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Abstract

In this paper, we provide the first large-scale empirical anal-
ysis of 10T devices in real-world homes by leveraging data
collected from user-initiated network scans of 83M devices
in 16M households. We find that IoT adoption is widespread:
on several continents, more than half of households already
have at least one IoT device. Device types and manufac-
turer popularity vary dramatically across regions. For ex-
ample, while nearly half of North American homes have an
Internet-connected television or streaming device, less than
three percent do in South Asia where the majority of devices
are surveillance cameras. We investigate the security posture
of devices, detailing their open services, weak default cre-
dentials, and vulnerability to known attacks. Device security
similarly varies geographically, even for specific manufac-
turers. For example, while less than 17% of TP-Link home
routers in North America have guessable passwords, nearly
half do in Eastern Europe and Central Asia. We argue that
IoT devices are here, but for most homes, the types of devices
adopted are not the ones actively discussed. We hope that
by shedding light on this complex ecosystem, we help the
security community develop solutions that are applicable to
today’s homes.

1 Introduction

The weak security posture of many popular IoT devices
has enabled attackers to launch record-breaking DDoS at-
tacks [4], compromise local networks [43,57], and break into
homes [22,41]. However, despite much attention to IoT in
the security community [22, 23,29, 33, 55], there has been
little investigation into what devices consumers are adopting
and how they are configured in practice. In this work, we
provide a large-scale empirical analysis of 83M IoT devices
in 16M real-world homes. We partner with Avast Software,
a popular antivirus company, whose consumer security soft-
ware lets customers scan their local network for IoT devices
that support weak authentication or have remotely exploitable

*University of Illinois Urbana-Champaign

vulnerabilities. Leveraging data collected from user-initiated
network scans in 16M households that have agreed to share
data for research and development purposes, we describe the
current landscape of 10T devices and their security posture.

IoT devices are widespread. More than half of households
have at least one [oT device in three global regions and in
North America more than 70% of homes have a network-
connected device. Media devices like smart televisions are
most common in seven of eleven global regions, but there
is significant variance otherwise. For example, surveillance
cameras are most popular in South and Southeast Asia, while
work appliances prevail in East Asia and Sub-Saharan Africa.
Home assistants are present in more than 10% of homes in
North America but have yet to see significant adoption in
other markets. There is a long tail of 14K total manufacturers,
but surprisingly we find that 90% of devices worldwide are
produced by only 100 vendors. A handful of companies
like Apple, HP, and Samsung dominate globally, but there
also exist a set of smaller vendors with significant regional
adoption. For example, Vestel, a Turkish manufacturer, is the
third largest media vendor in North Africa and the Middle
East, but has negligible broader adoption.

A surprising number of devices still support FTP and Telnet
with weak credentials. In Sub-Saharan Africa, North Africa,
the Middle East, and Southeast Asia, around half of devices
support FTP and in Central Asia, nearly 40% of home routers
use Telnet. Similar to the regional differences in device type
and manufacturer popularity, there are dramatic differences
in the use of weak credentials. For example, while less than
15% of devices with FTP allow weak authentication in Eu-
rope and Oceania, more than half do in Southeast Asia and
Sub-Saharan Africa. Interestingly, this is not entirely due to
manufacturer preference. While less than 20% of TP-Link
home routers allow access to their administration interface
with a weak password in North America, nearly half do in
Eastern Europe, Central Asia, and Southeast Asia. About 3%
of homes in our dataset are externally visible and more than
half of those have a known vulnerability or weak password.

Our results indicate that IoT is not a security concern of the
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Please don't skip this

(a) Data Sharing Consent

(b) WiFi Inspector Drawer

(c) WiFi Inspector Initiation

Figure 1: WiFi Inspector—WiFi Inspector allows users to scan their local network for insecure [oT devices. Data sharing back
to Avast for research purposes is an explicit part of the installation process, and presented to the user in plain English. For ease of

reading, we duplicate the text shown in panel (a) in Appendix A.

future, but rather one of today. We argue that there already
exists a complex ecosystem of Internet-connected embedded
devices in homes worldwide, but that these devices are of
different than the ones considered by most recent work. We
hope that by shedding light on the types of devices consumers
are purchasing, we enable the security community to develop
solutions that are applicable to today’s homes.

2 Methodology and Dataset

Our study leverages several network vantage points, including
data collected from Avast, a passive network telescope, and
active Internet-wide scans. In this section, we discuss these
datasets and the role they play in our analysis.

2.1 WiFi Inspector

Avast Software is a security software company that provides
a suite of popular antivirus and consumer security software
products like Avast Free Antivirus. Avast software is sold on
a freemium model: the company provides a free basic version

of their product and charges for more advanced versions.

Avast estimates that their software runs on 160 M Windows
and 3M Mac OS computers, and makes up approximately
12% of the antivirus market share [45].

As of 2015, all antivirus products from Avast include a
tool called WiFi Inspector that helps users secure IoT devices
and other computers on their home networks. WiFi Inspector
runs locally on the user’s personal computer and performs
network scans of the local subnet to check for devices
that accept weak credentials or have remotely exploitable
vulnerabilities. Scans can also be manually initiated by the
end user. WiFi Inspector alerts users to security problems
it finds during these scans and additionally provides an
inventory of labeled IoT devices and vulnerabilities in the
product’s main interface (Figure 1). We next describe how
WiFi Inspector operates:

Network Scanning To inventory the local network, WiFi
Inspector first generates a list of scan candidates from entries
in the local ARP table as well through active ARP, SSDP, and
mDNS scans. It then probes targets in increasing IP order
over ICMP and common TCP/UDP ports to detect listening
services.! Scans terminate after the local network has been
scanned or a timeout occurs. After the discovery process
completes, the scanner attempts to gather application layer
data (e.g., HTTP root page, UPnP root device description,
and Telnet banner) from listening services.

Detecting Device Types To provide users with a human-
readable list of hosts on their network, WiFi Inspector runs a
classification algorithm against the application-and transport-
layer data collected in the scan. This algorithm buckets de-
vices into one of fourteen categories:

. Computer
. Network Node (e.g., home router)
. Mobile Device (e.g., iPhone or Android)

. Wearable (e.g., Fitbit, Apple Watch)

. Game Console (e.g., XBox)

. Home Automation (e.g., Nest Thermostat)
. Storage (e.g., home NAS)

. Surveillance (e.g., IP camera)

. Work Appliance (e.g., printer or scanner)
. Home Voice Assistant (e.g., Alexa)

. Vehicle (e.g., Tesla)

. Media/TV (e.g., Roku)

13. Home Appliance (e.g., smart fridge)

14. Generic IoT (e.g., toothbrush)

O 01N L A W -

—
N = O

'WiFi Inspector scans several groups of TCP/UDP ports: common TCP
ports (e.g., 80, 443, 139, 445); TCP ports associated with security problems
(e.g., 111, 135, 161); common UDP ports (e.g., 53, 67, 69); and ports
associated with services that provide data for device labeling (e.g., 20, 21,
22). When hosts are timely in responding, the scanner will additionally probe
a second set of less common ports (e.g., 81-85, 9971). In total, the scanner
will target up to 200 ports depending on host performance. The scanner will
identify devices so long as they are connected to the network.
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Protocol  Field Search Pattern Device Type Label  Confidence
DHCP Class ID (?7i)SAMSUNG[- :_]Network[- :_]Printer Printer 0.90
UPnP Device Type  .*hub2.x* IoT Hub 0.90
HTTP Title (?7i)Polycom - (?7:SoundPoint IP )7(7:SoundStation IP )7 IP Phone 0.85
mDNS Name (7i) _nanoleaf (7:apilms)?\._tcp\.local\. Lighting 0.90

Table 1: Example Device Classification Rules—Our device labeling algorithm combines a collection of 1,000 expert rules and
a supervised classifier, both of which utilize network and application layer data. Here, we show a few examples of these expert
rules, which provide 60% coverage of devices in a random sample of 1,000 devices.

We consider devices in the latter eleven categories to be IoT
devices for the remainder of this work. Because the classi-
fier greatly affects the results of this work, we describe the
algorithm in detail in Section 2.2.

Manufacturer Labeling To generate a full device label,
WiFi Inspector combines device type with the device’s man-
ufacturer (e.g., Nintendo Game Console). Avast determines
manufacturer by looking up the first 24 bits of each device’s
MAC address in the public IEEE Organizationally Unique
Identifier (OUI) registry [32]. We note that at times, the ven-
dor associated with a MAC address is the manufacturer of
the network interface rather than the device. For example,
MAC addresses associated with some Sony Playstations be-
long to either FoxConn or AzureWave, two major electronic
component manufacturers, rather than Sony. In this work,
we manually resolve and document any cases that required
grouping manufacturers together.

Checking Weak Credentials  WiFi Inspector checks for
devices that allow authentication using weak credentials by
performing a dictionary-based attack against FTP and Telnet
services as well as web interfaces that use HTTP basic authen-
tication. When possible, WiFi Inspector will also try to log
into HTTP-based administration interfaces that it recognizes.
The scanner attempts to log in with around 200 credentials
composed of known defaults (e.g., admin/admin) and com-
monly used strings (e.g., user, 1234, love) from password
popularity lists, leaks, vendor and ISP default lists, and pass-
words checked by IoT malware. WiFi Inspector immediately
notifies users about devices with guessable logins.

