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ABSTRACT

Vibratos, tremolos, trills, and flutter-tongue are techniques
frequently found in vocal and instrumental music. A com-
mon feature of these techniques is the periodic modulation
in the time—frequency domain. We propose a representa-
tion based on time—frequency scattering to model the inter-
class variability for fine discrimination of these periodic
modulations. Time—frequency scattering is an instance of
the scattering transform, an approach for building invari-
ant, stable, and informative signal representations. The
proposed representation is calculated around the wavelet
subband of maximal acoustic energy, rather than over all
the wavelet bands. To demonstrate the feasibility of this
approach, we build a system that computes the represen-
tation as input to a machine learning classifier. Whereas
previously published datasets for playing technique analy-
sis focus primarily on techniques recorded in isolation, for
ecological validity, we create a new dataset to evaluate the
system. The dataset, named CBF-periDB, contains full-
length expert performances on the Chinese bamboo flute
that have been thoroughly annotated by the players them-
selves. We report F-measures of 99% for flutter-tongue,
82% for trill, 69% for vibrato, and 51% for tremolo detec-
tion, and provide explanatory visualisations of scattering
coefficients for each of these techniques.

1. INTRODUCTION

Expressive performances of instrumental music or singing
voice often abound with vibratos, tremolos, trills, and
flutter-tongue. A common feature of these four playing
techniques is that they all result in some periodic mod-
ulation in the time—frequency domain. However, from a
musical standpoint, these techniques convey distinct stylis-
tic effects. Discriminating between these spectrotempo-
ral patterns requires a compact and informative represen-
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tation that remains stable to time shifts, time warps, and
frequency transpositions. Time—frequency scattering [2]
provides such mathematical guarantees. Besides the local
invariance to translation and stability to deformation pro-
vided by the scattering transform [1, 10], time—frequency
scattering goes further by applying frequential scattering
along the log-frequency axis. This operation provides in-
variance to frequency transposition and captures regularity
along log-frequency dimension.

Prior work in the representation of vibrato and tremolo
can be divided into three broad categories: Fy-based rep-
resentations [4, 14,20], template-based techniques [5], and
modulation spectra [13, 15, 17]. The error-prone stage of
fundamental frequency estimation hinders the performance
of Fp-based methods. Template-based methods may work
for vibratos with a large modulation extent (frequency vari-
ation), while for subtly-modulated vibratos, both the def-
inition of templates and the matching between templates
and test segments are problematic. The modulation spec-
tra is another well-known representation for modulated
sounds, which is averaged on the audio clip level [17]. It
may work well for long-term music information retrieval
tasks such as genre classification or instrument recog-
nition, but struggling with providing temporal positions
for short-duration playing technique recognition. To our
knowledge, there is not yet any computational research that
compares and discriminates between these periodic modu-
lations in real-world music pieces.

Besides the question of coming up with an adequate
signal representation, there is a critical need for human-
annotated playing techniques in audio recordings. Up to
now, most of the available research literature has focused
on playing techniques that have been recorded in highly
controlled environments [8, 16, 19]. Yet, recent findings
demonstrate that, in the context of a music piece, play-
ing techniques exhibit considerable variations as compared
to when they are played in isolation [18]. For periodic
modulations, these variations are more evident in folk mu-
sic, which highly depends on the interpretation of the per-
former. Such inter-performer variability in folk music per-
formance necessitates data collection with full pieces.

This paper includes three contributions: representa-
tion, application, and dataset. We propose a representa-
tion based on time—frequency scattering to model the inter-



class variability for fine discrimination of vibrato, tremolo,
trill, and flutter-tongue. Rather than decomposing all the
wavelet bands as the scattering transform, we calculate a
time—frequency scattering around the wavelet subband of
maximal acoustic energy, i.e. the transform is calculated
adaptively on the predominant frequency. On the applica-
tion side, to our knowledge this is the first attempt at cre-
ating a system for detecting and classifying periodic mod-
ulations in music signals. To evaluate our methodology,
we create a dedicated dataset of the Chinese bamboo flute,
also known as the dizi or zhudi, and thereafter abbreviated
as CBF. This dataset, named CBF-periDB, contains full-
length solo performances recorded by professional CBF
players and has been thoroughly annotated by the players
themselves.

