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ABSTRACT

Locating arrays (LAs) are experimental designs for screening interactions in engineered systems. LAs are
often highly unbalanced, requiring advanced techniques to recover the terms that significantly influence
system performance. While perfect recovery is achieved in the absence of noise, real systems are noisy.
Therefore, in this paper, we study the robustness of recovery in the presence of noise. Using known models
to generate synthetic data, we investigate recovery accuracy as a function of noise. Separation is introduced
into LAs to allow more coverage for each t-way interaction; when separation is higher, recovery in noisy
scenarios should improve. We find that locating arrays are able to recover the influential terms even with
high levels of noise and that separation appears to improve recovery. Under the pessimistic assumption
that noise depends on the range of responses, it is no surprise that terms with small coefficients become
indistinguishable from noise.

Keywords: screening engineered networks, locating arrays, analysis, robustness, recovery.

1 INTRODUCTION

Complexity arises in an engineered system not only from its size, but also from its structure, operation
(including control and management), and its evolution over time (Chiang and Rao 2012). Experimentation
is often used to study the performance of such systems. A system may be viewed as transforming input
variables, or factors, into one or more measurable output variables, or responses. Screening experiments
have the objective to identify the factors that are most influential on a response.

Our interest is screening in engineered networks. To reduce their design complexity, most network archi-
tectures are layered. The purpose of each layer is to offer services to higher layers, following protocols for
communication. Networks have a very large number of factors that potentially influence responses such as
throughput, delay, or energy. Interestingly, interactions among factors are known to arise. An example of a
two-way cross-layer interaction, between the link and transport layer, is the TCP protocol interpreting access
delays in a wireless network due to poor signal quality as congestion, and hence responding incorrectly with
congestion control (Cáceres and Iftode 1995). A few other examples of interactions in networks include
Athanasiou, Korakis, Ercetin, and Tassiulas (2009), Efazati and Azmi (2016), Cammarano, Presti, Maselli,
Pescosolido, and Petrioli (2015), and Wang, Vuran, and Goddard (2012).
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We are therefore motivated to screen for interactions, not just factors, influencing performance. The exhaus-
tive full-factorial design (Montgomery 2017) could serve this purpose. For k factors each with only two
levels, or values, such a design has size 2k. In engineered systems with large k, an exponential number of
tests is typically infeasible. Naturally, methods to reduce the number of tests have been developed. Perhaps
of most interest are supersaturated designs; these contain more factors than tests in the experiment. Super-
saturated designs are used to estimate a main effects model (Li and Lin 2003, Montgomery 2017). Thus
they do not consider possible interactions at all. If an interaction is not covered, i.e., does not appear in the
design, its influence on performance is never observed. Hence there is a need for small screening designs
that locate interactions, even when the number of factors is very large. Locating arrays (LAs), introduced in
Section 2, address this need.

Through analysis of the measurements collected in each test of the experiment, the influential factors and
interactions impacting performance must be recovered. For full-factorial and other balanced designs, i.e.,
those having uniform or near-uniform coverage, one technique is the analysis of variance (ANOVA). Meth-
ods for analysis of supersaturated designs include the partially Bayesian method (Gilmour 2006). These
analysis methods cannot be used for locating arrays because they are often highly unbalanced. To address
this problem, in Aldaco, Colbourn, and Syrotiuk (2015), factors are grouped according to their coverage in
the LA. First the most significant factor or interaction was selected from each group using the Wilcoxon
rank sum test and the Mann-Whitney U -test (Mann and Whitney 1947, Wilcoxon 1945). From these can-
didates, the most significant term overall is selected using the Akaike information criterion (Akaike 1974).
This process is repeated on the residuals until stopping criteria were met. In an effort to automate recovery,
in Compton, Mehari, Colbourn, De Poorter, and Syrotiuk (2016) an analysis method is developed based
on orthogonal matching pursuit (OMP), as described in Section 3. Using it, Seidel, Mehari, Colbourn, De
Poorter, Moerman, and Syrotiuk (2018) show agreement with the statistical-based recovery method. In this
paper we use the OMP-based analysis method.