Checking Common Vulnerabilities In addition to check-
ing for weak credentials, WiFi Inspector checks devices for
vulnerability to around 50 recent exploits that can be verified
without harming target devices (e.g., CVE-2018-10561, CVE-
2017-14413, EDB-ID-40500, ZSL-2014-5208, and NON-
2015-0211). Because there is bias towards more popular
manufacturers in these scans, we do not provide ecosystem-
level comparisons between different vulnerabilities.

2.2 Device Identification Algorithm

A significant portion of our work is based on identifying the
manufacturers and types of IoT devices in homes. We de-

scribe the algorithm that Avast has developed in this section:

Classifier ~WiFi Inspector labels device type (e.g., com-
puter, phone, game console) through a set of expert rules
and a supervised classification algorithm, both of which run
against network and application layer data. Classification is
typically possible because manufacturers often include model
information in web administration interfaces as well as in FTP
and Telnet banners [4]. Additionally, devices broadcast de-
vice details over UPnP and mDNS [14]. WiFi Inspector uses
expert rules—regular expressions that parse out simple fields
(e.g., telnet banner or HTML title)— to label hosts that follow
informal standard practices for announcing their manufacturer
and model. This approach, while not comprehensive, reliably
identifies common devices [4,21]. WiFi Inspector contains
approximately 1,000 expert rules that are able to identify de-
vices from around 200 manufacturers. We show a sample of
these rules in Table 1. However, these rules only identify 60%
of devices from a random sample of 1,000 manually-labeled
devices. To categorize the remaining devices, WiFi Inspector
leverages an ensemble of four supervised learning classifiers
that individually classify devices using network layer-data,
UPnP responses, mDNS responses, and HTTP data. There-
fore, when identifying a device, WiFi Inspector first tries the
expert rules, and in the case of no match, next applies the
ensemble of four supervised classifiers.

The network classifier is built using a random forest, which
aggregates the following network features of a device:

1. MAC address

2. Local IP address

3. Listening services (i.e., port and protocol)

4. Application-layer responses on each port

5. DHCP class_id and hostname
The UPnP, mDNS and HTTP classifiers leverage raw text
responses. The classifier treats each response as a bag-of-
words representation, and uses TF-IDF to weight words across
all responses. This representation is fed as input to a Naive
Bayes classifier.

Training and Evaluation To train the supervised algo-
rithm, Avast collected data on approximately 500K random
devices from real-world scans. 200K of these were manu-
ally classified through an iterative clustering/labeling process,
where experts clustered devices based on network properties
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Classifier Coverage Accuracy Macro F1
Supervised Ensemble 0.91 0.95 0.78
Network 0.89 0.96 0.79
UPnP 0.27 0.91 0.37
mDNS 0.05 0.94 0.25
HTTP 0.14 0.98 0.23
Final Classifier 0.92 0.96 0.80

Table 2: Device Classifier Performance—Our final classi-
fier combines the supervised classifier and expert rules, and
achieves 92% coverage and 96% accuracy against a manually
labeled set of 1,000 devices.

Region Homes Devices

North America 1.24M  (8.0%) 92M (11.1%)
South America 32M  (20.9%) 18M  (21.6%)
Eastern Europe 42M (27.2%) 18.8M (22.6%)
Western Europe 29M  (19.1%) I5M (18.0%)
East Asia 543K  (3.5%) 3IM  (3.7%)
Central Asia 107K 0.7%) 500K  (0.6%)
Southeast Asia 813K (5.3%) 3.6M (4.3%)
South Asia 824K (5.3%) 6.6M (7.7%)
N. Africa, Middle East 1.2M  (7.5%) 6.1M  (7.3%)
Oceania 124K (0.8%) 680K  (0.8%)
Sub-Saharan Africa 266K (1.7%) 1.8M  (2.2%)

Table 3: Regional Distribution of Homes—The

15.5M homes and 83M devices in our dataset are from
geographically diverse regions. Because this breakdown
is representative of Avast market share rather than organic
density of homes and devices, we limit our analysis to within
individual regions.

and labeled large clusters, winnowing and re-clustering until
all devices were labeled. The remaining 300K devices were
labeled using the expert rules. To tune model parameters,
we performed five-fold cross-validation across the original
training set. However, because the initial clustering was used
to help identify devices in the clustering/labeling step, the
dataset is not used for validation. Instead, Avast curated a
validation set of 1,000 manually labeled devices, whose la-
bels were never used for training. The final classifier achieves
96% accuracy and 92% coverage with a 0.80 macro average
F1 score (Table 2). We mark devices we cannot classify as
“unknown”.

2.3 Avast Dataset

Avast collects aggregate data about devices, vulnerabilities,
and weak credentials from WiFi Inspector installations of con-
senting users for research and development purposes. Users
are informed about this data collection in simple English
when they install the product (Figure 1) and can opt out at any

time. We worked with Avast to analyze aggregate data about
the types of devices in each region. No individual records
or personally identifiable information was shared with our
team. Although WiFi Inspector supports automatic vulnera-
bility scans, we only use data from user-initiated scans in this
paper so that we can guarantee that users knowingly scanned
their networks. In addition, we exclude scans of public net-
works by only analyzing networks that were marked as home
networks in Windows during network setup. We detail the
ethical considerations and our safeguards in Section 2.6.

We specifically analyze data about devices found in scans
run between December 1-31, 2018 on Windows installations.
This dataset consists of data about 83 M devices from 15.5M
homes spanning 241 countries and territories, and 14.3 K
unique manufacturers. For installations with multiple scans
during this time period, we use the latest scan that found the
maximum number of devices. We aggregate each country
into 11 regions, defined by ISO 3166-2 [56]. As shown in
Table 3, WiFi Inspector is more popular in Europe and South
America than in North America. Because of this market share,
as well as significant regional differences in IoT deployment,
we discuss regions separately.

Threats to Validity = While WiFi Inspector is installed in a
significant number of homes, the dataset is likely colored by
several biases. First, the data is predicated on users installing
antivirus software on their computers. There is little work that
indicates whether users with antivirus software have more or
less secure practices. Second, we only analyzed data from in-
stallations on Windows machines due to differences between
Mac and Windows versions of the software. This may skew
the households we study to different socioeconomic groups
or introduce other biases. Third, WiFi Inspector actively no-
tifies users about problems it finds. As a result, users may
have patched vulnerable hosts, changed default passwords, or
returned devices to their place of purchase. This may skew
our results to indicate that homes included in this study are
more secure than in practice.

2.4 Network Telescope

While WiFi Inspector scans can identify the types of devices
present in home networks, the data does not provide any
insight into whether devices have been compromised. To
understand whether devices are infected and scanning to com-
promise other devices (e.g., as was seen for Mirai [4]), we
consider the IP addresses scanning in a large network tele-
scope composed of approximately 4.7 million IP addresses.
We specifically analyze the traffic for a 24 hour period on
January 1, 2019 for scan activity using the methodology dis-
cussed by Durumeric et al. [17]: we consider an IP address to
be scanning if it contacts at least 25 unique addresses in our
telescope on the same port within a 480 second window. In
total, we observe 1.7 M scans from a total of 529 K unique IP
addresses from 1.4 billion packets during our measurement
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period. Of the 500,716 homes scanned by WiFi Inspector on
this day, 1,865 (0.37%) were found scanning on the network
telescope.

2.5 Internet-Wide Scanning

We further augment the WiFi Inspector data with data col-
lected from Internet-wide scans performed by Censys [16] to
understand whether the vulnerabilities present on gateways
(i.e., home routers) could be remotely exploitable. Similarly
to our network telescope data, we investigate the intersec-
tion between Censys and Avast data for a 24-hour period on
January 30, 2019 to control for potential DHCP churn. We
also check whether devices that accept weak credentials for
authentication present login interfaces on public IP addresses.
We discuss the results in Section 4.

2.6 Ethical Considerations

WiFi Inspector collects data from inside users’ homes. To
ensure that this data is collected in line with user expecta-
tions, we only collect statistics about homes where the user
explicitly agreed to share data for research purposes. This
data sharing agreement is not hidden in a EULA, but out-
lined in simple English. We show the dialogue where users
acknowledge this in Figure 1. We note that this is an explicit
opt-out process. The data sharing agreement is the last mes-
sage shown to the user before the main menu, meaning users
do not need to wait and remember to turn off data collection
at a later time.

In order to keep up to date information on the devices
in a home, WiFi Inspector runs periodic, automated scans
of the local network. Automated scans do not perform any
vulnerability testing or password weakness checks; they only
identify devices through banners and MAC addresses. We
limit our analysis to homes where a user explicitly manually
initiated a network scan.

To protect user privacy and minimize risk to users, Avast
only shared aggregate data with our team. This data was
aggregated by device manufacturer, region, and device type.
The smallest region contained over 100,000 homes. We never
had access to data about individual homes or users; no person-
ally identifiable information was ever shared with us. Avast
did not collect any additional data for this work, nor did they
change the retention period of any raw data. No data beyond
the aggregates in this paper will be stored long term.