The rest of this paper is organised as follows. The char-
acteristics of each periodic modulation and how this infor-
mation can be represented by an adaptive time—frequency
scattering are described in Section 2. Section 3 shows
details of the feature extraction process and the proposed
recognition system. The dataset, evaluation methodology,
and results are discussed in Section 4. Section 5 presents
our conclusions and directions for future research.

2. SCATTERING REPRESENTATION OF
PERIODIC MODULATIONS

Prior to discriminating between the four periodic modu-
lations, we analyse characteristics of each modulation in
Section 2.1. A short introduction of the scattering trans-
form is provided in Section 2.2. Section 2.3 describes
the proposed representation for modelling periodic mod-
ulations.

2.1 Characteristic Statistics of Periodic Modulations

The characteristic statistics of each modulation in discus-
sion are shown in Table 1. As can be seen, flutter tongu-
ing has a much higher modulation rate as compared to the
other three modulations; thus, the modulation rate can be
used as a main feature to distinguish it from others. For
the other three techniques with similar modulation rate,
the discriminative information lies in the modulation ex-
tent and shape of the modulation unit. The modulation unit
refers to the unit pattern that repeats periodically within the
modulation. It can be one-dimensional, either amplitude
modulation (AM) or frequency modulation (FM), or two-
dimensional as a spectro-temporal modulation. This can
be intuitively observed from the partially enlarged spec-
trograms given in Fig. 1. Trills are note-level modula-
tions, for which the frequency variations are larger than
one semitone. This extent of modulation is much larger
than vibratos and tremolos. The shape of the modulation
unit for trill is more square-like rather than sinusoidal ones
which vibratos and tremolos exhibit. The difference be-
tween vibrato and tremolo is that vibratos are FMs, while
tremolos are AMs. We show later how this discriminative
information is encoded into the proposed representation in
Section 2.3.

Type Rate (Hz) Extent Shape
Flutter-tongue 25-50 < 1 semitone  Sawtooth-like
Vibrato 3-10 < 1 semitone  Sinusoidal (FM)
Tremolo 3-8 = 0 semitone Sinusoidal (AM)
Trill 3-10 Note level Square-like

Table 1. Characteristic statistics of four periodic modula-
tions in music signals.
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Figure 1. Visual comparison of four periodic modulations.
Top: Spectrogram of flutter-tongue, vibrato, tremolo, and
trill; bottom: partially enlarged spectrogram of each mod-
ulation for detailed comparison.

2.2 Scattering Transform

Proposed by [10], the scattering transform is a cascade of
wavelet transforms and nonlinearities. Its structure is sim-
ilar to a deep convolutional network. The difference is that
its weights are not learnt but can be hand-crafted to encode
prior knowledge about the task at hand. Since little energy
is captured by the scattering transform with orders higher
than two [2], we focus in this paper to the second order.

Let v, denote the wavelet filter bank obtained from a
mother wavelet ¢, where A is the centre frequency of each
wavelet in the filter bank. Likewise, 1), refers to the
wavelet filter bank of the m™-order scattering transform,
for m > 1. The second-order temporal scattering trans-
form of a time-domain signal x is defined as:

“xi%J fkd% % o, (H

where * is the wavelet convolution along time. |z x U, |
is the modulus of the m™-order wavelet transform, which
hereafter we refer to as the m"-order wavelet modulus
transform. The temporal scattering coefficients are ob-
tained by an averaging at a time scale 7' by means of a
low-pass filter .

In addition to the invariance to time-shifts and
time-warps provided by the scattering transform, time—
frequency scattering provides frequency transposition in-
variance by adding a wavelet transform along log-
frequency axis [7]. The specific time—frequency scattering
we apply is a separable scattering proposed in [3]. Here,



separable refers to separate steps of temporal and frequen-
tial operations of wavelet scattering, arranged in a cas-
cade. The separable scattering representation comprises a
second-order temporal scattering and a first-order frequen-
tial scattering. The latter is calculated by another wavelet
transform along the log-frequency dimension on top of the
second-order temporal scattering:

fr
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where & is the wavelet convolution along log-frequency.
1., is the wavelet filter bank applied in the first-order fre-
quential scattering. The frequential scattering coefficients
are obtained by an averaging of the frequential wavelet
modulus transform with transposition invariance of I’ (in
octave unit) using a low-pass filter ¢ . All scattering co-
efficients in this paper are normalised and have their log-
arithm calculated, to capture only the temporal structure
and to motivate auditory perception [2]. Hereafter, we
use Morlet wavelets throughout the whole scattering net-
work for wavelet convolutions. This is because Morlet
wavelets have an exactly null average while reaching a
quasi-optimal tradeoff in time—frequency localisation [9].
Our source code is based on the ScatNet toolbox ! .