While perfect recovery is achieved in the absence of noise, real systems are noisy. Often, we do not know the
ground truth when we analyze the data collected from a network simulation or from an engineered network
testbed. Therefore, in this paper, we study the robustness of recovery for known ground truth so that we
can evaluate the accuracy of our recovery. Specifically, using known models to generate synthetic data, we
vary how much the model satisfies the heavy-hitters assumption, and we vary the noise level. We apply
our OMP-based analysis algorithm to recover terms and evaluate the accuracy of the recovered terms to
those of the known model. Separation is introduced into locating arrays to allow more coverage for each
t-way interaction. Intuition suggests that when the separation is higher, recovery in noisy scenarios should
improve. Hence we also study recovery for LAs of higher separation.

The primary contribution of this paper is a study of the robustness of the recovery in screening experiments
based on locating arrays. Our study, presented in Section 4, indicates that as the heavy-hitters assumption is
more strongly satisfied in scenarios with noise, it is difficult to recover the terms with smallest coefficients.
Under the pessimistic assumption that noise depends on the range of responses this is no surprise. Further-
more, our results in Section 5 suggest that separation in locating arrays can help the recovery process in the
presence of noise. These results improve confidence in our recovery when applied to data collected from
engineered networks, whether simulated or real. Our conclusions and future work follow in Section 6.

2 LOCATING ARRAYS

Suppose that the system of interest has k factors, F1, . . . , Fk, and that each factor Fj has a set Vj =
{vj,1, . . . , vj,ℓj}, of ℓj possible values. A test is an assignment of a value from Vj to Fj , for each factor
j = 1, . . . , k. An experimental design (or, design for short) is a collection of tests.
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When a design has N tests (or, has size N ), it may be represented by an N × k array A = (aij) in which
each row i corresponds to a test and each column j to a factor; the entry aij specifies the value assigned to
factor j in the ith test. When run on the system, a test results in the measurement of one or more responses.
An experiment consists of running each test in the design.

An assignment of values to any subset t ≤ k of the factors is a t-way interaction. A covering array of
strength t, is an N × k array in which for every N × t subarray, each t-way interaction is covered (i.e.,
occurs) in at least one test (Hartman 2005). An example of a covering array of strength two for three factors,
A having two levels {1, 2}, and B and C each with three {1, 2, 3}, is given in Table 1.

Table 1: A covering array AC of strength 2; adding three tests gives a (1, 2)-locating array AL.

Test A B C

Covering Array AC

1 1 1 2

Locating Array AL

2 1 1 3
3 1 2 1
4 1 3 3
5 2 1 1
6 2 2 2
7 2 2 3
8 2 3 1
9 2 3 2
10 1 2 3
11 1 3 1
12 2 1 2

A covering array does not ensure that it is possible to distinguish the influence of different t-way interactions.
For example, if the measurement for test seven is different from the other tests, it is not possible to determine
which of the two, two-way interactions (A = 2)&(C = 3) and (B = 2)&(C = 3) is responsible, because
each is covered only by test seven. Locating arrays extend covering arrays to address this very issue.

A (d, t)-locating array is a covering array of strength t with an additional property: Any set of d interactions
each involving t parameters can be distinguished from any other such set by appearing in a distinct set of
tests (Colbourn and McClary 2008). If a design satisfies this definition it has the (d, t)-locating property.

More precisely, for an N × k array A, define ρ(A, T ) as the set of tests of A in which T is covered. For a
set T of t-way interactions, ρ(A, T ) = ∪T∈T ρ(A, T ). Now, A is (d, t)-locating if ρ(A, T1) = ρ(A, T2)⇔
T1 = T2 whenever T1, T2 are any sets of t-way interactions where |T1| = d, and |T2| = d. When |T1| ≤ d
and |T2| ≤ d and T1, T2 are any sets of interactions with strength at most t, the array is (d, t)-locating. Thus
a (d, t)-locating array guarantees that any two groups of at most d interactions with strength at most t are
distinguishable from each other in the tests where they are covered.