Internally, Avast adheres to a strict privacy policy: all data
is anonymized and no personally identifiable information is
ever shared with external researchers. All handling of WiFi
Inspector data satisfies personal data protection laws, such
as GDPR, and extends to data beyond its territorial scope
(i.e., outside of the European Union). Specific identifiers like
IP addresses are deleted in accordance with GDPR and only
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Figure 2: Devices per Region—There is significant variance
in device usage across regions. The largest presence is in
North America, where homes have a median seven hosts.
Conversely, homes in South Asia have a median two hosts.
The number of devices per home starts at two as all homes
require at least one computer and one router to be included.

collected when explicitly necessary for the security function
of the product.

3 IoT in Homes

It is vital that the security community understands the types
of IoT devices that consumers install and their respective
regional distributions given their increasing security and pri-
vacy implications. In this section, we provide one of first
large-scale analyses of these devices based on scans from
15.5M homes.

The presence of IoT devices varies by region. For example,
while more than 70% of homes in North America have an
IoT device, fewer than 10% of homes in South Asia do (Fig-
ure 2). Media devices (i.e., smart TVs and streaming devices)
are the most common type of device in seven of the eleven
regions, in terms of both presence in homes (2.5%—42.8%)
and total number of devices (16.6%—59.0%). Four regions
differ: surveillance devices are most common in South and
Southeast Asia, while work appliances are most common in
East Asia and Sub-Saharan Africa. We show the most popular
devices in each region in Table 4.

Despite differences in IoT popularity across regions, there
are strong correlations between regions for the rypes of de-
vices that are popular.? In other words, the most popular types
of devices are similar across regions. Still, certain pairs of
regions differ. For example, homes in all Asian regions are
least similar to homes in North America. On the other hand,
homes in geographically similar regions (e.g., South Asia and
Southeastern Asia) are highly correlated, even when they dif-
fer from the global distribution. The fact that distinct regions

2To quantify the preference for difference types of devices across regions,
we leverage a Spearman’s rank correlation test across each pairwise region,
taking the rank ordered list of device types for each region as input (Table 5).
Per Cohen’s guidelines, we find all regions rank ordered distributions are
strongly correlated (>0.7 coefficient) with p-values < 0.05 [11], indicating
little change in the rank order of device type distributions across regions.
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IOT‘ Media/TV Work Appl  Gaming  Voice Asst. Surveil. Storage Automat. Wearable Other IoT
Region Homes | Homes Devices| H D| H D| H D|/H D|H D|/H D|/H D|H D
North America 71% 42.8 449132.7 28.0|16.0 12.0|9.5 75139 37|27 17(23 1902 01|04 02
South America 34.4% 20.5 517 75 240| 43 9.8]0.1 03|46 133]03 0.6[00 0.1{00 0.1|0.1 02
Eastern Europe 25.7% 16.8 502 6.0 236| 27 76|02 06|25 140|12 34(0.1 04[00 0.1/0.0 0.0
Western Europe 57.2% 40.2 59.0 (140 189| 7.5 92|18 23|38 56|25 3213 1.6[00 00|00 0.0
East Asia 30.8% 12.2 258|149 445| 6.3 12.1(09 1.6(22 91|31 65(0.1 02]01 0200 0.1
Central Asia 17.3% 13.5 5421 1.6 120| 06 24]0.0 02|24 303|02 0.8{00 0.0[00 0.1/0.0 0.0
Southeast Asia 21.7% 9.0 2541 75 312 1.0 27|02 05|78 37.0/09 2.7(0.1 02[0.1 03|0.0 0.0
South Asia 8.7% 2.5 16.6 | 2.7 242| 04 24|0.1 0.84.1 54502 1.1{00 02[00 02|0.0 0.0
N. Africa, M. East 19.1% 94 357 | 5.1 262| 1.8 64]0.1 03|52 285(|0.7 24{00 02(00 02|00 0.1
Oceania 49.2% 30.7 46.6 | 19.8 259 |10.1 12.7 3.2 42130 53|35 43(07 09|01 02(0.0 0.0
Sub-Saharan Africa 19.7% 6.9 21.7[109 499| 25 7.1|0.1 0428 180(0.8 23({0.1 03(0.1 03|00 0.1

Table 4: 10T in Homes—We show the percent of households that have one or more of each type of IoT device and the percent of
devices (in gray) in each region that are of a certain type. For example, 42.8% of homes in North America have at least one
media device and 44.9% of North American IoT devices are media devices. For the presence of any IoT device, we only report

the percent of homes with an IoT device.
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Figure 3: IoT Device Distribution by Region—IoT device
type distributions vary between different geographic regions.
For example, Surveillance devices are most prevalent in Asia,
whereas Home Automation devices only appear in North
America and Europe.

have unique preferences for device types points to deeper
differences between regions, making it harder to reason about
IoT in aggregate and more challenging to generalize findings
from one region to others.

We also considered the relative popularity of types of de-
vices within each region. Even in areas with similar rank
order popularity, the proportion of device types in those re-
gions varies (Figure 3). We compute a pairwise proportion
test across each region to quantify the differences between
regions and find that nearly all regions have varying propor-
tions of IoT device types, except when a device type accounts
for fewer than 1% of devices. We discuss each region below.

N. America
S. America
Central Asia
N. Africa, ME

o]
—_

North America
South America

E. Europe

W. Europe

East Asia

Central Asia
Southeast Asia
South Asia

N. Africa, Middle East
Oceania
Sub-Saharan Africa

87 -
85
90
85
88
87
90
90
92

90
88
83
87
92
95
89

Table 5: Regional Similarities—We calculate the similarity
regions by computing the Spearman’s rank correlation test
over each region’s rank order list of most popular types of
devices. We show the most similar region (green) and least
similar region (red) by row. Correlation coefficients presented
are out of 100. In all cases, p-values were < 0.05.

3.1 North America

North America has the highest density of IoT devices of any
region: 71.8% of homes have an IoT device compared to
the global median of 40.2%. Similar to other regions, me-
dia devices (e.g., TVs and streaming boxes) and work appli-
ances account for the most devices in North American homes.
Nearly half of homes have one media device and one third
have a work appliance (Table 4). Media devices are also the
most prolific, accounting for 44.9% of 10T devices in North
America. In contrast, work appliances only account for 28%
of devices (Table 4). There is a long tail of manufacturers
that produce media devices in the U.S., and the most popu-
lar vendor, Roku, only accounts for 17.4% of media devices
(Table 11). Second most popular is Amazon (10.2%). In
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contrast, there are only a handful of popular work appliance
vendors—HP is the most common and accounts for 38.7% of
work appliances in North America.

Though popular in every region, a considerably higher
number of homes in North America contain a game console.
This is one of the reasons that a smaller fraction of IoT de-
vices are media-related than in Western and Northern Europe.
There are three major vendors of game consoles: Microsoft
(39%), Sony (30%),> and Nintendo (20%).

North America is the only region to see significant deploy-
ment of home voice assistants like Amazon Echo [3] and
Google Home [25]. Nearly 10% of homes now have a voice
assistant and the device class accounts for 7.5% of IoT de-
vices in the region. Two thirds of home assistants are Amazon
produced, the remaining one third are Google devices. North
America is also one of the only region to see automation de-
vices, which are present in 2.5% of homes. There are four
major manufacturers in this space, Nest* (44.2%), Belkin
(15.1%), Philips (14.4%), and Ecobee (9.8%). These vendors
sell products such as the Nest Thermostat [42], Wemo smart
plug [5], Philips Hue Smart Lights [46], and the Ecobee Smart
Thermostat [19].

The relative ranking of IoT device type popularity generally
does not change as more IoT devices are added to North
American homes. To quantify this, we calculate the Spearman
rank correlation for each pairwise set of homes based on the
number of devices and observe only slight deviations from
the overall regional distribution. As more devices are added
to the network, the correlation coefficients for North America
hover between 0.98-1.0, indicating minimal change. Despite
minimal change in the relative ranking of IoT device types,
we note that the fraction of each device type does vary as more
IoT devices are added to the home. For example, for homes
with one IoT device, voice assistants make up only 3.9% of all
devices, down from 7.3% across all homes. Game consoles
are also more popular in homes with only one IoT device, up
from 13.9% to 16.5%.

3.2 Central and South America

South American homes are the least similar to North America
of any region (Table 5). While the most common types of
IoT devices in both regions are media devices (51.7% vs
44.9%) and work appliances (24% vs 28%), significantly
fewer South American homes have an IoT device (34% vs
71%) and there are significantly more surveillance devices:
13.3% vs 3.7% of devices (Table 4). Prior research uncovered
that there is an increased reliance on surveillance devices
in Brazil and surrounding regions to deter violence [27,34],

3Sony PlayStation devices are split across three vendors in this distribu-
tion primarily due to their network cards being manufactured by two third
party vendors, Azurewave (11.6%) and Foxconn (9%).

4A classification error misclassifies Nest products as mobile devices. We
manually correct this in our analysis since Nest does not sell mobile devices.

which may offer one explanation. The only other device type
we commonly see are game consoles (9.8% of devices). No
other class appears in more than a fraction of a percent of
homes.