2.3 Scattering Representation of Periodic
Modulations

Periodic modulation recognition, as suggested by the anal-
ysis above, is a pitch invariant task. The core discrimina-
tive information is based on the modulation itself, which is
indicated by its modulation rate, extent, and shape. Fig. 2
shows respectively (a) the spectrogram, (b) the second-
order temporal scattering representation, and (c) the first-
order frequential scattering representation of a series of pe-
riodic modulation examples in CBF-periDB. The spectro-
gram used here is only for illustration purposes. The first
four examples are regular cases (modulations based on sta-
ble pitch or with constant parameters): vibrato, tremolo,
trill, and flutter-tongue. The last three are cases with time-
varying parameters (modulations based on time-varying
pitch or with time-varying rate, extent, or shape): rate-
changing trill, rate- and extent-changing trill, and flutter-
tongue with time-varying pitch. We use these examples to
show how the characteristic information of each pattern is
captured and discriminated by a separable scattering trans-
form, which consists of a second-order temporal scattering
and a first-order frequential scattering transform.

2.3.1 Second-order temporal scattering

Different from a standard two-order temporal scatter-
ing transform, we do not decompose all the frequency
bands (exchangeable with wavelet bands) in the first-order
wavelet modulus transform. As can be observed from
Fig. 2 (a), the patterns of these modulations, either in the
regular case or time-varying case are similar for each har-
monic partial. This indicates that the decomposition of
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Figure 2. Separable scattering representation of different
periodic modulations. From left to right, the first four are
regular cases: vibrato, tremolo, trill, flutter-tongue based
on stable pitches; the last three are time-varying cases:
rate-changing trill, rate- and extent-changing trill, flutter-
tongue with time-varying pitch.

one partial is sufficient to capture modulation informa-
tion. Fig. 2 (b) shows the second-order temporal scattering
representation decomposed only from the frequency band
with the highest energy. Flutter-tongue is the most discrim-
inable one with the highest modulation rate. For the other
three patterns with close modulation rate value, other char-
acteristic information is considered. By dominant band de-
composition, the trill can also be discriminated because of
its large modulation extent. This can be interpreted by fil-
ters with bandwidth larger than one semitone, which blurs
other subtle modulations.

To specifically detect vibrato or tremolo, frequency
bands less than one semitone should be obtained. We then
make use of their modulation shape information by intro-
ducing a band-expanding technique. Assume we have fre-
quency bands of 1/16 octave bandwidth in the first-order
wavelet modulus transform. Ideally for tremolo, the mod-
ulation information is contained only in the dominant fre-
quency band since it is an AM. This is verified by the sec-
ond example in Fig. 2 (b), which has almost only the fun-
damental modulation rate with no upper harmonics in the
second-order temporal scattering representation. However,
vibratos are FMs, which means the modulation informa-
tion spreads over neighbouring frequency bands. Decom-
posing neighbouring frequency bands above or below the
dominant band provides additional information to distin-
guish vibrato from tremolo. All this discriminative infor-
mation can be visualised from the fundamental modulation
rate and the richness of the harmonics in the second-order
temporal scattering representation in Fig. 2 (b).

2.3.2 First-order frequential scattering

The temporal scattering transform is sensitive to attacks
and amplitude modulations, which results in the high en-
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ergy part of the boundaries as clearly observed in Fig. 2
(b). To suppress this noisy information while retaining the
frequential structure offered by the second-order tempo-
ral scattering, we use frequential scattering along the log-
frequency axis on top of Fig. 2 (b). Frequential scattering
has a similar framework as temporal scattering while the
former captures regularity along log-frequency. As shown
in Fig. 2 (c), we obtain a clearer representation without
reducing the discriminative information necessary for the
task. Although the last example is flutter-tongue bounded
to time-varying pitch, its modulation rate is relatively sta-
ble. This verifies our method of using just the dominant
frequency band or expanded frequency bands from the
first-order wavelet modulus transform. The rate-changing
and rate-extent changing cases show that the time-varying
modulation rates are also captured.

