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Abstract

In this paper, we provide the first large-scale empirical anal-

ysis of IoT devices in real-world homes by leveraging data

collected from user-initiated network scans of 83M devices

in 16M households. We find that IoT adoption is widespread:

on several continents, more than half of households already

have at least one IoT device. Device types and manufac-

turer popularity vary dramatically across regions. For ex-

ample, while nearly half of North American homes have an

Internet-connected television or streaming device, less than

three percent do in South Asia where the majority of devices

are surveillance cameras. We investigate the security posture

of devices, detailing their open services, weak default cre-

dentials, and vulnerability to known attacks. Device security

similarly varies geographically, even for specific manufac-

turers. For example, while less than 17% of TP-Link home

routers in North America have guessable passwords, nearly

half do in Eastern Europe and Central Asia. We argue that

IoT devices are here, but for most homes, the types of devices

adopted are not the ones actively discussed. We hope that

by shedding light on this complex ecosystem, we help the

security community develop solutions that are applicable to

today’s homes.

1 Introduction

The weak security posture of many popular IoT devices

has enabled attackers to launch record-breaking DDoS at-

tacks [4], compromise local networks [43, 57], and break into

homes [22, 41]. However, despite much attention to IoT in

the security community [22, 23, 29, 33, 55], there has been

little investigation into what devices consumers are adopting

and how they are configured in practice. In this work, we

provide a large-scale empirical analysis of 83M IoT devices

in 16M real-world homes. We partner with Avast Software,

a popular antivirus company, whose consumer security soft-

ware lets customers scan their local network for IoT devices

that support weak authentication or have remotely exploitable

vulnerabilities. Leveraging data collected from user-initiated

network scans in 16M households that have agreed to share

data for research and development purposes, we describe the

current landscape of IoT devices and their security posture.

IoT devices are widespread. More than half of households

have at least one IoT device in three global regions and in

North America more than 70% of homes have a network-

connected device. Media devices like smart televisions are

most common in seven of eleven global regions, but there

is significant variance otherwise. For example, surveillance

cameras are most popular in South and Southeast Asia, while

work appliances prevail in East Asia and Sub-Saharan Africa.

Home assistants are present in more than 10% of homes in

North America but have yet to see significant adoption in

other markets. There is a long tail of 14K total manufacturers,

but surprisingly we find that 90% of devices worldwide are

produced by only 100 vendors. A handful of companies

like Apple, HP, and Samsung dominate globally, but there

also exist a set of smaller vendors with significant regional

adoption. For example, Vestel, a Turkish manufacturer, is the

third largest media vendor in North Africa and the Middle

East, but has negligible broader adoption.

A surprising number of devices still support FTP and Telnet

with weak credentials. In Sub-Saharan Africa, North Africa,

the Middle East, and Southeast Asia, around half of devices

support FTP and in Central Asia, nearly 40% of home routers

use Telnet. Similar to the regional differences in device type

and manufacturer popularity, there are dramatic differences

in the use of weak credentials. For example, while less than

15% of devices with FTP allow weak authentication in Eu-

rope and Oceania, more than half do in Southeast Asia and

Sub-Saharan Africa. Interestingly, this is not entirely due to

manufacturer preference. While less than 20% of TP-Link

home routers allow access to their administration interface

with a weak password in North America, nearly half do in

Eastern Europe, Central Asia, and Southeast Asia. About 3%

of homes in our dataset are externally visible and more than

half of those have a known vulnerability or weak password.

Our results indicate that IoT is not a security concern of the
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Protocol Field Search Pattern Device Type Label Confidence

DHCP Class ID (?i)SAMSUNG[- :_]Network[- :_]Printer Printer 0.90

UPnP Device Type .*hub2.* IoT Hub 0.90

HTTP Title (?i)Polycom - (?:SoundPoint IP )?(?:SoundStation IP )? IP Phone 0.85

mDNS Name (?i)_nanoleaf(?:api|ms)?\._tcp\.local\. Lighting 0.90

Table 1: Example Device Classification Rules—Our device labeling algorithm combines a collection of 1,000 expert rules and

a supervised classifier, both of which utilize network and application layer data. Here, we show a few examples of these expert

rules, which provide 60% coverage of devices in a random sample of 1,000 devices.

We consider devices in the latter eleven categories to be IoT

devices for the remainder of this work. Because the classi-

fier greatly affects the results of this work, we describe the

algorithm in detail in Section 2.2.

Manufacturer Labeling To generate a full device label,

WiFi Inspector combines device type with the device’s man-

ufacturer (e.g., Nintendo Game Console). Avast determines

manufacturer by looking up the first 24 bits of each device’s

MAC address in the public IEEE Organizationally Unique

Identifier (OUI) registry [32]. We note that at times, the ven-

dor associated with a MAC address is the manufacturer of

the network interface rather than the device. For example,

MAC addresses associated with some Sony Playstations be-

long to either FoxConn or AzureWave, two major electronic

component manufacturers, rather than Sony. In this work,

we manually resolve and document any cases that required

grouping manufacturers together.

Checking Weak Credentials WiFi Inspector checks for

devices that allow authentication using weak credentials by

performing a dictionary-based attack against FTP and Telnet

services as well as web interfaces that use HTTP basic authen-

tication. When possible, WiFi Inspector will also try to log

into HTTP-based administration interfaces that it recognizes.

The scanner attempts to log in with around 200 credentials

composed of known defaults (e.g., admin/admin) and com-

monly used strings (e.g., user, 1234, love) from password

popularity lists, leaks, vendor and ISP default lists, and pass-

words checked by IoT malware. WiFi Inspector immediately

notifies users about devices with guessable logins.

Checking Common Vulnerabilities In addition to check-

ing for weak credentials, WiFi Inspector checks devices for

vulnerability to around 50 recent exploits that can be verified

without harming target devices (e.g., CVE-2018-10561, CVE-

2017-14413, EDB-ID-40500, ZSL-2014-5208, and NON-

2015-0211). Because there is bias towards more popular

manufacturers in these scans, we do not provide ecosystem-

level comparisons between different vulnerabilities.