The vendor distribution of media devices in Central and
South America differs from the global distribution. Two ven-
dors appear in the top 5 for this region that do not appear in
any other region. First is Arcadyan, a Taiwanese company
that primarily manufactures cable boxes in this category, and
is often found in LG Smart TVs. The second is Intelbras, a
Brazilian company that manufactures DVRs and smart video
players. Intelbras accounts for 11% of the surveillance cam-
eras in the region, though they are third to Hikvision and
Dahua.

3.3 Europe

Eastern and Western Europe are both most similar to Oceania,
primarily due to the three regions sharing a similar fraction of
storage devices (Table 4). Still, the regions vary in terms of
their IoT usage: 57.2% of Western European homes have at
least one IoT device, compared to 25.7% in Eastern European
homes.

Manufacturers in Western Europe are similar to the global
distribution with a handful of exceptions. Sagemcom and
Free, two French companies that sell media boxes and IP
cameras, are the first and third largest media vendors in West-
ern Europe, accounting for 15.7% and 9.3% of all devices
compared to 5.7% and 3.2% globally. The markets of both
companies are highly localized, as 99% of their devices in
our dataset are located in Western and Northern Europe. In
other device categories, such as work appliances, game con-
soles, and home automation, there is limited variance from
the global distribution. Outside of North America and Ocea-
nia, Western Europe is the only other region where more than
1% of homes have a home automation device.

There are significantly more surveillance devices in Eastern
Europe than Western Europe (14% versus 5.6% of devices).
Eastern Europe is also unlike most other regions in that its
rank ordered device type distribution changes as more [oT
devices are added over time. For homes with one IoT device,
surveillance devices only make up 5.3% of all IoT devices,
but this changes drastically for homes with 3 IoT devices,
where the number of surveillance devices shoots up to 13.8%.
The fraction of surveillance devices continually increases as
more [oT devices are added to Eastern European homes. In
homes with 10 IoT devices, surveillance devices are the most
popular device, accounting for 42.7% of all devices.

3.4 Asia

We analyze the four regions (East, Central, South, and South-
east) of Asia separately as they have different 10T profiles.
For example, surveillance devices make up 54.5%, 37%, and
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Figure 4: IoT Vendors per Region and Device Type—There is a long tail of IoT manufacturers worldwide. However, in all
regions, 100 vendors account for more than 90% of devices and 400 vendors account for 99%. In contrast, some device types are
almost entirely dominated by one or two vendors. For example, Amazon and Google produce 91.9% of voice assistants and

Hikvision produces 18.6% of surveillance devices.

30.3% of devices in South, Southeast, and Central Asia (Fig-
ure 3), whereas only 9.1% of devices are surveillance related
in East Asia. This is not due to a large number of homes
with cameras, but rather that other types of IoT devices are
sparse. For example, only 9% of S.E. Asian Homes and
2.5% of South Asian homes contain a media device whereas
more than 40% homes in North America and Western Europe
do. Similar to other regions, Hikvision is the most prevalent
vendor of surveillance devices in S.E. Asia and South Asia,
making up 25.8% and 34.7% of surveillance devices in each
region respectively. Unlike other regions, a private® vendor
accounts for 15.5% of all surveillance devices in Southern
Asia.

East and Central Asia are more similar to Eastern Europe
and Africa than they are to South and Southeast Asia. East
Asia, for example, is most similar to Sub-Saharan Africa
because its largest device type is work appliances, which
make up 44.5% of the devices in the region. Central Asia
more closely follows Eastern Europe with media devices
accounting for 54.2% of devices. All Asian regions do have
one thing in common: they are all the least similar to North
American homes, indicating fundamental differences in IoT
device usage between the Asian countries and North America.

3.5 Africa and Middle East

The North Africa, Middle East (combined) region is most
similar to Eastern Europe. Media devices are the most preva-
lent, appearing in 9.4% of homes and accounting for 35.7%
of devices. Again, we observe a local media vendor with
a large presence: Vestel, a Turkish TV manufacturer, is the
third largest media vendor after Samsung and LG. Surveil-
lance devices make up 28.5% of their overall devices, and
appear in 5.2% of homes. Sub-Saharan Africa is distinct in

SPrivate vendors are ones that have paid an additional fee to IEEE to keep
their MAC address mapping off of the public OUI list.

that work appliances are most popular (50% of devices). 11%
homes in the region have at least one work appliance. The
most popular vendor is HP (33.6%), followed by a long tail
of other manufacturers.

3.6 Oceania

Oceania ranks third to North America and Western Europe in
terms of fraction of homes that contain an IoT device (49.2%
of homes). Similar to other regions, the most popular device
type in the region are media devices, which are found in
30.7% of homes. This is followed by work appliances (19.8%
of homes) and gaming consoles (10.1% of homes). Oceania
is one of the only regions that contains home automation
devices, appearing in 0.7% of homes in our dataset. Similar to
North America and Western Europe, Oceania has a moderate
number of voice assistant devices, which appear in 3.2% of
homes and account for 4.2% of all devices. Unlike North
America and Western Europe, homes in Oceania contain
many networked storage devices. They account for 4.3% of
all devices, which is most similar to homes in Eastern Europe
and East Asia.

3.7 10T Device Vendors

While we find devices from 14.3K unique vendors, 90% of
all devices globally are manufactured by 100 vendors (Fig-
ure 4a). Globally, there are 4,157 vendors (29%) that only
appear in one home. Unlike device type distributions, which
are consistent across region, vendor distributions vary heavily
across device type (Figure 4b). Some device types are domi-
nated by a small handful of vendors. For example, Amazon
and Google account for over 90% of voice assistant devices
globally. Other device types like media devices and surveil-
lance devices are split across many vendors. Media devices
are the most heterogeneous by vendor: the top 10 vendors
only account for 60% of devices.
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. . Top-10
Device Type Mean Correlation Mean Correlation
Game Console 0.43 0.49
Voice Assistant 0.23 0.26
Home Automation 0.98 0.98
Surveillance 0.07 0.28
Work Appliance 0.04 0.22
Storage 0.05 -0.03
Media 0.04 0.09
Router 0.01 0.02
Mobile Device 0.01 0.03

Port  Service Devices  Port Service  Devices

1900 UPnP 46.2% 139 SMB 10.6%
80 HTTP 45.7% 8443 HTTPS Alt. 9.5%
5353 mDNS 39.2% 8009 HTTP Alt. 9.3%
8080 HTTP Alt. 269% 445 SMB 8.7%
443  HTTPS 21.1% 7676 Custom 8.2%
9100 JetDirect 19.5% 49152 - 7.9%
515 LPR 16.5% 21 FTP 7.8%
631 IPP 11.8% 5000 UPnP 7.8%
554  RTSP 11.8% 23 Telnet 7.1%
8008 HTTP Alt. 11.1%

Table 6: Vendor Correlation by Device Type—We show
the mean correlation in rank ordered vendor distributions per
device type across every pair of regions across all vendors as
well as the top 10 vendors in each category. The correlations
in bold are statistically significant, and indicate consistency
in vendors for these device types across all regions in our
dataset.

Regional differences in vendor preferences may cause the
observed variance in vendor distributions across device types.
To measure this, we compute the pairwise Spearman’s corre-
lation for each vendor distribution across every pair of regions
(e.g. vendor distribution for voice assistants in North America
vs. East Asia). We then aggregate®over device type by taking
the average correlation across each pair of regions (Table 6).

We observe that device types dominated by a handful of
vendors globally (Figure 4b) show moderate to strong cor-
relations across all regions, indicating stability in popular
vendors across geographic areas. For example, game con-
soles are dominated by three major players (Microsoft, Sony,
Nintendo) in almost every region across the world. In con-
trast, there are a number of device types, such as media and
storage devices, for which there are no correlations across
region, even when looking only at the top 10 vendors. This
indicates that for these device types, regions have differing
vendor preferences. This result aligns with our investigation
of individual regions, where we observed many regions pre-
fer local media vendors that are less prevalent in the global
distribution.

4 Home Security

Beyond understanding the landscape of IoT devices, we in-
vestigate the security profile of devices in homes, including
devices that allow weak authentication, the security profile of

©We note that correlation coefficients are not additive, so to aggregate
we convert the respective correlation r-values to z-values using a Fisher’s
Z transform [13], take the average of the Z values, and convert back to an
r-value. In addition, we could only compare rank order for vendors who
appeared in all 11 regions in the dataset. There were three device categories
(wearables, home appliances, generic 10T) for which no vendors appeared in
all regions; we could not compute correlations in these cases.

Table 7: Popular IoT Services—We show the common open
ports in IoT devices in our dataset. The most popular pro-
tocols are related to device discovery (UPnP, mDNS) and
device administration (HTTP, HTTPS).

Credential %  Credential %0
admin/admin 88.3%  admin/admin 35.6%
admin/ 5.9%  root/xc3511 16.0%
Administrator/ 1.4%  vodafone/vodafone 10.4%
sysadm/sysadm 0.9%  guest/guest 7.8%
root/ 0.7%  admin/1234 7.5%
root/root 0.4% root/hslwificam 3.9%
user/ 0.4%  root/vizxv 3.7%
meo/meo 0.3%  root/oelinux123 2.2%
admin/password 0.3%  admin/4321 1.8%
admin/ttnet 0.3% 1.6%
other 1.0%  other 9.5%

(a) Weak FTP Credentials (b) Weak Telnet Credentials

Table 8: Most Popular Weak FTP and Telnet Creden-
tials—admin/admin accounts for the 88.3% and 35.6% of
the weak FTP and Telnet credentials.

home routers, and the presence of homes that exhibit scanning
behavior on a large darknet.