The covering array in Table 1 does not have the (1, 2)-locating property because the set of two-way in-
teractions T = {(A = 2)&(C = 3), (B = 2)&(C = 3)} has ρ(AC , T ) = {7}. However, the addi-
tion of three additional tests to the covering array in Table 1 produces a (1, 2)-locating array AL. Now,
ρ(AL, (B = 2)&(C = 3)) = {7, 10} while ρ(AL, (A = 2)&(C = 3)) = {7}, allowing the influence of the
two interactions to be distinguished.
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2.1 A Separation δ Requirement

In principle, the responses for each test can identify the set of influential interactions whenever the assump-
tions on number and strengths of interactions are met. In practice, however, a problem arises. Suppose
that two sets of (at most) d interactions, T1 and T2, have |ρ(T1) \ ρ(T2)| = 1. If this occurs, the response
measured in a single test is the sole “witness” to the difference between the two. In the absence of noise
or measurement error, one such witness suffices to differentiate. In our experiments, however, outliers and
missing responses do occur. These compromise our ability to analyze the response data. This can be miti-
gated by exploring a number of possible sets of significant interactions, as in Seidel, Sarkar, Colbourn, and
Syrotiuk (2018), rather than identifying a single set.

To improve the effectiveness of recovery in locating array-based screening, we must allow for outliers and
missing responses. Fortunately this can be treated by further requirements on the array, by enforcing a
separation between sets of rows for different sets of interactions. We make this precise next. Let δ ≥ 1 be an
integer, the distance. Let It be the set of all t-way interactions for an array A. An array A is (d, t, δ)-locating
if whenever T1, T2 ⊆ It, |T1| = d, and |T2| = d, we have that

|(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| < δ ⇔ T1 = T2.

This requires that at least δ tests witness the difference. The variants for d and t are immediate.

Separation by distance δ ensures that any δ − 1 or fewer tests can fail to provide a response, or provide an
outlier response, without losing the differentiation supported by the locating array.

3 ANALYSIS OF LOCATING ARRAY-BASED SCREENING EXPERIMENTS

We utilize orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007) to iteratively recover the influential
terms impacting a response. A screening design with the (1, 2)-locating property suffices because in each
iteration we recover one term (d = 1), a main effect or a two-way interaction (t = 2); we are able to do so
provided that there is a unique strongest term, i.e., the term is a “heavy hitter.”

Algorithm 1 Orthogonal Matching Pursuit : OMP(terms,M, data)

Require: List of candidate terms, compressive sensing matrix, vector of responses
Ensure: Model (list of pairs of coefficients and terms)

1: model← [(mean of data, intercept term)] /* Square brackets denote a list */
2: residuals← data−model
3: while the stopping criterion is not yet met do
4: i← argmaxi|M̂i · ̂residuals|
5: model← LLS(terms(model) ∪ [termsi], data) /* ∪ denotes list concatenation */
6: residuals← data−model
7: end while
8: return model

Algorithm 1 maintains a model and a residual vector. The model is initialized as an intercept term equal to
the mean of the measured responses, while the residuals are the data minus the model. In each iteration,
we select a term to add to the model based on the dot product of the residuals with each column in the
compressive sensing matrix, a matrix whose columns correspond the terms that may be included in the
model. The term yielding the highest-magnitude dot product is added to the model, after which linear
least squares is used to update the model coefficients. The residuals are then recalculated. These steps are
repeated until a stopping criterion is met; see Compton, Mehari, Colbourn, De Poorter, and Syrotiuk (2016).
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One disadvantage of Algorithm 1 is that it only adds terms to the model. If it finds other terms that explain
one away, it cannot delete the term, only update its coefficient to be negligible. To counter this problem,
we use a breadth-first search algorithm to consider alternatives for the choices it makes using OMP (Seidel,
Mehari, Colbourn, De Poorter, Moerman, and Syrotiuk 2018). This approach produces and returns the top
nModels models, each with nTerms terms. The occurrences of each factor in the top nModels models are
then counted, and the factors are ranked by number of occurrences. A factor occurrence is defined as any
time a factor appears in a model, no matter its level, or if it is part of an interaction.