3. PERIODIC MODULATION RECOGNITION

With the proposed representation prepared, we build a
recognition system consisting of four binary classification
schemes that each predicts one modulation type. Section
3.1 describes the feature extraction process. The calculated
features are then fed to a machine learning classifier illus-
trated in Section 3.2.

3.1 Feature Input

As described in Section 2.3, we adapt the scattering trans-
form by decomposing the dominant and its neighboring
frequency bands in the first-order wavelet modulus trans-
form. The feature extraction process of dominant band de-
composition is shown in Fig. 3. Using a waveform as input,
we first obtain the first-order wavelet modulus transform,
where the frequency band with the highest energy for each
time frame is localised. Decomposing these bands, we ob-
tain a second-order temporal scattering. A first-order fre-
quential scattering is then conducted on top of the second-
order temporal scattering coefficients. Concatenating the
two representations in a frame-wise manner, we obtain the
feature input to the classifiers. For expanded band decom-
position, additional features are calculated similarly by de-
composing the neighbouring frequency bands around the
dominant band.

- -
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Figure 3. Feature extraction process.

Table 2 gives the parameters which encode the core
discriminative information for the recognition. 7' is the

Framewise feature

averaging scale for the temporal scattering coefficients.
This parameter is useful for discriminating modulations
with large differences on modulation rate, for example,
on distinguishing flutter-tongue from other low-rate peri-
odic modulations. Averaging scales covering at least four
unit patterns are recommended for reliable estimation of
the modulation rate. )y are the filters per octave in the
first-order temporal scattering transform. Since the modu-
lations discussed here are all oscillatory patterns, setting
(1 should ensure that each of the modulations are not
blurred in the first-order wavelet modulus transform. Here,
we use ()1 > 12 for the first-order temporal scattering to
support subtly-modulated vibratos and tremolos, of which
the modulation extent is less that one semitone. N is the
number of neighbouring frequency bands besides the dom-
inant band decomposed from the first-order wavelet mod-
ulus transform. N = 0 refers to dominant band decom-
position only while N' > 0 means expanded band decom-
position. This is a key parameter to encode the unit shape
information of subtle modulations. However, if the task at
hand is only to detect modulations with high modulation
rate or with large extent, this parameter is not necessary.

Parameter Notation Main information encoded

Averaging scale T Modulation rate

Filters per octave Q1 Modulation extent

Expanded bands N = 0, temporal shape

> 0, spectro-temporal shape

Table 2. Parameters encoding modulation information in
the adaptive time—frequency scattering framework.

Other parameters involved in the feature calculation in-
clude frame-size h, filters per octave ()7 in the second-
order scattering decomposition, frequency bands [ ex-
tracted from the second-order temporal scattering. For fre-
quential scattering, we apply a single scale wavelet trans-
form. The frame size is inversely log-proportional to
the oversampling parameter o by h = T/2% (samples),
which is designed to compensate for the low temporal res-
olution resulting from the large averaging scales. Since
these parameters carry little discriminative information, we
set them consistently for all classification schemes, with
a =4, Qs = 8, and | = 2Q), based on experimental
results. A general example with T = 2! corresponds
to frame size of h = T/2% = 2048 samples (46ms, as-
suming the sampling rate is 44.1kHz). The dimensional-
ity of the final representation at each time frame equals to
(N+1)x2l=4(N+1)Qo.

3.2 Recognition System

Due to the existence of combined playing techniques, such
as the combination of flutter-tongue and vibrato, and the
combination of tremolo with trill, one frame of the input
may have multiple labels. Multi-label classification is con-
sidered beyond the scope of this paper and is regarded as
future work. Here, we conduct binary classifications for



each modulation, which enables us to explicitly encode the
characteristic information specifically for the correspond-
ing pattern. Four binary classifiers are constructed using
support vector machines (SVMs) with Gaussian kernels.
The model parameters to be optimized in the training pro-
cess are the error penalty parameter and the width of the
Gaussian kernel [6]. The best parameters selected in the
validation stage are used for testing. The input feature
to the classifiers is the proposed adaptive time—frequency
transform of the current time frame.