2.2 Device Identification Algorithm

A significant portion of our work is based on identifying the

manufacturers and types of IoT devices in homes. We de-

scribe the algorithm that Avast has developed in this section:

Classifier WiFi Inspector labels device type (e.g., com-

puter, phone, game console) through a set of expert rules

and a supervised classification algorithm, both of which run

against network and application layer data. Classification is

typically possible because manufacturers often include model

information in web administration interfaces as well as in FTP

and Telnet banners [4]. Additionally, devices broadcast de-

vice details over UPnP and mDNS [14]. WiFi Inspector uses

expert rules—regular expressions that parse out simple fields

(e.g., telnet banner or HTML title)— to label hosts that follow

informal standard practices for announcing their manufacturer

and model. This approach, while not comprehensive, reliably

identifies common devices [4, 21]. WiFi Inspector contains

approximately 1,000 expert rules that are able to identify de-

vices from around 200 manufacturers. We show a sample of

these rules in Table 1. However, these rules only identify 60%

of devices from a random sample of 1,000 manually-labeled

devices. To categorize the remaining devices, WiFi Inspector

leverages an ensemble of four supervised learning classifiers

that individually classify devices using network layer-data,

UPnP responses, mDNS responses, and HTTP data. There-

fore, when identifying a device, WiFi Inspector first tries the

expert rules, and in the case of no match, next applies the

ensemble of four supervised classifiers.

The network classifier is built using a random forest, which

aggregates the following network features of a device:

1. MAC address

2. Local IP address

3. Listening services (i.e., port and protocol)

4. Application-layer responses on each port

5. DHCP class_id and hostname

The UPnP, mDNS and HTTP classifiers leverage raw text

responses. The classifier treats each response as a bag-of-

words representation, and uses TF-IDF to weight words across

all responses. This representation is fed as input to a Naïve

Bayes classifier.

Training and Evaluation To train the supervised algo-

rithm, Avast collected data on approximately 500K random

devices from real-world scans. 200K of these were manu-

ally classified through an iterative clustering/labeling process,

where experts clustered devices based on network properties
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Classifier Coverage Accuracy Macro F1

Supervised Ensemble 0.91 0.95 0.78

Network 0.89 0.96 0.79

UPnP 0.27 0.91 0.37

mDNS 0.05 0.94 0.25

HTTP 0.14 0.98 0.23

Final Classifier 0.92 0.96 0.80

Table 2: Device Classifier Performance—Our final classi-

fier combines the supervised classifier and expert rules, and

achieves 92% coverage and 96% accuracy against a manually

labeled set of 1,000 devices.

Region Homes Devices

North America 1.24 M (8.0%) 9.2 M (11.1%)

South America 3.2 M (20.9%) 18 M (21.6%)

Eastern Europe 4.2 M (27.2%) 18.8 M (22.6%)

Western Europe 2.9 M (19.1%) 15 M (18.0%)

East Asia 543 K (3.5%) 3 M (3.7%)

Central Asia 107 K (0.7%) 500 K (0.6%)

Southeast Asia 813 K (5.3%) 3.6 M (4.3%)

South Asia 824 K (5.3%) 6.6 M (7.7%)

N. Africa, Middle East 1.2 M (7.5%) 6.1 M (7.3%)

Oceania 124 K (0.8%) 680 K (0.8%)

Sub-Saharan Africa 266 K (1.7%) 1.8 M (2.2%)

Table 3: Regional Distribution of Homes—The

15.5M homes and 83M devices in our dataset are from

geographically diverse regions. Because this breakdown

is representative of Avast market share rather than organic

density of homes and devices, we limit our analysis to within

individual regions.

and labeled large clusters, winnowing and re-clustering until

all devices were labeled. The remaining 300K devices were

labeled using the expert rules. To tune model parameters,

we performed five-fold cross-validation across the original

training set. However, because the initial clustering was used

to help identify devices in the clustering/labeling step, the

dataset is not used for validation. Instead, Avast curated a

validation set of 1,000 manually labeled devices, whose la-

bels were never used for training. The final classifier achieves

96% accuracy and 92% coverage with a 0.80 macro average

F1 score (Table 2). We mark devices we cannot classify as

“unknown”.

2.3 Avast Dataset

Avast collects aggregate data about devices, vulnerabilities,

and weak credentials from WiFi Inspector installations of con-

senting users for research and development purposes. Users

are informed about this data collection in simple English

when they install the product (Figure 1) and can opt out at any

time. We worked with Avast to analyze aggregate data about

the types of devices in each region. No individual records

or personally identifiable information was shared with our

team. Although WiFi Inspector supports automatic vulnera-

bility scans, we only use data from user-initiated scans in this

paper so that we can guarantee that users knowingly scanned

their networks. In addition, we exclude scans of public net-

works by only analyzing networks that were marked as home

networks in Windows during network setup. We detail the

ethical considerations and our safeguards in Section 2.6.

We specifically analyze data about devices found in scans

run between December 1–31, 2018 on Windows installations.

This dataset consists of data about 83 M devices from 15.5 M

homes spanning 241 countries and territories, and 14.3 K

unique manufacturers. For installations with multiple scans

during this time period, we use the latest scan that found the

maximum number of devices. We aggregate each country

into 11 regions, defined by ISO 3166-2 [56]. As shown in

Table 3, WiFi Inspector is more popular in Europe and South

America than in North America. Because of this market share,

as well as significant regional differences in IoT deployment,

we discuss regions separately.

Threats to Validity While WiFi Inspector is installed in a

significant number of homes, the dataset is likely colored by

several biases. First, the data is predicated on users installing

antivirus software on their computers. There is little work that

indicates whether users with antivirus software have more or

less secure practices. Second, we only analyzed data from in-

stallations on Windows machines due to differences between

Mac and Windows versions of the software. This may skew

the households we study to different socioeconomic groups

or introduce other biases. Third, WiFi Inspector actively no-

tifies users about problems it finds. As a result, users may

have patched vulnerable hosts, changed default passwords, or

returned devices to their place of purchase. This may skew

our results to indicate that homes included in this study are

more secure than in practice.

2.4 Network Telescope

While WiFi Inspector scans can identify the types of devices

present in home networks, the data does not provide any

insight into whether devices have been compromised. To

understand whether devices are infected and scanning to com-

promise other devices (e.g., as was seen for Mirai [4]), we

consider the IP addresses scanning in a large network tele-

scope composed of approximately 4.7 million IP addresses.

We specifically analyze the traffic for a 24 hour period on

January 1, 2019 for scan activity using the methodology dis-

cussed by Durumeric et al. [17]: we consider an IP address to

be scanning if it contacts at least 25 unique addresses in our

telescope on the same port within a 480 second window. In

total, we observe 1.7 M scans from a total of 529 K unique IP

addresses from 1.4 billion packets during our measurement
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period. Of the 500,716 homes scanned by WiFi Inspector on

this day, 1,865 (0.37%) were found scanning on the network

telescope.