4 ROBUSTNESS STUDY

Algorithm 1 relies on the heavy-hitters assumption, i.e., that there is one term that influences the response
more significantly than all remaining terms, and when this term is removed, there is again one term that
influences the response more significantly than all remaining terms. In other words, the influence of the
terms follows an exponentially decreasing pattern. We study the recovery accuracy varying how much the
model satisfies the heavy-hitters assumption, and also varying the noise in the system.

Suppose we are interested in screening a system with 100 factors, F1, F2, . . . , F100, each with three levels,
{v1, v2, v3}. A (1, 2, 1)-locating array used for screening this system has just 70 rows. The parameters of
the analysis algorithm used to produce all results are nModels = 50 and nTerms = 8.

Table 2 gives the true system model used in our study in this section. Throughout, the models in our study
have the form β +

∑
i ciFi +

∑
i,j ci,jFiFj , i.e., they are linear models with intercept β, and terms that

include main effects as well as two-way interactions from the 100 factors. Each term has a coefficient.
In this scenario, the coefficient of every term is the same (0.1); hence the heavy-hitters assumption is not
satisfied. Further scenarios in this section vary the coefficients of the model.

Table 2: Robustness Scenario 1A - Heavy-hitters not satisfied.

True Model – Coefficients exhibit 0% decrease
Coefficient Term
0.1 F29 = v1
0.1 F98 = v3 & F34 = v2
0.1 F50 = v2
0.1 F22 = v1
0.1 INTERCEPT
0.1 F69 = v1 & F23 = v1
0.1 F10 = v2
0.1 F82 = v1

Table 3 shows two sets of recovery results. A check mark in the column labelled “True” indicates that the
factors recovered of the given rank are in the true model. The first set of results shown in columns two
through four in Table 3 corresponds to the recovery process without any noise introduced in the system.
Although the true model in Table 2 does not satisfy the heavy-hitters assumption, all nine factors in the true
model are recovered. However, the four factors ranked six through nine have occurrence counts that are less
than 50 indicating that these factors did not appear in every model. The sudden drop-off in the occurrence
count (from 30 to 6) between the ninth and tenth factors in the ranking is characteristic of noiseless data.
When there is noise in the system the drop-off is often more gradual, making it more difficult to distinguish
the influential factors.
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Table 3: Robustness scenario 1A – Recovery.

Occurrence Counts
No Noise (δ = 1) 10% Noise (δ = 1)

Rank Count Factor True Count Factor True
1 50 F82

√
50 F82

√

2 50 F50
√

50 F50
√

3 50 F29
√

50 F29
√

4 50 F22
√

50 F22
√

5 50 F10
√

50 F10
√

6 38 F23
√

41 F34
√

7 35 F34
√

40 F98
√

8 34 F98
√

23 F23
√

9 30 F69
√

21 F69
√

10 6 F6 8 F2
√

In the absence of knowledge of noise, we make a pessimistic assumption that noise depends on the largest
difference in the responses. More specifically, uniform random noise is added to our output responses with
the magnitude of the noise characterized as a percentage of the range of all output responses.

Columns five through seven in Table 3 show occurrence counts when 10% noise is added to the scenario.
The top five ranked factors are all main effects in the true model. The remaining factors (F34, F98, F23, F69)
are all involved in interactions and show lower occurrence counts. However, the top nine ranked factors
correspond to the nine factors in the true model; 10% noise does not appear to have an effect on recovery.