Many IoT devices act as embedded servers: 67.5% of de-
vices provide at least one TCP- or UDP-based service. Many
of these services are not surprising—network printers nec-
essarily run services like IPP. However, we also note that
devices commonly support older protocols like Telnet (7.1%
of IoT devices) and FTP (7.8%). The most common proto-
col is Universal Plug and Play (UPnP), which is prevalent
on 46.2% of devices. We also observe HTTP and mDNS on
nearly half of devices. We show the top protocols in Table 7.

4.1 Weak Device Credentials

WiFi Inspector identifies devices that allow authentication
with weak default credentials by attempting to log in to FTP
and Telnet services with a small dictionary of common default
credentials (Section 2). We find that 7.1% of IoT devices and
14.6% of home routers support one of these two protocols.
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FTP Telnet HTTP

Region All ToT Work Appl.  Surveillance Router Storage All ToT Surveillance Router TP-Link
Vuln Sup Vuln Sup Vuln  Sup Vuln Sup Vuln Sup | Vuln Sup Vuln  Sup Vuln Sup Vuln

North America 20.8 54 234 167 64 46 50 46 32 270| 05 48 58 9.9 1.3 53 16.8
South America 390 74 420 278 13.1 29 119 93 48 259| 49 86 189 166 1.6 132 423
Eastern Europe 31.6 99 40.7 309 9.8 58 162 126 6.6 312| 3.0 89 93 194 23 209 48.9
Western Europe 147 65 236 199 72 5.1 44 74 55 264 1.0 42 8.1 75 21 33 23.6
East Asia 36.0 17.3 415 320 69 55 44 75 122 36.7 04 138 47 13.0 09 199 23.8
Central Asia 29.5 30 642 102 99 27 539 157 3.8 351 49 6.7 64 16.1 73 37.6 47.3
Southeast Asia 504 74 595 254 74 14 210 148 58 377 3.6 12.1 63 124 20 18.1 43.7
South Asia 337 134 386 366 54 24 68 11.1 42 354| 29 146 76 137 09 193 21.4
Oceania 147 92 162 299 5.0 42 282 134 67 250| 07 78 57 148 09 17.1 19.9
N. Africa, M. East 446 9.8 534 304 75 26 337 239 82 259| 48 11.1 105 173 1.7 26.6 24.0
Sub-Saharan Africa 553 154 615 272 108 5.1 236 125 10.1 354 1.1 120 52 141 1.6 209 25.4

Table 9: Weak Default Credentials by Region and Device Type—We show the weak FTP and Telnet device population by
region and device type, highlighting both the fraction of devices that support (Sup) each protocol as well as the fraction that are
vulnerable with weak default credentials (Vuln). Some regions have a higher fraction of devices with weak credentials—in the
largest case, 50% of FTP devices in Southeast Asia and 4.9% of all Telnet devices in Central Asia are weak. We further observe
that the likelihood of having weak FTP credentials is correlated to weak Telnet credentials, indicating that the presence of weak
credentials may be linked to weaker security posture in the region overall.

Of those, 17.4% exhibit weak FTP passwords and 2.1% have
weak Telnet passwords. In both cases, admin/admin is most
common and accounts for 88% of weak FTP and 36% of
weak Telnet credentials (Table 8). The credential is used by
FTP devices from 571 vendors and from 160 Telnet vendors.

Regions vary in terms of vulnerable IoT device populations.
In the smallest case, 14.7% of FTP devices in Western Europe
support weak default credentials while more than 55% of
FTP devices in Sub-Saharan Africa that are weak. A similar,
though not as drastic range exists for Telnet. North Amer-
ica has the smallest vulnerable population of Telnet devices
(0.5%), Central Asia and South America share the largest
vulnerable Telnet population (4.9% of all IoT Telnet devices),
primarily because of their reliance on surveillance devices,
which have the weakest Telnet profile of all IoT devices.

Nearly all of the IoT devices that support FTP are work
appliances (76%), storage (9.1%), media (7.6%), and surveil-
lance devices (5.1%). Media and surveillance devices appear
in the list due to their global popularity—unlike storage and
work appliances where 29% and 23% of devices support FTP
respectively, only 1% of media devices and 4% of surveil-
lance devices support FTP. This aligns with the business need
for work and storage devices to facilitate user file transfer,
and also explains why there is little variance in the types of
devices that support FTP across regions.

Storage devices are the device type most likely to support
FTP, though only a small fraction of them use weak creden-
tials. There are two regional exceptions—East Asia and Sub-
Saharan Africa (Table 9), which exhibit 12.2% and 10.1%
of storage devices with weak credentials respectively. We
observe this is primarily due to one vendor, ICP Electronics,
which has a large market presence in the two regions: 12.1%
and 10.1% of storage devices in East Asia and Sub-Saharan

Africa respectively. 74% of ICP storage devices exhibit weak
default credentials.

A surprising number of home routers also support FTP
(10.2%). TP-Link is responsible for the most routers with
weak FTP credentials (Table 10)—regions that rely on TP-
Link routers thus have a higher rate of devices with weak
FTP credentials. Of all TP-Link devices across all regions,
9.3% offer an open FTP port, and 62.8% of those devices are
protected by weak credentials.

Unlike FTP, there is little reason for any IoT devices to
support Telnet in 2019. Yet, we find both that surveillance
devices and routers consistently support the protocol. Surveil-
lance devices have the weakest Telnet profile, with 10.7%
of surveillance devices that support Telnet exhibiting weak
credentials. This aligns with anecdotal evidence that suggests
that these kinds of devices are easy to hack [4].

4.2 Home Routers

Nearly every home in our dataset has a home router. Similar
to most types of IoT devices, there are regional differences
and a long tail of vendors globally (Table 9). In total,
we see home routers from 4.8 K vendors. TP-Link is
the most popular manufacturer globally (15% of routers)
and is the top provider in five regions: South America,
Central Asia, Eastern Europe, South Asia, and Southeast
Asia. Arris is the most popular router vendor in North
America (16.4%)—Ilikely because popular ISPs like Comcast
supply Arris routers to customers. Huawei is the most
popular vendor in Sub-Saharan and North Africa, accounting
for 19.8% and 25.6% of all routers respectively.

1178 28th USENIX Security Symposium

USENIX Association



Vendor % Open % Weak % of Weak  Vendor % Open % Weak % of Weak  Vendor % Open % Weak % of Weak

Ricoh 92.1% 71.2% 29.8%  TP-Link 9.3% 62.8% 559%  D-Link 38.9% 6.1% 33.0%

Kyocera 91.7% 97.1% 26% Technicolor  22.9% 20.4% 9.6%  Huawei 13.6% 4.8% 18.7%

HP 7.3% 92.4% 245%  ZTE 9.9% 37.5% 9.5%  TP-Link 15.0% 1.4% 12.6%

Sharp 89.4% 94.2% 6.4%  MicroTik 46.9% 13.0% 53%  Zyxel 53.5% 2.9% 12.1%

Canon 2.7% 79.3% 2.1%  D-Link 16.2% 10.9% 39%  Intelbras 12.7% 26.4% 7.1%
(a) Work Appliance (FTP) (b) Router (FTP) (c) Router (Telnet)

Table 10: Weak Vendors by Device Type—We show the vendors that exhibit weak default credentials across each device type
in our dataset sorted by the fraction of weak devices they contribute to their respective device types. For example, 71.2% of
Ricoh printers that support FTP also support weak default credentials, and these make up 29.8% of all weak work appliances.

Weak FTP/Telnet Credentials More than 93% of routers
have HTTP administration interfaces on port 80. We also find
that many routers support DNS over UDP (66.5%), UPnP
(63.4%), DNS over TCP (42.1%), HTTPS (42.2%), SSH
(19.7%), FTP (10.8%), and Telnet (14.6%). Of the devices
that support FTP and/or Telnet, 12% have weak FTP and 1.6%
have weak Telnet credentials. 1.2% of all routers exhibit a
weak FTP credential and 0.2% exhibit of all routers have a
weak Telnet credential. For FTP, TP-Link routers had the
weakest profile: 55.3% of their routers with an open FTP port
exhibited a weak credential. For Telnet, D-Link routers were
the weakest—6% of all open routers had a weak credential,
and 35.3% of all D-Link routers had an open Telnet port. We
show a breakdown by region in Table 10.

Weak HTTP Administration Credentials WiFi Inspec-
tor attempts to login to the HTTP interfaces for devices from
a small number of common vendors, including TP-Link—
the most common router manufacturer. In our dataset, there
are 3.8 M TP-Link home routers, of which 82% have an
HTTP port open to the local network. WiFi Inspector was
able to check for weak default credentials on 2.5M (66%)
of the devices with HTTP. Overall, 1.2 M (30%) of TP-Link
routers exhibit weak HTTP credentials. Nearly all (99.6%)
use admin/admin. The number of TP-Link routers with
guessable passwords varies greatly across regions (Table 9).
For example, only 6% of TP-Link routers in North America
have weak passwords while around 45% do in South and
Central Asia, and East and South Europe.