2.5 Internet-Wide Scanning

We further augment the WiFi Inspector data with data col-

lected from Internet-wide scans performed by Censys [16] to

understand whether the vulnerabilities present on gateways

(i.e., home routers) could be remotely exploitable. Similarly

to our network telescope data, we investigate the intersec-

tion between Censys and Avast data for a 24-hour period on

January 30, 2019 to control for potential DHCP churn. We

also check whether devices that accept weak credentials for

authentication present login interfaces on public IP addresses.

We discuss the results in Section 4.

2.6 Ethical Considerations

WiFi Inspector collects data from inside users’ homes. To

ensure that this data is collected in line with user expecta-

tions, we only collect statistics about homes where the user

explicitly agreed to share data for research purposes. This

data sharing agreement is not hidden in a EULA, but out-

lined in simple English. We show the dialogue where users

acknowledge this in Figure 1. We note that this is an explicit

opt-out process. The data sharing agreement is the last mes-

sage shown to the user before the main menu, meaning users

do not need to wait and remember to turn off data collection

at a later time.

In order to keep up to date information on the devices

in a home, WiFi Inspector runs periodic, automated scans

of the local network. Automated scans do not perform any

vulnerability testing or password weakness checks; they only

identify devices through banners and MAC addresses. We

limit our analysis to homes where a user explicitly manually

initiated a network scan.

To protect user privacy and minimize risk to users, Avast

only shared aggregate data with our team. This data was

aggregated by device manufacturer, region, and device type.

The smallest region contained over 100,000 homes. We never

had access to data about individual homes or users; no person-

ally identifiable information was ever shared with us. Avast

did not collect any additional data for this work, nor did they

change the retention period of any raw data. No data beyond

the aggregates in this paper will be stored long term.

Internally, Avast adheres to a strict privacy policy: all data

is anonymized and no personally identifiable information is

ever shared with external researchers. All handling of WiFi

Inspector data satisfies personal data protection laws, such

as GDPR, and extends to data beyond its territorial scope

(i.e., outside of the European Union). Specific identifiers like

IP addresses are deleted in accordance with GDPR and only
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Figure 2: Devices per Region—There is significant variance

in device usage across regions. The largest presence is in

North America, where homes have a median seven hosts.

Conversely, homes in South Asia have a median two hosts.

The number of devices per home starts at two as all homes

require at least one computer and one router to be included.

collected when explicitly necessary for the security function

of the product.

3 IoT in Homes

It is vital that the security community understands the types

of IoT devices that consumers install and their respective

regional distributions given their increasing security and pri-

vacy implications. In this section, we provide one of first

large-scale analyses of these devices based on scans from

15.5 M homes.

The presence of IoT devices varies by region. For example,

while more than 70% of homes in North America have an

IoT device, fewer than 10% of homes in South Asia do (Fig-

ure 2). Media devices (i.e., smart TVs and streaming devices)

are the most common type of device in seven of the eleven

regions, in terms of both presence in homes (2.5%–42.8%)

and total number of devices (16.6%–59.0%). Four regions

differ: surveillance devices are most common in South and

Southeast Asia, while work appliances are most common in

East Asia and Sub-Saharan Africa. We show the most popular

devices in each region in Table 4.

Despite differences in IoT popularity across regions, there

are strong correlations between regions for the types of de-

vices that are popular.2 In other words, the most popular types

of devices are similar across regions. Still, certain pairs of

regions differ. For example, homes in all Asian regions are

least similar to homes in North America. On the other hand,

homes in geographically similar regions (e.g., South Asia and

Southeastern Asia) are highly correlated, even when they dif-

fer from the global distribution. The fact that distinct regions

2To quantify the preference for difference types of devices across regions,

we leverage a Spearman’s rank correlation test across each pairwise region,

taking the rank ordered list of device types for each region as input (Table 5).

Per Cohen’s guidelines, we find all regions rank ordered distributions are

strongly correlated (>0.7 coefficient) with p-values < 0.05 [11], indicating

little change in the rank order of device type distributions across regions.
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IoT Media/TV Work Appl Gaming Voice Asst. Surveil. Storage Automat. Wearable Other IoT

Region Homes Homes Devices H D H D H D H D H D H D H D H D

North America 71% 42.8 44.9 32.7 28.0 16.0 12.0 9.5 7.5 3.9 3.7 2.7 1.7 2.3 1.9 0.2 0.1 0.4 0.2

South America 34.4% 20.5 51.7 7.5 24.0 4.3 9.8 0.1 0.3 4.6 13.3 0.3 0.6 0.0 0.1 0.0 0.1 0.1 0.2

Eastern Europe 25.7% 16.8 50.2 6.0 23.6 2.7 7.6 0.2 0.6 2.5 14.0 1.2 3.4 0.1 0.4 0.0 0.1 0.0 0.0

Western Europe 57.2% 40.2 59.0 14.0 18.9 7.5 9.2 1.8 2.3 3.8 5.6 2.5 3.2 1.3 1.6 0.0 0.0 0.0 0.0

East Asia 30.8% 12.2 25.8 14.9 44.5 6.3 12.1 0.9 1.6 2.2 9.1 3.1 6.5 0.1 0.2 0.1 0.2 0.0 0.1

Central Asia 17.3% 13.5 54.2 1.6 12.0 0.6 2.4 0.0 0.2 2.4 30.3 0.2 0.8 0.0 0.0 0.0 0.1 0.0 0.0

Southeast Asia 21.7% 9.0 25.4 7.5 31.2 1.0 2.7 0.2 0.5 7.8 37.0 0.9 2.7 0.1 0.2 0.1 0.3 0.0 0.0

South Asia 8.7% 2.5 16.6 2.7 24.2 0.4 2.4 0.1 0.8 4.1 54.5 0.2 1.1 0.0 0.2 0.0 0.2 0.0 0.0

N. Africa, M. East 19.1% 9.4 35.7 5.1 26.2 1.8 6.4 0.1 0.3 5.2 28.5 0.7 2.4 0.0 0.2 0.0 0.2 0.0 0.1

Oceania 49.2% 30.7 46.6 19.8 25.9 10.1 12.7 3.2 4.2 3.0 5.3 3.5 4.3 0.7 0.9 0.1 0.2 0.0 0.0

Sub-Saharan Africa 19.7% 6.9 21.7 10.9 49.9 2.5 7.1 0.1 0.4 2.8 18.0 0.8 2.3 0.1 0.3 0.1 0.3 0.0 0.1

Table 4: IoT in Homes—We show the percent of households that have one or more of each type of IoT device and the percent of

devices (in gray) in each region that are of a certain type. For example, 42.8% of homes in North America have at least one

media device and 44.9% of North American IoT devices are media devices. For the presence of any IoT device, we only report

the percent of homes with an IoT device.
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Figure 3: IoT Device Distribution by Region—IoT device

type distributions vary between different geographic regions.