The scenario in Table 4 brings the true model closer to satisfying the heavy-hitters requirement. Now, all
coefficients decreasing by 33%.

Table 4: Robustness Scenario 1B – Heavy-Hitters (33% Decrease).

True Model – Coefficients exhibit 33% decrease
Coefficient Term
1.71 F29 = v1
1.14 F98 = v3 & F34 = v2
0.76 F50 = v2
0.51 F22 = v1
0.34 INTERCEPT
0.23 F69 = v1 & F23 = v1
0.15 F10 = v2
0.1 F82 = v1

In the case with no noise, Table 5 shows that the analysis now not only recovers all nine factors in the true
model, but all significant factors are now found in every model; the tenth factor listed is found only twice.
This sharp drop-off that delineates the ninth factor recovered from the tenth factor indicates that the tenth
factor is not influential.

When 10% noise is added to the scenario the occurrence counts in the recovery are smaller than those
without noise. Furthermore, three factors in the true model (F69, F23, F82) are not recovered; they have the
smallest coefficients, and are replaced by two factors that are not in the true model, F14, F7. This scenario is
affected by noise more than scenario 1A in Table 3; the noise appears to overwhelm terms with coefficients
that are small in comparison to the others. Because noise depends on the range of the responses, in a model
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Table 5: Robustness Scenario 1B – Recovery.

Occurrence Counts
No Noise (δ = 1) 10% Noise (δ = 1) 10% Noise (δ = 4)

Rank Count Factor True Count Factor True Count Factor True
1 51 F69

√
58 F10

√
51 F82

√

2 51 F50
√

55 F29
√

51 F34
√

3 51 F34
√

50 F98
√

51 F22
√

4 51 F23
√

50 F50
√

50 F98
√

5 51 F22
√

50 F34
√

50 F69
√

6 51 F10
√

50 F22
√

50 F50
√

7 50 F98
√

34 F14 50 F29
√

8 50 F82
√

24 F7 50 F23
√

9 50 F29
√

44 F10
√

10 2 F99 13 F6

that more strongly satisfies the heavy-hitters assumption the range of the responses is larger resulting in
more noise in the system when taken as a percentage. Therefore, it is more likely for the noise to prevent
recovery of terms with small coefficients.

To determine if higher separation improves recovery, we generate a new locating array with separation
δ = 4. When the locating array with higher separation is used in scenario 1B, the recovery in Table 5 ranks
all nine true factors as the top nine influential factors. This is a significant improvement over the locating
array with δ = 1 used that resulted in only six true factors recovered. It appears that higher separation helps
recover more true factors, even in the presence of noise.

We now explore a scenario that satisfies the heavy-hitters assumption even more strongly. This scenario is
provided in Table 6 with coefficients decreasing by 50%.

Table 6: Robustness Scenario 1C – Heavy-Hitters (50% Decrease).

True Model – Coefficients exhibit 50% decrease
Coefficient Term
12.8 F29 = v1
6.4 F98 = v3 & F34 = v2
3.2 F50 = v2
1.6 F22 = v1
0.8 INTERCEPT
0.4 F69 = v1 & F23 = v1
0.2 F10 = v2
0.1 F82 = v1

Table 7 presents the recovery results for the scenario given in Table 6. Just as in the previous scenario,
the analysis recovers all nine significant factors in the true model when no noise is added to the system.
When 10% noise is added, now only five factors in the true model are recovered. Again, the four true
factors missing from the recovery, F69, F23, F10, and F82, have the smallest coefficients. When the locating
array with higher separation δ = 4 is used, Table 7 shows that six true factors are recovered. This is a slight
improvement over the recovery by the locating array with separation δ = 1. It is interesting that even though
higher separation is used, the true factors are still not recovered even though the true model strongly satisfies
the heavy-hitters requirement. Again, we believe this is due to our pessimistic assumption regarding in the
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system (dictated by the term with the largest coefficient), resulting in the terms with smaller coefficients
being overwhelmed by and therefore indistinguishable from noise.