External Exposure To understand whether routers with
weak default credentials are also exposed on the public Inter-
net, we joined the WiFi Inspector dataset with Internet-wide
scan data from Censys [16] for devices on a single day—
January 30, 2019.7 A small number of home routers host
publicly accessible services: 3.4% expose HTTP, 0.8% FTP,
0.7% Telnet, and 0.8% SSH. Open gateways are primarily
located in three regions—Central America (29.3%), Eastern
Europe (20.6%), and Southeast Asia (17.2%). Of routers
that are externally exposed, we find that 51.2% of them are

7We perform this analysis for January because of GDPR restrictions on
Avast data.

exposed with a vulnerability—far higher than the fraction non-
externally available routers in our dataset with a weakness
or vulnerability (25.8%). The most popular router vendor in
these regions is TP-Link, which is also the vendor responsible
for the most externally exposed routers (19.7%). We note
this is not simply because TP-Link is the largest vendor—a
proportion test across regions shows that TP-Link routers
appear in the set of externally exposed routers at a higher rate
than that of non-externally exposed routers.

4.3 Scanning Homes

While scan data can provide insight into the vulnerability
of hosts, it typically does not indicate whether hosts have
been compromised. We analyzed the homes from WiFi In-
spector that were seen performing vulnerability scans in a
large network telescope (Section 2) on January 1, 2019 to
better understand infected devices. Of the 500.7 K homes that
WiFi Inspector collected data from that day, 1,865 (0.37%)
homes were found to be scanning for vulnerabilities. Scans
most frequently target TCP/445 (SMB, 26.7% homes) fol-
lowed by TCP/23 (Telnet, 11.3%), TCP/80 (HTTP, 10.7%),
and TCP/8080 (HTTP, 9.4%). In addition to checking cre-
dentials, WiFi Inspector also checks devices for a handful
of recent, known vulnerabilities (CVEs, EDBs, and oth-
ers). 1,156 (62%) of scanning homes contained at least one
known vulnerability—conversely, 7.2 M (46.8%) non scan-
ning homes in our dataset contain at least one known vulnera-
bility. To test the differences between these populations, we
used a proportions t-test at a confidence interval of 95%. We
observe that the two sets are statistically significantly different
(p-value: 2.31 % 1073?), indicating that scanning homes have
a higher vulnerability profile than homes globally. This trend
also holds for the number of vulnerable devices in scanning
homes (9.7%) compared to homes globally (5.7%). Unfor-
tunately, we were unable to determine why homes without
known vulnerabilities were seen scanning. This is likely due
to devices being compromised through means outside of our
measurement vantage point, for example, vulnerabilities that
we do not test for.

Although the overall vulnerability profile of devices in
scanning homes is higher, this is not true of all specific vul-
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nerabilities. Of the 25 vulnerabilities observed in scanning
homes, 17 appeared at a ratio that was not statistically signifi-
cantly different than devices globally. The remaining eight
vulnerabilities were statistically significantly different, though
six appear at a smaller rate in scanning homes than globally.
The two vulnerabilities that appeared at a higher rate in scan-
ning homes were both related to EternalBlue—a leaked NSA
exploit targeting SMB on Windows that was primarily respon-
sible for the WannaCry outbreak that impacted millions of
Windows devices in 2017 [44]. Specifically, we identify 5.2%
of devices within scanning homes that are vulnerable to Eter-
nalBlue, and further, 1.3% of devices in scanning homes are
already compromised, and communicating through a back-
door. This additionally explains some fraction of the SMB
scanning we observed on the darknet, as machines compro-
mised via EternalBlue often scan for other hosts running
vulnerable SMB servers. We note that although these homes
contain vulnerable devices, we cannot claim that they are
scanning as a result of these devices—for one, we do not
have full vulnerability coverage, and two, it is an outstanding
challenge to attribute device behavior from our vantage point.
Still, the presence of any scanning homes in general indi-
cates a threat landscape larger than simply publicly accessible
devices, and one that should be considered by the security
community.

5 Discussion

Recent security research has focused on new home IoT de-
vices, such as smart locks and home automation. Our results
suggest that while these devices are growing in importance
in western regions, they are far from the most common IoT
devices around the world. Instead, home IoT is better char-
acterized by smart TVs, printers, game consoles, and surveil-
lance devices—devices that have been connected to our home
networks for more than a decade. Furthermore, these are the
kinds of devices that still support weak credentials for old pro-
tocols: work appliances are the device type with the highest
fraction of weak FTP credentials; surveillance devices are the
worst for telnet credentials. Improving the security posture
of these devices remains just as important as ensuring that
new technologies are secure—our home networks are only as
secure as their weakest link.

There are some immediate next steps. As outlined in Sec-
tion 4, much of the devices that support weak credentials
are manufactured by a handful of popular vendors across all
regions (Table 10). The security community can start address-
ing these challenges by encouraging the largest offending
vendors to adopt better security practices. On the policy end,
law enforcement and legal entities have started to provide
legal disincentives for weak security practices. In light of
the Mirai attacks, the U.S. Federal Trade Commission has
prompted legal action against D-Link [12] for putting U.S.
consumers at risk.

A larger question remains on how to address the long tail of
vendors. As described in Section 3, regions often have vastly
different preferences for vendors across device types. As a
result, working to improve the security of devices based solely
on the global distribution may inadvertently leave smaller
regions with divergent preferences less secure.

Finally, it is not immediately clear how to measure the
impact of compromise on home security. In our work, we
measured the prevalence of scanning, though this is just one
indication of compromise. Furthermore, we only observed
0.37% of homes scanning; amounting to only 1.8 K homes
on a single day. In spite of all the data collected within
homes in this paper, we could not effectively identify why
certain homes were compromised. Researchers have proposed
systems to enable auditing of home IoT setups [55, 58], but
there is still more work to be done.

6 Related Work

Our work build on research from a number of areas, primarily
in home network measurement and IoT security.

Home Network Measurement Early research in home
network measurement primarily focused on debugging
networks—projects like Netalyzer [35] were conceived to en-
able users to debug their home Internet connectivity [9,15,49].
A number of follow on papers leveraged Netalyzer-like scans
to investigate the state of devices in homes [1,9, 14], as well
to try and understand the implications of a connected home
on user behavior [10].

Most similar to our work is presented by Grover et al. who
installed home routers with custom firmware in 100 homes
across 21 countries to measure the availability, infrastructure,
and usage of home networks [26, 53]. Their work focuses
on the network properties of home networks on aggregate,
and also is able to measure networks continuously based on
their position in the network. Our work instead focuses on the
devices behind the NAT in their ubiquity and their security
properties, with particular attention spent on IoT devices.

Recent work has built off of network scanning to enable
rich device identification. Feng et al. built a system that lever-
ages application layer responses to perform device identifi-
cation without machine learning, similar to our hand curated
expert rules [21]. This work has built off a number of papers
that leverage banners and other host information to charac-
terize hosts [6,20,39,50,51]. Other rule based engines have
been used in other work on active, public scan data based on
probing for application banners [4, 16].

Home IoT Security Home IoT security has been of recent
interest to researchers in light of its growing security and
privacy implications, from the systems level up through the
application layer. Ma et al. investigated the rise of the Mi-
rai botnet [4], which was largely composed of IoT devices
compromised due to weak credentials and used to launch
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massive DDoS attacks. This is not isolated to only attackers—
researchers have been breaking the home IoT devices since
their conception [8,31,38,47,59]. Notably, Fernandes et al.
outlined a number of challenges in Samsung SmartThings
devices, from their access control policy to their third-party
developer integration [22]. In response, researchers have built
systems to enable security properties in home IoT, such as
information flow tracking and sandboxing [23,33], improving
device authentication [54], and enabling auditing informa-
tion [55,58]. Most recently, Alrawi et al. synthesized the
security of home IoT devices into a SoK, where they present
a systematization of attacks and defense on home IoT and
outline how to reason about home IoT risk [2].

Internet-Wide IoT Scanning There has been a wealth of
recent work that has used Internet-wide scanning for security
analysis, including analyzing embedded systems on the public
Internet (e.g., [4,7,18,24,28,30,36,37,40,48,52,60]). In
contrast to these works, we focus on devices inside of homes
that are not visible through Internet-wide scanning.

7 Conclusion

In this paper, we conducted the first large-scale empirical anal-
ysis of IoT devices on real-world home networks. Leveraging
internal network scans of 83M IoT devices in 16M homes
worldwide, we find that IoT devices are widespread. In sev-
eral regions, the majority of homes now have at least one
networked IoT device. We analyzed the types and vendors
of commonly purchased devices and provided a landscape
of the global IoT ecosystem. We further analyzed the secu-
rity profile of these devices and networks and showed that a
significant fraction of devices use weak passwords on FTP
and Telnet, are vulnerable to known attacks, and use default
HTTP administration passwords that are left unchanged by
users. We hope our analysis will help the security community
develop solutions that are applicable to IoT devices already
in today’s homes.
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A Data Sharing Policy

The first panel in Figure 1 presents users with a text blurb about WiFi Inspector’s data sharing policy. For ease of reading, we
have copied that text below here:

Nearly every software product you use collects information about you. Search engines, games, everything. We do the
same. This allows us to provide better products and services for you. But we promise to respect your privacy. We also
promise that we will never publish or share any of your personal information outside Avast, nor allow anyone else to
use it to contact you for marketing purposes without your consent.