For example, Surveillance devices are most prevalent in Asia,

whereas Home Automation devices only appear in North

America and Europe.

have unique preferences for device types points to deeper

differences between regions, making it harder to reason about

IoT in aggregate and more challenging to generalize findings

from one region to others.

We also considered the relative popularity of types of de-

vices within each region. Even in areas with similar rank

order popularity, the proportion of device types in those re-

gions varies (Figure 3). We compute a pairwise proportion

test across each region to quantify the differences between

regions and find that nearly all regions have varying propor-

tions of IoT device types, except when a device type accounts

for fewer than 1% of devices. We discuss each region below.
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North America – 81 88 92 88 76 77 81 87 93 86

South America 81 – 87 85 90 85 88 87 90 90 92

E. Europe 88 87 – 95 95 93 93 94 98 98 96

W. Europe 92 85 95 – 90 88 83 87 92 95 89

East Asia 88 90 95 90 – 90 93 92 93 98 99

Central Asia 76 85 93 88 90 – 93 90 94 90 93

Southeast Asia 77 88 93 83 93 93 – 99 95 96 95

South Asia 81 87 94 87 92 90 99 – 97 92 95

N. Africa, Middle East 87 90 98 92 93 94 95 97 – 96 95

Oceania 93 90 98 95 98 90 96 92 96 – 96

Sub-Saharan Africa 86 92 96 89 99 93 95 95 95 96 –

Table 5: Regional Similarities—We calculate the similarity

regions by computing the Spearman’s rank correlation test

over each region’s rank order list of most popular types of

devices. We show the most similar region (green) and least

similar region (red) by row. Correlation coefficients presented

are out of 100. In all cases, p-values were < 0.05.

3.1 North America

North America has the highest density of IoT devices of any

region: 71.8% of homes have an IoT device compared to

the global median of 40.2%. Similar to other regions, me-

dia devices (e.g., TVs and streaming boxes) and work appli-

ances account for the most devices in North American homes.

Nearly half of homes have one media device and one third

have a work appliance (Table 4). Media devices are also the

most prolific, accounting for 44.9% of IoT devices in North

America. In contrast, work appliances only account for 28%

of devices (Table 4). There is a long tail of manufacturers

that produce media devices in the U.S., and the most popu-

lar vendor, Roku, only accounts for 17.4% of media devices

(Table 11). Second most popular is Amazon (10.2%). In
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contrast, there are only a handful of popular work appliance

vendors—HP is the most common and accounts for 38.7% of

work appliances in North America.

Though popular in every region, a considerably higher

number of homes in North America contain a game console.

This is one of the reasons that a smaller fraction of IoT de-

vices are media-related than in Western and Northern Europe.

There are three major vendors of game consoles: Microsoft

(39%), Sony (30%),3 and Nintendo (20%).

North America is the only region to see significant deploy-

ment of home voice assistants like Amazon Echo [3] and

Google Home [25]. Nearly 10% of homes now have a voice

assistant and the device class accounts for 7.5% of IoT de-

vices in the region. Two thirds of home assistants are Amazon

produced, the remaining one third are Google devices. North

America is also one of the only region to see automation de-

vices, which are present in 2.5% of homes. There are four

major manufacturers in this space, Nest4 (44.2%), Belkin

(15.1%), Philips (14.4%), and Ecobee (9.8%). These vendors

sell products such as the Nest Thermostat [42], Wemo smart

plug [5], Philips Hue Smart Lights [46], and the Ecobee Smart

Thermostat [19].

The relative ranking of IoT device type popularity generally

does not change as more IoT devices are added to North

American homes. To quantify this, we calculate the Spearman

rank correlation for each pairwise set of homes based on the

number of devices and observe only slight deviations from

the overall regional distribution. As more devices are added

to the network, the correlation coefficients for North America

hover between 0.98–1.0, indicating minimal change. Despite

minimal change in the relative ranking of IoT device types,

we note that the fraction of each device type does vary as more

IoT devices are added to the home. For example, for homes

with one IoT device, voice assistants make up only 3.9% of all

devices, down from 7.3% across all homes. Game consoles

are also more popular in homes with only one IoT device, up

from 13.9% to 16.5%.

3.2 Central and South America

South American homes are the least similar to North America

of any region (Table 5). While the most common types of

IoT devices in both regions are media devices (51.7% vs

44.9%) and work appliances (24% vs 28%), significantly

fewer South American homes have an IoT device (34% vs

71%) and there are significantly more surveillance devices:

13.3% vs 3.7% of devices (Table 4). Prior research uncovered

that there is an increased reliance on surveillance devices

in Brazil and surrounding regions to deter violence [27, 34],

3Sony PlayStation devices are split across three vendors in this distribu-

tion primarily due to their network cards being manufactured by two third

party vendors, Azurewave (11.6%) and Foxconn (9%).
4A classification error misclassifies Nest products as mobile devices. We

manually correct this in our analysis since Nest does not sell mobile devices.

which may offer one explanation. The only other device type

we commonly see are game consoles (9.8% of devices). No

other class appears in more than a fraction of a percent of

homes.

The vendor distribution of media devices in Central and

South America differs from the global distribution. Two ven-

dors appear in the top 5 for this region that do not appear in

any other region. First is Arcadyan, a Taiwanese company

that primarily manufactures cable boxes in this category, and

is often found in LG Smart TVs. The second is Intelbras, a

Brazilian company that manufactures DVRs and smart video

players. Intelbras accounts for 11% of the surveillance cam-

eras in the region, though they are third to Hikvision and

Dahua.

3.3 Europe

Eastern and Western Europe are both most similar to Oceania,

primarily due to the three regions sharing a similar fraction of

storage devices (Table 4). Still, the regions vary in terms of

their IoT usage: 57.2% of Western European homes have at

least one IoT device, compared to 25.7% in Eastern European

homes.