Table 7: Robustness Scenario 1C – Recovery.

Occurrence Counts
No Noise (δ = 1) 10% Noise (δ = 1) 10% Noise (δ = 4)

Rank Count Factor True Count Factor True Count Factor True
1 51 F69

√
68 F29

√
53 F34

√

2 51 F50
√

60 F50
√

53 F22
√

3 51 F34
√

52 F34
√

52 F29
√

4 51 F23
√

50 F98
√

51 F98
√

5 51 F22
√

50 F22
√

50 F50
√

6 51 F10
√

32 F92 49 F3

7 50 F98
√

21 F42 45 F78

8 50 F82
√

20 F44 36 F10
√

9 50 F29
√

14 F14 19 F59

10 2 F99 13 F64

The three scenarios 1A, 1B, and 1C show an interesting trend. As the heavy-hitters assumption is more
strongly satisfied in scenarios with noise, the true factors with smallest coefficients (least affecting the true
model) becomes difficult to recover. This is interesting because when these same models are not affected
by noise, these factors are recovered. Yet this is due to higher noise levels in true models that more strongly
satisfy the heavy-hitters requirement. As a result, even small amounts of noise overwhelm the factors with
small coefficients. More specifically, when a coefficient is not greater than the noise in the system (dictated
by the term with the largest coefficient), then its effects are likely unrecoverable.

5 USING SEPARATION TO COPE WITH NOISE

In the previous section, the results indicate that separation is helpful in recovery. This section studies the use
of separation in more detail. We construct locating arrays for 10 factors, F1, F2, . . . , F10, each with three
levels, {v1, v2, v3}. The first locating array has separation δ = 1 and has size 28, while the second locating
array has separation δ = 3 and has size 58. The true model along with the analysis parameters are given in
scenario 2A in Table 8. This scenario satisfies the heavy-hitters requirement since most coefficients are well
differentiated. The analysis parameters used in this section are nModels = 25 and nTerms = 5.

Table 8: Robustness Scenario 2A – Separation to Cope With Noise.

True Model
Coefficient Term
4.02 F9 = v1
2.49 F8 = v2 & F4 = v1
0.99 F5 = v2 & F2 = v1
0.78 F4 = v1
0.5 INTERCEPT

The analysis is first executed with no noise and the results are shown in Table 9. In this case, both locating
arrays succeed in recovering all terms of the true model. Table 10 shows the same results for 10% noise.
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Table 9: Separation δ = 1 and δ = 3 – No Noise.

Occurrence Counts (No Noise)
δ = 1 δ = 3

Rank Count Factor True Count Factor True
1 49 F4

√
51 F4

√

2 28 F8
√

29 F8
√

3 27 F9
√

28 F9
√

4 24 F2
√

15 F5
√

5 23 F5
√

14 F2
√

6 3 F10 5 F7

Table 10: Separation δ = 1 and δ = 3 – Noise at 10%.

Occurrence Counts (10% Noise)
δ = 1 δ = 3

Rank Count Factor True Count Factor True
1 48 F4

√
47 F4

√

2 28 F9
√

28 F9
√

3 26 F8
√

28 F8
√

4 23 F5
√

26 F5
√

5 23 F2
√

26 F2
√

6 6 F3 4 F10

Table 11 shows results for noise increasing from 20% to 40%. In most cases, all terms except for F5 are
recovered by each locating array. F5 is part of an interaction in a term with a smaller coefficient and is
therefore more susceptible to noise.