Taking flutter-tongue as an example, its relatively high
modulation rate (25-50Hz) can be emphasized by setting
T = 8192 (sampling rate is 44.1kHz). The modulation ex-
tent which is less than one semitone is interpreted by set-
ting ()1 = 16. Fig. 4 shows the detection result of flutter-
tongue from a piece in CBF-periDB using dominant band
decomposition (N = 0), which can be clearly observed
from the harmonic structure in Fig. 4 (a). This is then en-
forced by removing the noisy attacks using a frequential
scattering transform as shown in Fig. 4 (b). Concatenat-
ing the two representations, we form frame-wise separa-
ble scattering feature vectors with (N + 1) x 21 = 32 di-
mensions and frame size of h = T/2% = 512 samples
(12ms). Fig. 4 (c) visualises the binary classification re-
sult of flutter-tongue compared with the ground truth for
an example excerpt. Overall it can be seen that the pro-
posed approach is successful at detecting flutter-tongue,
even in short segments, although occasionally the output
is over-fragmented. Similarly, binary classifiers can be im-
plemented for detecting vibratos, tremolos, and trills, with
parameters fine-tuned to the corresponding modulations.
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Figure 4. Binary classification result of flutter-tongue in
an example excerpt of the CBF-periDB.

4. EVALUATION
4.1 Dataset

To verify the proposed system, we focus on folk music
recordings which have more inter-performer variations
than Western music. The proposed periodic modulation

analysis dataset, CBF-periDB, comprises monophonic
performances recorded by ten professional CBF players
from the China Conservatory of Music. All data is
recorded in a professional recording studio using a Zoom
H6 recorder at 44.1kHz/24-bits. Each of the ten players
performs both isolated periodic modulations covering
all notes on the CBF and two full-length pieces selected
from Busy Delivering Harvest <% Sz f1», Jolly
Meeting «Z-18i&», Morning «F-/&», and Flying Partridge
«BE% %». Players are grouped by flute type (C and G,
the most representative types for Southern and Northern
styles, respectively) and each player uses their own flute.
This dataset is an extension of the CBF-glissDB dataset
in [18], with ten pieces containing periodic modulations
added. The playing techniques are thoroughly annotated
by the players themselves. Details of both isolated tech-
niques and full-piece (performed) recordings are shown
in Table 3. The dataset and annotations can be downloaded
from c4dm.eecs.gmul.ac.uk/CBFdataset.html.

Isolated Performed
Type Length Piece, number Length
Flutter-tongue 4.9 Mo, 3 16.0
Vibrato 73 BH, 7 28.0
Tremolo 5.0 M, 4 12.4
Trill 12.3 FP, 6 51.9

Table 3. Length of both isolated techniques and full-piece
recordings in CBF-periDB (Mo=Morning; IM=Jolly Meet-
ing; BH=Busy Delivering Harvest; FP=Flying Partridge;
all numbers for length are measured in minutes).

In the recognition implementation process, the dataset
is split into a 6:2:2 ratio according to players (players are
randomly initialised) and a 5-fold cross-validation is con-
ducted. This way of data splitting ensures a non-overlap
between players in the train, validation, and test sets. Since
each player uses their own flute during recording, there is
no overlap across flutes. Due to the limited piece types,
non-overlap of pieces is not feasible at the current stage.
We regard this as future work with a dataset expansion plan
to address piece diversity.

4.2 Metrics

Due to the short duration and periodic nature of vibratos,
tremolos, trills, and flutter-tongue, feature dependencies
over sequential frames are slightly required. The precision
P = TPTJr%, recall R = TPZ%, and F-measure F =
72,7177% are used here for frame-based evaluation, where
TP,FP,FN are true positives, false positives, and false
negatives respectively [12]. Assigned labels by SVMs are
then compared to the ground truth annotations in a frame-

wise manner.