Manufacturers in Western Europe are similar to the global

distribution with a handful of exceptions. Sagemcom and

Free, two French companies that sell media boxes and IP

cameras, are the first and third largest media vendors in West-

ern Europe, accounting for 15.7% and 9.3% of all devices

compared to 5.7% and 3.2% globally. The markets of both

companies are highly localized, as 99% of their devices in

our dataset are located in Western and Northern Europe. In

other device categories, such as work appliances, game con-

soles, and home automation, there is limited variance from

the global distribution. Outside of North America and Ocea-

nia, Western Europe is the only other region where more than

1% of homes have a home automation device.

There are significantly more surveillance devices in Eastern

Europe than Western Europe (14% versus 5.6% of devices).

Eastern Europe is also unlike most other regions in that its

rank ordered device type distribution changes as more IoT

devices are added over time. For homes with one IoT device,

surveillance devices only make up 5.3% of all IoT devices,

but this changes drastically for homes with 3 IoT devices,

where the number of surveillance devices shoots up to 13.8%.

The fraction of surveillance devices continually increases as

more IoT devices are added to Eastern European homes. In

homes with 10 IoT devices, surveillance devices are the most

popular device, accounting for 42.7% of all devices.

3.4 Asia

We analyze the four regions (East, Central, South, and South-

east) of Asia separately as they have different IoT profiles.

For example, surveillance devices make up 54.5%, 37%, and
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Figure 4: IoT Vendors per Region and Device Type—There is a long tail of IoT manufacturers worldwide. However, in all

regions, 100 vendors account for more than 90% of devices and 400 vendors account for 99%. In contrast, some device types are

almost entirely dominated by one or two vendors. For example, Amazon and Google produce 91.9% of voice assistants and

Hikvision produces 18.6% of surveillance devices.

30.3% of devices in South, Southeast, and Central Asia (Fig-

ure 3), whereas only 9.1% of devices are surveillance related

in East Asia. This is not due to a large number of homes

with cameras, but rather that other types of IoT devices are

sparse. For example, only 9% of S.E. Asian Homes and

2.5% of South Asian homes contain a media device whereas

more than 40% homes in North America and Western Europe

do. Similar to other regions, Hikvision is the most prevalent

vendor of surveillance devices in S.E. Asia and South Asia,

making up 25.8% and 34.7% of surveillance devices in each

region respectively. Unlike other regions, a private5 vendor

accounts for 15.5% of all surveillance devices in Southern

Asia.

East and Central Asia are more similar to Eastern Europe

and Africa than they are to South and Southeast Asia. East

Asia, for example, is most similar to Sub-Saharan Africa

because its largest device type is work appliances, which

make up 44.5% of the devices in the region. Central Asia

more closely follows Eastern Europe with media devices

accounting for 54.2% of devices. All Asian regions do have

one thing in common: they are all the least similar to North

American homes, indicating fundamental differences in IoT

device usage between the Asian countries and North America.

3.5 Africa and Middle East

The North Africa, Middle East (combined) region is most

similar to Eastern Europe. Media devices are the most preva-

lent, appearing in 9.4% of homes and accounting for 35.7%

of devices. Again, we observe a local media vendor with

a large presence: Vestel, a Turkish TV manufacturer, is the

third largest media vendor after Samsung and LG. Surveil-

lance devices make up 28.5% of their overall devices, and

appear in 5.2% of homes. Sub-Saharan Africa is distinct in

5Private vendors are ones that have paid an additional fee to IEEE to keep

their MAC address mapping off of the public OUI list.

that work appliances are most popular (50% of devices). 11%

homes in the region have at least one work appliance. The

most popular vendor is HP (33.6%), followed by a long tail

of other manufacturers.

3.6 Oceania

Oceania ranks third to North America and Western Europe in

terms of fraction of homes that contain an IoT device (49.2%

of homes). Similar to other regions, the most popular device

type in the region are media devices, which are found in

30.7% of homes. This is followed by work appliances (19.8%

of homes) and gaming consoles (10.1% of homes). Oceania

is one of the only regions that contains home automation

devices, appearing in 0.7% of homes in our dataset. Similar to

North America and Western Europe, Oceania has a moderate

number of voice assistant devices, which appear in 3.2% of

homes and account for 4.2% of all devices. Unlike North

America and Western Europe, homes in Oceania contain

many networked storage devices. They account for 4.3% of

all devices, which is most similar to homes in Eastern Europe

and East Asia.

3.7 IoT Device Vendors

While we find devices from 14.3K unique vendors, 90% of

all devices globally are manufactured by 100 vendors (Fig-

ure 4a). Globally, there are 4,157 vendors (29%) that only

appear in one home. Unlike device type distributions, which

are consistent across region, vendor distributions vary heavily

across device type (Figure 4b). Some device types are domi-

nated by a small handful of vendors. For example, Amazon

and Google account for over 90% of voice assistant devices

globally. Other device types like media devices and surveil-

lance devices are split across many vendors. Media devices

are the most heterogeneous by vendor: the top 10 vendors

only account for 60% of devices.
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Device Type Mean Correlation
Top-10

Mean Correlation

Game Console 0.43 0.49

Voice Assistant 0.23 0.26

Home Automation 0.98 0.98

Surveillance 0.07 0.28

Work Appliance 0.04 0.22

Storage 0.05 -0.03

Media 0.04 0.09

Router 0.01 0.02

Mobile Device 0.01 0.03

Table 6: Vendor Correlation by Device Type—We show

the mean correlation in rank ordered vendor distributions per

device type across every pair of regions across all vendors as

well as the top 10 vendors in each category. The correlations

in bold are statistically significant, and indicate consistency

in vendors for these device types across all regions in our

dataset.

Regional differences in vendor preferences may cause the

observed variance in vendor distributions across device types.

To measure this, we compute the pairwise Spearman’s corre-

lation for each vendor distribution across every pair of regions

(e.g. vendor distribution for voice assistants in North America

vs. East Asia). We then aggregate6over device type by taking

the average correlation across each pair of regions (Table 6).

We observe that device types dominated by a handful of

vendors globally (Figure 4b) show moderate to strong cor-

relations across all regions, indicating stability in popular

vendors across geographic areas. For example, game con-

soles are dominated by three major players (Microsoft, Sony,

Nintendo) in almost every region across the world. In con-

trast, there are a number of device types, such as media and

storage devices, for which there are no correlations across

region, even when looking only at the top 10 vendors. This

indicates that for these device types, regions have differing

vendor preferences. This result aligns with our investigation

of individual regions, where we observed many regions pre-

fer local media vendors that are less prevalent in the global

distribution.