Now we see how much noise the locating array with higher separation can tolerate before its ability to
recover begins to break down. Table 12 shows the recovery results for 50%, 60%, and 70% noise. For 50%
noise, all terms of the model are recovered. A false factor (F7) is recovered with 60% noise, but the five
true factors are also recovered, though not ranked in the top five. The recovery for 70% still shows all five
true factors but only three rank in the top five recovered. Two false factors (F7 and F3) are recovered and
are ranked second and third. As expected, the true factors are ranked lower as more noise is added to the
system. Furthermore, the drop-off in the occurrence counts becomes less distinct as more noise is added.

While the locating array with separation δ = 1 begins to fail with around 20% noise, the locating array with
separation δ = 3 still recovers true model terms well through 50% noise. This supports the intuition that
higher separation, at least in some cases, leads to more accurate recovery.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present an analysis technique for screening designs based on locating arrays. These arrays
are often highly unbalanced requiring the development of new analysis techniques. An orthogonal matching
pursuit (OMP) based recovery relies on a heavy-hitters assumption, hence the use of a (1, 2)-locating array
suffices to locate a term in each iteration of the algorithm.

Our interest in this paper was a study of the robustness of the OMP-based recovery, i.e., the impact of the
heavy-hitters assumption under varying levels of noise in the system. When there is no noise in the system,
the analysis recovers all terms of the model.
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Table 11: Separation δ = 1 and δ = 3 – Noise at 20%, 30%, and 40%.

Occurrence Counts (20% Noise)
δ = 1 δ = 3

Rank Count Factor True Count Factor True
1 57 F4

√
41 F4

√

2 34 F8
√

30 F8
√

3 26 F9
√

27 F5
√

4 26 F2
√

26 F9
√

5 6 F1 26 F2
√

6 6 F3

Occurrence Counts (30% Noise)
δ = 1 δ = 3

Rank Count Factor True Count Factor True
1 48 F4

√
59 F4

√

2 33 F9
√

40 F8
√

3 29 F8
√

26 F9
√

4 20 F5
√

18 F2
√

5 16 F2
√

11 F5
√

6 8 F7 6 F10

Occurrence Counts (40% Noise)
δ = 1 δ = 3

Rank Count Factor True Count Factor True
1 49 F4

√
38 F5

√

2 31 F8
√

27 F9
√

3 28 F9
√

26 F8
√

4 17 F6 26 F4
√

5 17 F2
√

26 F2
√

6 8 F3 10 F6

Table 12: Separation δ = 3 – Noise at 50%, 60%, and 70%.

Occurrence Counts (50%-70% Noise)
50% Noise 60% Noise 70% Noise

Rank Count Factor True Count Factor True Count Factor True
1 34 F9

√
34 F5

√
44 F9

√

2 26 F4
√

29 F9
√

32 F7

3 24 F5
√

26 F8
√

25 F3

4 24 F2
√

26 F4
√

22 F8
√

5 23 F8
√

15 F7 15 F4
√

6 16 F7 14 F2
√

13 F5
√

7 11 F2
√

8 11 F1

9 2 F10
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In the absence of knowledge of noise, we made a pessimistic assumption that noise depends on the largest
difference in the responses. Sspecifically, uniform random noise is added to our output responses with the
magnitude of the noise characterized as a percentage of the range of all output responses. This assumption
on noise resulted affected models that more heavily satisfied the heavy-hitters requirement. Specifically, the
factors with small coefficients became indistinguishable from the noise and therefore were not recoverable.
Higher separation improves recovery with noise in the system but can still suffer from the same issue.

Hence our future work will study less pessimistic models for noise in the system. As well, the recovery
algorithm should be augmented. At present it recovers nTerms term, regardless of impact on the adjusted
R2 of the resulting model. This may impact the counting of occurrences of terms and lead to more accurate
rankings of recovered terms.

Nevertheless, the results of our study provide some confidence that when our analysis technique is applied
to locating array-based screening results gathered from simulated or physical systems where the true system
model is unknown, such as our motivating engineered network systems, the influential factors in the system
will be recovered accurately.
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