We do use the information that we collect to help us understand new and interesting trends. We may share this
information with third parties outside Avast. However, before we do that, we will remove anything that identifies you
personally. For more information, read our Privacy Policy.

If after installing this product, you’d prefer not to participate in data sharing with Avast and third parties, you can
opt-out at any time by unchecking the “participate in data-sharing” box in the settings.
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B Device Landscape

Routers Gaming Automation Storage Surveillance Work Assistant Media
s 16.4  Arris 39.2 Microsoft | 44.2 Nest 24.9 W Digital 12.1 Hikvision | 38.8 HP 63.2 Amazon 17.4 Roku
5 8.1 Cisco 19.7 Nintendo 15.1 Belkin 14.1 Synology 7.3 Dahua 10.3 FoxConn 32.0 Google 10.2  Amazon
g 5.2 Sagemcom | 11.6 Azurewave | 14.4 Phillips 5.9 Seagate 6.3 D-Link 8.4 Amazon 1.7 Unknown 9.9 Samsung
< 4.6 Actiontec 9.4 Sony 9.8 ecobee 39 ICP 5.8 Suga 8.0 Epson 0.8 StreamUnlimited | 5.9 Apple
z 4.3 TP-Link 9.0 FoxConn 2.7 Enphase 3.0 WD 5.3 Flir 7.5 Canon 0.4 Apple 5.8 Google
s 22.2 TP-Link 43.7 Microsoft | 33.5 Philips 25.0 W Digital | 20.8 Hikvision | 29.2 HP 39.1 Google 26.0 Samsung
5 7.7 Arris 13.6 Sony 13.0 Belkin 14.7 Sagemcom | 16.3 Dahua 18.0 Epson 27.5 Amazon 13.6 Arcadyan
g 7.0 Technicolor | 10.7 Azurewave | 12.1 - 13.1 Synology 84 - 9.0 FoxConn 62 — 7.5 Google
< 6.5 Huawei 9.6 FoxConn 59 SMA 9.7 D-Link 8.2 Intelbras 7.1 Brother 37 TI 63 LG
@ 4.6 Mitrastar 6.6 Nintendo 4.7 Enphase 8.5 Seagate 4.0 Cisco 5.7 Samsung 3.2 Dell 5.0 Intelbras
= 129 NEC 45.9 Nintendo | 49.0 Philips 37.2 Synology 28.5 Hikvision | 13.4 Canon 56.2 Google 8.6 Panasonic
'g 11.9 Buffalo 21.9 Sony 7.0 Belkin 13.4 Buffalo 10.5 Dahua 11.1 Epson 32.6 Amazon 7.5 Amazon
o 8.4 TP-Link 8.9 FoxConn 4.8 Belkin 12.1 ICP 8.6 Dahua 10.6 Moimstone | 2.1 Xiaomi 6.9 FoxConn
S 5.5 EFM 8.0 Azurewave | 4.2 Gongjin Elec | 8.8 I-OData 5.0 Panasonic | 9.3 FoxConn 0.7 TCL 6.3 Google
4.4 Huawei 4.9 Microsoft 42 SMA 8.2 QNAP 2.4 Bilian 9.2 HP 0.7 Onkyo 5.9 Sony
8 49.5 TP-Link 22.8 Microsoft | 11.1 Fn-Link 374 Synology |43.2 Hikvision | 23.7 HP 21.3 Amazon 37.2 Samsung
< 16.6 Huawei 20.9 FoxConn 11.1 Cambridge 14.0 D-Link 16.2 Dahua 10.0 Yealink 17.0 Amazon 28.6 LG
E 6.4 Cambridge | 17.7 Azurewave | 11.1 TP-Link 13.5 W Digital 11.0 Cisco 9.4 Canon 6.4 D-Link 6.9 FoxConn
% 5.3 D-Link 12.5 Sony - - 7.7 ICP 6.2 Cisco 7.5 Epson 4.3 M-Cube - -
© 3.0 ZTE 10.0 Liteon - - 4.1 QNAP 32 ICP 6.9 XEROX 43 TI - -
2 23.9 TP-Link 37.3 Microsoft | 40.3 Philips 26.7 Synology 20.6 Hikvision | 27.7 HP 449 Google 30.8 Samsung
g 73 ZTE 14.7 Sony 25.1 Philips 159 W Digital 18.7 Dahua 10.8 FoxConn 23.7 Amazon 170 LG
m 7.1 Huawei 13.2 FoxConn 54 SMA 14.0 Sagemcom | 12.0 Cisco 7.1 Canon 7.6 Amazon 5.4 FoxConn
z 6.6 D-Link 11.0 Azurewave | 3.2 eQ-3 9.7 ICP 4.3 Cisco 5.6 Epson 24 TI 4.7 Google
H 3.8 Asus 9.5 Nintendo 3.2 Murata 7.6 QNAP 3.4 ICP 4.9 Samsung 2.3 Telemedia 3.3 Neweb
g 18.0 Sagemcom | 30.6 Microsoft | 33.1 Philips 38.7 Synology 37.1 Free 39.0 HP 48.6 Amazon 15.7 Sagemcom
g 16.1 Free 22.5 Nintendo 17.7 Alertme.com | 17.7 W Digital 8.0 Hikvision | 11.6 Canon 37.2 Google 14.1 Samsung
m 5.7 AVM 14.9 Sony 6.1 eQ-3 7.2 ICP 7.0 Hikvision | 9.2 FoxConn 6.4 Apple 9.3 Free
3 5.2 Huawei 11.5 FoxConn 5.7 Hager 5.7 Technicolor | 6.3 Dahua 9.0 Epson 0.7 Apple 8.4 Google
B 3.8 TP-Link 8.3 Azurewave | 4.8 SMA 4.5 QNAP 5.1 D-Link 4.1 Brother 0.6 Telemedia 6.2 Google
e 24.2 TP-Link 64.9 Microsoft | 26.3 Philips 20.1 W Digital | 34.3 Hikvision | 33.1 HP 44.8 Google 17.1 FoxConn
< 7.4 Huawei 8.7 FoxConn |24.1 SMA 14.5 Synology 18.4 Dahua 16.6 Canon 33.8 Amazon 16.9 Samsung
= 7.4 D-Link 5.7 Azurewave | 14.0 Matrix 14.5 Synology 18.4 Dahua 8.1 FoxConn 2.7 HP 83 LG
3 7.3 Tenda 3.6 Sony 1.3 Espressif 10.6 Seagate 3.0 Cisco 6.0 Epson 2.5 Dell 6.1 Google
@ 2.7 Haier 2.0 Nintendo 1.3 Xiaomi 10.3 WD 2.1 ICP 3.6 Ricoh 1.8 Intel 5.5 Neweb
< 18.9 TP-Link 44.6 Microsoft | 34.7 Inspur 36.4 Synology 24.7 Hikvision | 154 HP 49.1 Google 19.7 Samsung
57 14.3 Huawei 11.6 Nintendo 18.9 Philips 19.4 W Digital 17.2 Dahua 13.9 FoxConn 21.7 Amazon 10.8 FoxConn
< 12.0 ZTE 11.5 FoxConn | 18.6 Rf-Link 8.6 ICP 4.8 Cisco 9.7 Epson 27 TI 10.6 ZTE
(ﬁ 5.3 Fiberhome |10.2 Azurewave | 8.2 SMA 7.5 QNAP 4.0 ICP 9.5 Canon 2.6 HP 10.5 LG
4.3 Mikrotic 6.5 Sony 2.0 Belkin 6.6 D-Link 3.8 PLUS 7.3 Ricoh 2.3 Dell 4.1 Neweb
19.3 Technicolor | 43.7 Microsoft | 30.3 Philips 21.0 Synology 16.8 Hikvision | 23.5 HP 85.3 Google 17.7 Google
-E 15.4 Huawei 15.0 Nintendo |20.3 Belkin 15.9 HyBroad 13.9 Dahua 19.3 FoxConn 8.0 Amazon 12.2 Roku
5 12.1 Sagemcom | 11.1 FoxConn 16.4 Lifi 13.1 W Digital 3.7 D-Link 14.1 Epson 1.3 Apple 10.0 Apple
3 7.6 TP-Link 10.3 Azurewave | 10.1 Enphase 9.5 ICP 3.4 Baichuan | 10.2 Canon 1.3 Apple 8.6 Samsung
4.7 Netcomm 9.3 Sony 6.2 SMA 6.5 Seagate 3.0 Yealink 6.5 Brother 0.6 Liteon 6.8 Sonos
E 25.6 Huawei 26.0 Microsoft | 27.3 Philips 29.1 Askey 19.5 Hikvision | 29.4 HP 27.6 Google 20.9 Samsung
= 23.2 TP-Link 18.7 FoxConn | 10.6 SMA 19.2 W Digital | 15.3 Dahua 9.7 FoxConn |21.3 Amazon 172 LG
2 8.4 ZTE 16.6 Sony 8.1 Lifi 9.7 ICP 5.4 Cisco 7.2 Canon 1.9 Dell 5.4 Vestel
=z 6.1 D-Link 12.2  Azurewave | 3.2 Sercomm 9.1 Synology 4.3 Topwell 4.3 Samsung 1.9 Apple 3.8 Sagemcom
Z 4.7 Zyxel 7.7 Liteon 2.7 ZTE 7.7 VTech 4.0 ICP 3.9 Konika 1.8 HP 2.7 Apple
- 19.7 Huawei 40.7 Microsoft | 21.1 SMA 247 Synology 39.0 Hikvision | 33.6 HP 33.8 Google 24.1 Samsung
;E 12.0 TP-Link 14.5 FoxConn |17.6 TI 19.2 W Digital | 16.3 Dahua 8.5 Canon 28.8 Amazon 74 LG
< 8.1 Ubiquiti 13.9 Sony 10.8 Philips 10.1 ICP 2.8 Cisco 8.4 Yealink 7.3 HP 74 LG
£ 6.7 Mikrotic 9.7 Azurewave | 3.9 HP 9.3 QNAP 22 ICP 6.3 FoxConn 2.9 Dell 5.8 Apple
6.5 D-Link 8.4 Nintendo 2.9 Hager 7.8 Seagate 1.7 PLUS 5.3 Ricoh 2.2 Apple 5.2 Sagemcom