4 Home Security

Beyond understanding the landscape of IoT devices, we in-

vestigate the security profile of devices in homes, including

devices that allow weak authentication, the security profile of

6We note that correlation coefficients are not additive, so to aggregate

we convert the respective correlation r-values to z-values using a Fisher’s

Z transform [13], take the average of the Z values, and convert back to an

r-value. In addition, we could only compare rank order for vendors who

appeared in all 11 regions in the dataset. There were three device categories

(wearables, home appliances, generic IoT) for which no vendors appeared in

all regions; we could not compute correlations in these cases.

Port Service Devices

1900 UPnP 46.2%

80 HTTP 45.7%

5353 mDNS 39.2%

8080 HTTP Alt. 26.9%

443 HTTPS 21.1%

9100 JetDirect 19.5%

515 LPR 16.5%

631 IPP 11.8%

554 RTSP 11.8%

8008 HTTP Alt. 11.1%

Port Service Devices

139 SMB 10.6%

8443 HTTPS Alt. 9.5%

8009 HTTP Alt. 9.3%

445 SMB 8.7%

7676 Custom 8.2%

49152 – 7.9%

21 FTP 7.8%

5000 UPnP 7.8%

23 Telnet 7.1%

Table 7: Popular IoT Services—We show the common open

ports in IoT devices in our dataset. The most popular pro-

tocols are related to device discovery (UPnP, mDNS) and

device administration (HTTP, HTTPS).

Credential %

admin/admin 88.3%

admin/ 5.9%

Administrator/ 1.4%

sysadm/sysadm 0.9%

root/ 0.7%

root/root 0.4%

user/ 0.4%

meo/meo 0.3%

admin/password 0.3%

admin/ttnet 0.3%

other 1.0%

(a) Weak FTP Credentials

Credential %

admin/admin 35.6%

root/xc3511 16.0%

vodafone/vodafone 10.4%

guest/guest 7.8%

admin/1234 7.5%

root/hslwificam 3.9%

root/vizxv 3.7%

root/oelinux123 2.2%

admin/4321 1.8%

1.6%

other 9.5%

(b) Weak Telnet Credentials

Table 8: Most Popular Weak FTP and Telnet Creden-

tials—admin/admin accounts for the 88.3% and 35.6% of

the weak FTP and Telnet credentials.

home routers, and the presence of homes that exhibit scanning

behavior on a large darknet.

Many IoT devices act as embedded servers: 67.5% of de-

vices provide at least one TCP- or UDP-based service. Many

of these services are not surprising—network printers nec-

essarily run services like IPP. However, we also note that

devices commonly support older protocols like Telnet (7.1%

of IoT devices) and FTP (7.8%). The most common proto-

col is Universal Plug and Play (UPnP), which is prevalent

on 46.2% of devices. We also observe HTTP and mDNS on

nearly half of devices. We show the top protocols in Table 7.

4.1 Weak Device Credentials

WiFi Inspector identifies devices that allow authentication

with weak default credentials by attempting to log in to FTP

and Telnet services with a small dictionary of common default

credentials (Section 2). We find that 7.1% of IoT devices and

14.6% of home routers support one of these two protocols.
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FTP Telnet HTTP

Region All IoT Work Appl. Surveillance Router Storage All IoT Surveillance Router TP-Link

Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln

North America 20.8 5.4 23.4 16.7 6.4 4.6 5.0 4.6 3.2 27.0 0.5 4.8 5.8 9.9 1.3 5.3 16.8

South America 39.0 7.4 42.0 27.8 13.1 2.9 11.9 9.3 4.8 25.9 4.9 8.6 18.9 16.6 1.6 13.2 42.3

Eastern Europe 31.6 9.9 40.7 30.9 9.8 5.8 16.2 12.6 6.6 31.2 3.0 8.9 9.3 19.4 2.3 20.9 48.9

Western Europe 14.7 6.5 23.6 19.9 7.2 5.1 4.4 7.4 5.5 26.4 1.0 4.2 8.1 7.5 2.1 3.3 23.6

East Asia 36.0 17.3 41.5 32.0 6.9 5.5 4.4 7.5 12.2 36.7 0.4 13.8 4.7 13.0 0.9 19.9 23.8

Central Asia 29.5 3.0 64.2 10.2 9.9 2.7 53.9 15.7 3.8 35.1 4.9 6.7 6.4 16.1 7.3 37.6 47.3

Southeast Asia 50.4 7.4 59.5 25.4 7.4 1.4 21.0 14.8 5.8 37.7 3.6 12.1 6.3 12.4 2.0 18.1 43.7

South Asia 33.7 13.4 38.6 36.6 5.4 2.4 6.8 11.1 4.2 35.4 2.9 14.6 7.6 13.7 0.9 19.3 21.4

Oceania 14.7 9.2 16.2 29.9 5.0 4.2 28.2 13.4 6.7 25.0 0.7 7.8 5.7 14.8 0.9 17.1 19.9

N. Africa, M. East 44.6 9.8 53.4 30.4 7.5 2.6 33.7 23.9 8.2 25.9 4.8 11.1 10.5 17.3 1.7 26.6 24.0

Sub-Saharan Africa 55.3 15.4 61.5 27.2 10.8 5.1 23.6 12.5 10.1 35.4 1.1 12.0 5.2 14.1 1.6 20.9 25.4

Table 9: Weak Default Credentials by Region and Device Type—We show the weak FTP and Telnet device population by

region and device type, highlighting both the fraction of devices that support (Sup) each protocol as well as the fraction that are

vulnerable with weak default credentials (Vuln). Some regions have a higher fraction of devices with weak credentials—in the

largest case, 50% of FTP devices in Southeast Asia and 4.9% of all Telnet devices in Central Asia are weak. We further observe

that the likelihood of having weak FTP credentials is correlated to weak Telnet credentials, indicating that the presence of weak

credentials may be linked to weaker security posture in the region overall.

Of those, 17.4% exhibit weak FTP passwords and 2.1% have

weak Telnet passwords. In both cases, admin/admin is most

common and accounts for 88% of weak FTP and 36% of

weak Telnet credentials (Table 8). The credential is used by

FTP devices from 571 vendors and from 160 Telnet vendors.

Regions vary in terms of vulnerable IoT device populations.

