 0.1) from 92.62% (U-Net A)
to 93.88% (SegAN + U-Net A) and (p < 0.05) from 94.91% (U-Net B)
to 95.87% (SegAN + U-Net B) in end diastole, and (p < 0.1) from 90.30%
(U-Net A) to 91.10% (SegAN + U-Net A) and (p < 0.1) from 92.72% (U-
Net B) to 93.14% (SegAN + U-Net B) in end systole. The mean IoU values
showed significant improvement (p < 0.05) from 87.25% (U-Net) to 89.55%
(SegAN + U-Net) and (p < 0.1) from 91.55% (U-Net B) to 92.94% (SegAN
+ U-Net B) in end diastole

The highest mean Dice score and mean IoU in our experiments are obtained
using the SegAN architecture with U-Net B as its segmentor network and the
U-Net B’s encoder as the critic network. The SegAN + U-Net B outperforms
U-Net by 2.46% (Dice) in end diastole and 1.40% in end systole.

In Fig. 2, it can be observed that the segmentation performance of SegAN
frameworks (shown in red) is better than the performance of the correspond-
ing stand-alone U-Net architectures (shown in blue). When we use these U-Net
models as segmentor, we see significant improvement in both Dice score and IoU,
for ED and ES.

Fig. 3 shows examples of mid, apical and basal slices of the heart and the
corresponding segmented masks using the six architectures. The white regions
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represent the overlap between the ground truth mask and the tested mask. The
red and blue regions represent the false positive (pixels predicted as left ventricle
by the tested algorithm, but not annotated in the ground truth), and false nega-
tive (pixels not predicted as left ventricle by the tested algorithm, but annotated
in the ground truth) regions, respectively.

4 Discussion

In this paper, the integration of three different U-Net models into the SegAN
framework is evaluated on the 2017 ACDC segmentation challenge dataset. Our
goal was to investigate if the SegAN framework improves the segmentation per-
formance of U-Net models. Our experiments reveal that U-Net models, when
trained in the SegAN framework, produces significantly better segmentation re-
sults than when trained stand-alone, consistently. The features extracted across
multiple layers of the critic network and concatenated into the feature vector
used to compute the multi-scale L1 loss captures pixel-, low-, mid- and high-
level features. This multi-resolution approach to feature extraction enables the
SegAN model to learn the dissimilarities between the generated and the ground
truth segmentation maps across the multiple layers of the critic network.

We use cross entropy loss as cost function for training U-Net models. We
also experimented with training all three U-Net variants with a Dice loss cost
function, however the results indicated a consistently lower performance than
that achieved using cross entropy loss. We also experimented with multi-scale
L2 loss as cost function for training the SegAN models, however, the results
were not very consistent. Further investigation with multi-scale L2 loss as cost
function will be conducted, to determine if it can outperform multi-scale L1 loss
as cost function.

To evaluate our method, we used a 5-fold cross-validation strategy, in which
we employed five different combinations of 80 training and 20 testing datasets
from the available 100 datasets. This is a common approach used to validate
novel deep learning techniques, as it enables testing the robustness of the method
across different training datasets, while also removing the bias associated with
a single 80 training - 20 testing data split.

One of the disadvantage of SegAN is that it needs more computational time
than the stand-alone U-Net models. It takes around 110 seconds to run each
epoch of a regular U-Net model, but when the same U-Net model is used in the
SegAN framework, it needs around 320 seconds.

5 Conclusion and Future Work

SegAN is a promising algorithm that was recently shown to outperform the
current state-of-the-art methods in brain tumor segmentation [15]. Moreover,
in this work we showed that the SegAN integration alongside three different
U-Net variants led to significant improvement in Dice score for left ventricle
segmentation.
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In light of the improved performance of the SegAN addition in both brain
tumor and left ventricle segmentation, further investigation into these methods
and their further refinement is justified. As such we will employ the current
state-of-the-art methods from the leaderboard of the 2017 ACDC segmentation
challenge as segmentor and show their performance using adversarial regular-
ization. One of the variants of SegAN that we would like to experiment in our
future work would be to use cross entropy loss as cost function for training the
segmentor and multi-scale L1 loss to train the critic network, instead of using
only the multi-scale L1 loss for both segmentor and critic.

Lastly, we will also aim to answer the question whether this adversarial reg-
ularization method may improve the segmentation results of any fully convolu-
tional network when employed as a segmentor along with a critic network.
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