Table 11: Most Popular Vendor per Region per Device Type—We show the five most popular vendors per device type across
the eleven regions in our dataset. We excluded two device types, wearable and home appliances, as they were barely present in
our dataset and splitting up their vendor distribution by region provided only a handful of devices in each region.
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FTP Telnet

Region Work Appliance Storage Surveillance Home Router Surveillance Home Router
s 353 HP 40.1 ICP 49.8  Axis 63.8  TP-Link 429  Dahua 452  TP-Link
5 13.9  Ricoh 252 W Digital | 13.4  Vivotek 9.6 ZTE 227 PLUS 40.5  Zyxel
g 9.3  FoxConn | 10.0 QNAP 7.9  Trendnet 8.0  Mikrotic 9.3  Metrohm 44 -
< 8.4  Kyocera 6.7  TP-Link 4.6  D-link 43 - 48 - 4.1  Belkin
Z 7.9  Sharp 55 WD 2.9  Creston 20 T&W 3.7 Cisco 0.7  Intelbras
s 39.6 Ricoh 242 W Digital | 43.3  Vivotek 40.3  Technicolor | 514 PLUS 44.5 Intelbras
5 253 HP 202 ICP 30.6  Axis 28.5 TP-Link 10.3  Cisco 21.6  Huawei
g 22.8  Kyocera 129 QNAP 6.9 Level One 11.1  D-Link 9.8 Metrohm | 12.0 BluCastle
< 3.3  Sharp 8.1 Cisco 6.5 D-Link 7.4 Mikrotic 8.8  Dahua 5.9 TP-Link
@ 12 Xerox 7.3 LaCie 2.2 Trendnet 4.7  Cameo 3.3 Ralink 5.7 Loopcomm
< 39.9 Ricoh 49.0 IO 443 Vivotek 62.4  TP-Link 438 PLUS 458 NEC
‘Z 17.6  Sharp 254 ICP 27.8  Axis 141 IO 11.9  Metrohm | 18.6  Hitron
: 8.6 HP 7.9 QNAP 8.7  Logitec 6.9  DrayTek 10.8  Dahua 15.6  Huawei
8 74  Kyocera 7.7 EFM 43  Imi 29  corega 9.2 ICP 49 Buffalo
5.6  Xerox 1.7 inXtron 3.5 Buffalo 1.8 Mikrotic 4.3  Cisco 4.7  TP-Link
g 664 HP 66.7 ICP 39.1  Axis 92.6  TP-Link 36.0 PLUS 523 D-Link
< 9.3 FoxConn | 333 QNAP 17.4  Zhongxi 1.9 Huawei 16.9  Dahua 352  Huawei
= 11.5  Kyocera - - 13.0  Ezvis 1.5 ZTE 112 - 8.8  Cambridge
E 3.5 Ricoh - - 13.0  Vivotek 1.5  Mikrotic 10.1  Metrohm 24  TP-Link
© 3.1  Xerox - - 87 - 1.1 Asus 5.6  iStor 0.6  Eltex
g 424 Kyocera | 53.1 ICP 31.6  Axis 45.8  TP-Link 35.0 PLUS 60.5 D-Link
E 259 Ricoh 182 QNAP 20.3  Ezvis 146 ZTE 26.5 Dahua 18.9  Huawei
M 23.6 HP 12.5 W Digital | 12.5  Vivotek 11.6  Technicolor | 12.3  Metrohm 8.6  TP-Link
z 3.7  Sharp 3.0 WD 9.0 Zhongxi 8.3 Mikrotic 5.0 Cisco 2.8  Zyxel
M 24 FoxConn 1.7 LaCie 4.3 D-Link 7.5  Sagemcom 2.5 iStor 1.8 ZTE
g 27.9 Kyocera | 49.2 ICP 49.7  Axis 40.8  TP-Link 355 PLUS 65.6  Zyxel
g 222 HP 17.1 W Digital | 11.0  Vivotek 20.6  Arcadyan 20.9  Dahua 15.1  TP-Link
) 18.8  Ricoh 8.5 QNAP 10.8  Advance Vision | 12.4  Technicolor | 14.0 Metrohm | 13.2 ZTE
3 9.5  Sharp 41 WD 4.7 D-Link 6.9 AVM 5.8 iStor 09 -
2 3.5 FoxConn 3.8  Synology 3.9 Hikvision 4.7 Mikrotic 50 - 0.8  Winstars
= 514 HP 324 W Digital | 61.5 Matrix 347 ZTE 42.1 PLUS 40.3  Smartlink
& 19.6  Ricoh 17.6  QNAP 11.5 Axis 26.4  TP-Link 18.4 Dahua 347 D-Link
= 10.5 Canon 147 WD 10.3  D-Link 124  D-Link 11.3  Metrohm 54  Huawei
2 5.6 Kyocera 147 ICP 3.8 3DSP 6.8  Fiberhome 88 - 2.9 Fida
e 4.2 FoxConn 88 - 2.6 CardioMEMS 3.0 Binatone 4.6 Cisco 2.6  Zyxel
- 46.6  Ricoh 39.9 ICP 45.1  Vivotek 62.3  TP-Link 457 PLUS 36.6 Huawei
57 19.5 HP 254  QNAP 39.6  Axis 16.6  Mikrotic 162 Metrohm | 24.6  Zyxel
<. 6.3 Sharp 11.6 W Digital 30 - 7.6  DrayTek 12.6  Dahua 12.3  TP-Link
a 6.3 Kyocera 6.5 WD 24 Matrix 3.3  Sagemcom 5.3 Cisco 75 ZTE
44  Xerox 43 10 1.2 Level One 1.8 D-Link 51 - 5.0 RicherLink
21.1  Kyocera | 65.1 ICP 30.8  Axis 57.6  TP-Link 358 PLUS 914 TP-Link
-E 18.3 HP 15.1 W Digital | 30.8 - 324  NetComm 18.9  Dahua 2.7 D-Link
§ 17.9  Ricoh 11.6 QNAP 30.8  Ezvis 3.6 D-Link 132 Metrohm 14 ZTE
° 143 Xeros 23 - 77 Adaptive 1.8 Billion 94 - 0.9  NetComm
Recognition
8.7  Sharp 2.3 Cisco 0.0 UTCF&S 1.8 Billion 1.1 - 09 -
E 35.1 Kyocera | 58.7 ICP 348  Axis 81.9  TP-Link 48.7 PLUS 38.9 TP-Link
o 24.1 HP 18.5 QNAP 19.1  Vivotek 57 ZTE 16.3  Metrohm | 34.2  Zyxel
-2 23.7  Ricoh 114 W Digital | 10.3 D-Link 4.8  Askey 11.8  Dahua 19.0  Huawei
z 5.6 Sharp 49 WD 3.4 Level One 1.7 Boca 49 iStor 2.6 D-Link
Z 5.0 FoxConn 1.6 Xerox 29 SMD 0.8 Cameo 3.6  Cisco 1.1 AirTies
« 32.1 HP 435 ICP 725  Axis 30.7 TP-Link 434 PLUS 60.0  Zyxel
‘E 28.7  Kyocera 16.5 QNAP 16.7  Vivotek 28.0 D-Link 16.9  Dahua 17.4  Huawei
< 26  Ricoh 11.8 W Digital 2.9  Hikvision 223  Mikrotic 140  Metrohm 7.3  TP-Link
%2 4.0  FoxConn 7.1  Xerox 2.0  Netcore 6.6 ZTE 59 - 49 Fida
“ 3.0 Sharp 5.9  Seagate 2.0 Bosch 4.2 Billion 44  iStor 22 ZTE

Table 12: Vendors with Weak FTP and Telnet Credentials by Region—We show the top five vendors in each device type by
region that exhibit weak FTP or Telnet credentials. In most cases, a small handful of vendors are responsible for most of the
weak devices.
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