In the smallest case, 14.7% of FTP devices in Western Europe

support weak default credentials while more than 55% of

FTP devices in Sub-Saharan Africa that are weak. A similar,

though not as drastic range exists for Telnet. North Amer-

ica has the smallest vulnerable population of Telnet devices

(0.5%), Central Asia and South America share the largest

vulnerable Telnet population (4.9% of all IoT Telnet devices),

primarily because of their reliance on surveillance devices,

which have the weakest Telnet profile of all IoT devices.

Nearly all of the IoT devices that support FTP are work

appliances (76%), storage (9.1%), media (7.6%), and surveil-

lance devices (5.1%). Media and surveillance devices appear

in the list due to their global popularity—unlike storage and

work appliances where 29% and 23% of devices support FTP

respectively, only 1% of media devices and 4% of surveil-

lance devices support FTP. This aligns with the business need

for work and storage devices to facilitate user file transfer,

and also explains why there is little variance in the types of

devices that support FTP across regions.

Storage devices are the device type most likely to support

FTP, though only a small fraction of them use weak creden-

tials. There are two regional exceptions—East Asia and Sub-

Saharan Africa (Table 9), which exhibit 12.2% and 10.1%

of storage devices with weak credentials respectively. We

observe this is primarily due to one vendor, ICP Electronics,

which has a large market presence in the two regions: 12.1%

and 10.1% of storage devices in East Asia and Sub-Saharan

Africa respectively. 74% of ICP storage devices exhibit weak

default credentials.

A surprising number of home routers also support FTP

(10.2%). TP-Link is responsible for the most routers with

weak FTP credentials (Table 10)—regions that rely on TP-

Link routers thus have a higher rate of devices with weak

FTP credentials. Of all TP-Link devices across all regions,

9.3% offer an open FTP port, and 62.8% of those devices are

protected by weak credentials.

Unlike FTP, there is little reason for any IoT devices to

support Telnet in 2019. Yet, we find both that surveillance

devices and routers consistently support the protocol. Surveil-

lance devices have the weakest Telnet profile, with 10.7%

of surveillance devices that support Telnet exhibiting weak

credentials. This aligns with anecdotal evidence that suggests

that these kinds of devices are easy to hack [4].

4.2 Home Routers

Nearly every home in our dataset has a home router. Similar

to most types of IoT devices, there are regional differences

and a long tail of vendors globally (Table 9). In total,

we see home routers from 4.8 K vendors. TP-Link is

the most popular manufacturer globally (15% of routers)

and is the top provider in five regions: South America,

Central Asia, Eastern Europe, South Asia, and Southeast

Asia. Arris is the most popular router vendor in North

America (16.4%)—likely because popular ISPs like Comcast

supply Arris routers to customers. Huawei is the most

popular vendor in Sub-Saharan and North Africa, accounting

for 19.8% and 25.6% of all routers respectively.
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Vendor % Open % Weak % of Weak

Ricoh 92.1% 71.2% 29.8%

Kyocera 91.7% 97.1% 26%

HP 7.3% 92.4% 24.5%

Sharp 89.4% 94.2% 6.4%

Canon 2.7% 79.3% 2.1%

(a) Work Appliance (FTP)

Vendor % Open % Weak % of Weak

TP-Link 9.3% 62.8% 55.9%

Technicolor 22.9% 20.4% 9.6%

ZTE 9.9% 37.5% 9.5%

MicroTik 46.9% 13.0% 5.3%

D-Link 16.2% 10.9% 3.9%

(b) Router (FTP)

Vendor % Open % Weak % of Weak

D-Link 38.9% 6.1% 33.0%

Huawei 13.6% 4.8% 18.7%

TP-Link 15.0% 1.4% 12.6%

Zyxel 53.5% 2.9% 12.1%

Intelbras 12.7% 26.4% 7.1%

(c) Router (Telnet)

Table 10: Weak Vendors by Device Type—We show the vendors that exhibit weak default credentials across each device type

in our dataset sorted by the fraction of weak devices they contribute to their respective device types. For example, 71.2% of

Ricoh printers that support FTP also support weak default credentials, and these make up 29.8% of all weak work appliances.

Weak FTP/Telnet Credentials More than 93% of routers

have HTTP administration interfaces on port 80. We also find

that many routers support DNS over UDP (66.5%), UPnP

(63.4%), DNS over TCP (42.1%), HTTPS (42.2%), SSH

(19.7%), FTP (10.8%), and Telnet (14.6%). Of the devices

that support FTP and/or Telnet, 12% have weak FTP and 1.6%

have weak Telnet credentials. 1.2% of all routers exhibit a

weak FTP credential and 0.2% exhibit of all routers have a

weak Telnet credential. For FTP, TP-Link routers had the

weakest profile: 55.3% of their routers with an open FTP port

exhibited a weak credential. For Telnet, D-Link routers were

the weakest—6% of all open routers had a weak credential,

and 35.3% of all D-Link routers had an open Telnet port. We

show a breakdown by region in Table 10.

Weak HTTP Administration Credentials WiFi Inspec-

tor attempts to login to the HTTP interfaces for devices from

a small number of common vendors, including TP-Link—

the most common router manufacturer. In our dataset, there

are 3.8 M TP-Link home routers, of which 82% have an

HTTP port open to the local network. WiFi Inspector was

able to check for weak default credentials on 2.5 M (66%)

of the devices with HTTP. Overall, 1.2 M (30%) of TP-Link

routers exhibit weak HTTP credentials. Nearly all (99.6%)

use admin/admin. The number of TP-Link routers with

guessable passwords varies greatly across regions (Table 9).

For example, only 6% of TP-Link routers in North America

have weak passwords while around 45% do in South and

Central Asia, and East and South Europe.

External Exposure To understand whether routers with

weak default credentials are also exposed on the public Inter-

net, we joined the WiFi Inspector dataset with Internet-wide

scan data from Censys [16] for devices on a single day—

January 30, 2019.7 A small number of home routers host

publicly accessible services: 3.4% expose HTTP, 0.8% FTP,

0.7% Telnet, and 0.8% SSH. Open gateways are primarily

located in three regions—Central America (29.3%), Eastern

Europe (20.6%), and Southeast Asia (17.2%). Of routers

that are externally exposed, we find that 51.2% of them are

7We perform this analysis for January because of GDPR restrictions on

Avast data.

exposed with a vulnerability—far higher than the fraction non-

externally available routers in our dataset with a weakness

or vulnerability (25.8%). The most popular router vendor in

these regions is TP-Link, which is also the vendor responsible

for the most externally exposed routers (19.7%). We note

this is not simply because TP-Link is the largest vendor—a

proportion test across regions shows that TP-Link routers

appear in the set of externally exposed routers at a higher rate

than that of non-externally exposed routers.