4.3 Baseline

According to our knowledge, there is not yet any previous
work on discriminating between these four periodic mod-
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Dominant band

Expanded band

Type Temporal scattering Separable scattering  Temporal scattering Separable scattering
P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)
Flutter-tongue ~ 96.1 99.8 97.9 96.3 99.8 98.0 96.7 99.6 98.1 97.8 99.5 98.7
Trills 87.1 66.7 75.1 87.4 682 762 89.5 733 804 89.8 763 823
Vibrato 752 175 264 722 331 453 759 594 66.5 75.1 647 69.3
Tremolo 925 121 22 809 6.7 106 70.8 38.5 49.1 67.6 414 50.7

Table 4. Performance comparison of binary classification for flutter-tongue, vibratos, tremolos, and trills in CBF-periDB
using separable scattering and temporal scattering representations based on the dominant frequency band and expanded
frequency band decomposition (P=precision; R=recall; F=F-measure).

ulations; thus we compare the proposed systems against a
state-of-art detection method for vibrato. The filter diag-
onalisation method (FDM), which efficiently extracts high
resolution spectral information for short time signals, was
first applied to vibrato detection in erhu performance [20].
Based on the high similarity of the music style between
erhu and CBF, both being traditional Chinese instruments,
we use FDM as a baseline method for vibrato detection.
Using automatically estimated fundamental frequency by
pYIN [11] as input for FDM, we try different parame-
ter ranges for vibrato rate and extent based on the vibrato
characteristics of the CBF. The best result we obtain based
on a 256ms-frame-wise evaluation is P=36.5%, R=58.7%,
F=45.0%. The rate range and extent range we use are 3-
10 Hz and 5-20 cent, respectively.

4.4 Results

In order to explicitly show information captured in each
classification task, a small set of parameter settings for 7',
@1, and N is used. Besides the different meta-parameter
settings specifically designed for each modulation classifi-
cation, we run further experiments by using the same pa-
rameters for all four binary classification processes: 1" =
215, )y = 16, and N = 6 frequency bands symmetrically
expanded around the dominant band. This corresponds to
frame size of 46ms and feature dimension of 224. Note
that for specific modulation detection, meta parameters of
the scattering transform can be fine-tuned to have a much
lower feature dimension, as the flutter-tongue detection ex-
ample demonstrated in Section 3.2. The binary classifica-
tion results for each pattern are given in both the domi-
nant band decomposition and expanded band decomposi-
tion, as shown in Table 4. The detection results using the
second-order temporal scattering coefficients only as fea-
ture are also provided. The comparison between temporal
scattering and separable scattering verifies our analysis in
Section 2.3 that for periodic modulation recognition, fre-
quential scattering in the separable scattering representa-
tions provides additional discriminative information by re-
moving noisy information. Better performance for flutter-
tongue and trill detection shows that for modulations with
high modulation rate and large extent, decomposition of
the dominant band is sufficient. For discriminating be-
tween temporal modulation and spectro-temporal modula-

tion, expanded band decomposition works much better.

Generally, detection performance on vibrato and
tremolo is worse than that for flutter-tongue and trill detec-
tion. Identifying the errors in the original audio, we find
that in most cases these are combined techniques, i.e. sub-
tle frequency variations are accompanied with amplitude
modulations or vice versa. In the case of CBF, such com-
binations are common because of the instrumental gestures
of vibrato and tremolo. Vibrato can be generated by finger-
ing or tonguing, while tremolos are commonly produced
by breathing variations. Performers are also expressively
intended to add tremolo effects on top of other playing
techniques.

5. CONCLUSIONS AND FUTURE WORK

Periodic modulation recognition is a pitch invariant task
and should only capture modulation information. This is
realised by calculating a time—frequency scattering around
the wavelet subband of the maximum acoustic energy. We
found that the proposed representation decomposed from
the dominant band is sufficient to detect modulations with
high modulation rate (flutter-tongue) and large modula-
tion extent (trill), while expanded band decomposition cap-
tures subtle frequency modulations (vibrato and tremolo).
We introduce the ecologically valid dataset, CBF-periDB,
to evalate the recognition system. Results show that the
proposed representation captures discriminative informa-
tion between vibratos, tremolos, trills, and flutter-tongue
in real-world pieces.

The current work only considers continuous periodic
modulations; other periodic patterns, such as tonguing,
will be considered as future work due to their noncontinu-
ous nature and more complicated parameter variations. In-
spired by research on polyphonic music transcription, cur-
rent work may be expanded to polyphonic periodic mod-
ulation detection. Additional comparison of the current
result with other equivalent representations such as the
modulation spectra, will be conducted. We conclude that
the scattering transform presents a versatile and compact
representation for analysing periodic modulations in per-
formed music and opens up new avenues for computational
research on playing techniques.
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