4.3 Scanning Homes

While scan data can provide insight into the vulnerability

of hosts, it typically does not indicate whether hosts have

been compromised. We analyzed the homes from WiFi In-

spector that were seen performing vulnerability scans in a

large network telescope (Section 2) on January 1, 2019 to

better understand infected devices. Of the 500.7 K homes that

WiFi Inspector collected data from that day, 1,865 (0.37%)

homes were found to be scanning for vulnerabilities. Scans

most frequently target TCP/445 (SMB, 26.7% homes) fol-

lowed by TCP/23 (Telnet, 11.3%), TCP/80 (HTTP, 10.7%),

and TCP/8080 (HTTP, 9.4%). In addition to checking cre-

dentials, WiFi Inspector also checks devices for a handful

of recent, known vulnerabilities (CVEs, EDBs, and oth-

ers). 1,156 (62%) of scanning homes contained at least one

known vulnerability—conversely, 7.2 M (46.8%) non scan-

ning homes in our dataset contain at least one known vulnera-

bility. To test the differences between these populations, we

used a proportions t-test at a confidence interval of 95%. We

observe that the two sets are statistically significantly different

(p-value: 2.31∗10−39), indicating that scanning homes have

a higher vulnerability profile than homes globally. This trend

also holds for the number of vulnerable devices in scanning

homes (9.7%) compared to homes globally (5.7%). Unfor-

tunately, we were unable to determine why homes without

known vulnerabilities were seen scanning. This is likely due

to devices being compromised through means outside of our

measurement vantage point, for example, vulnerabilities that

we do not test for.

Although the overall vulnerability profile of devices in

scanning homes is higher, this is not true of all specific vul-
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nerabilities. Of the 25 vulnerabilities observed in scanning

homes, 17 appeared at a ratio that was not statistically signifi-

cantly different than devices globally. The remaining eight

vulnerabilities were statistically significantly different, though

six appear at a smaller rate in scanning homes than globally.

The two vulnerabilities that appeared at a higher rate in scan-

ning homes were both related to EternalBlue—a leaked NSA

exploit targeting SMB on Windows that was primarily respon-

sible for the WannaCry outbreak that impacted millions of

Windows devices in 2017 [44]. Specifically, we identify 5.2%

of devices within scanning homes that are vulnerable to Eter-

nalBlue, and further, 1.3% of devices in scanning homes are

already compromised, and communicating through a back-

door. This additionally explains some fraction of the SMB

scanning we observed on the darknet, as machines compro-

mised via EternalBlue often scan for other hosts running

vulnerable SMB servers. We note that although these homes

contain vulnerable devices, we cannot claim that they are

scanning as a result of these devices—for one, we do not

have full vulnerability coverage, and two, it is an outstanding

challenge to attribute device behavior from our vantage point.

Still, the presence of any scanning homes in general indi-

cates a threat landscape larger than simply publicly accessible

devices, and one that should be considered by the security

community.

5 Discussion

Recent security research has focused on new home IoT de-

vices, such as smart locks and home automation. Our results

suggest that while these devices are growing in importance

in western regions, they are far from the most common IoT

devices around the world. Instead, home IoT is better char-

acterized by smart TVs, printers, game consoles, and surveil-

lance devices—devices that have been connected to our home

networks for more than a decade. Furthermore, these are the

kinds of devices that still support weak credentials for old pro-

tocols: work appliances are the device type with the highest

fraction of weak FTP credentials; surveillance devices are the

worst for telnet credentials. Improving the security posture

of these devices remains just as important as ensuring that

new technologies are secure—our home networks are only as

secure as their weakest link.

There are some immediate next steps. As outlined in Sec-

tion 4, much of the devices that support weak credentials

are manufactured by a handful of popular vendors across all

regions (Table 10). The security community can start address-

ing these challenges by encouraging the largest offending

vendors to adopt better security practices. On the policy end,

law enforcement and legal entities have started to provide

legal disincentives for weak security practices. In light of

the Mirai attacks, the U.S. Federal Trade Commission has

prompted legal action against D-Link [12] for putting U.S.

consumers at risk.

A larger question remains on how to address the long tail of

vendors. As described in Section 3, regions often have vastly

different preferences for vendors across device types. As a

result, working to improve the security of devices based solely

on the global distribution may inadvertently leave smaller

regions with divergent preferences less secure.

Finally, it is not immediately clear how to measure the

impact of compromise on home security. In our work, we

measured the prevalence of scanning, though this is just one

indication of compromise. Furthermore, we only observed

0.37% of homes scanning; amounting to only 1.8 K homes

on a single day. In spite of all the data collected within

homes in this paper, we could not effectively identify why

certain homes were compromised. Researchers have proposed

systems to enable auditing of home IoT setups [55, 58], but

there is still more work to be done.

6 Related Work

Our work build on research from a number of areas, primarily

in home network measurement and IoT security.

Home Network Measurement Early research in home

network measurement primarily focused on debugging

networks—projects like Netalyzer [35] were conceived to en-

able users to debug their home Internet connectivity [9,15,49].

A number of follow on papers leveraged Netalyzer-like scans

to investigate the state of devices in homes [1, 9, 14], as well

to try and understand the implications of a connected home

on user behavior [10].

Most similar to our work is presented by Grover et al. who

installed home routers with custom firmware in 100 homes

across 21 countries to measure the availability, infrastructure,

and usage of home networks [26, 53]. Their work focuses

on the network properties of home networks on aggregate,

and also is able to measure networks continuously based on

their position in the network. Our work instead focuses on the

devices behind the NAT in their ubiquity and their security

properties, with particular attention spent on IoT devices.

Recent work has built off of network scanning to enable

rich device identification. Feng et al. built a system that lever-

ages application layer responses to perform device identifi-

cation without machine learning, similar to our hand curated

expert rules [21]. This work has built off a number of papers

that leverage banners and other host information to charac-

terize hosts [6, 20, 39, 50, 51]. Other rule based engines have

been used in other work on active, public scan data based on

probing for application banners [4, 16].

Home IoT Security Home IoT security has been of recent

interest to researchers in light of its growing security and

privacy implications, from the systems level up through the

application layer. Ma et al. investigated the rise of the Mi-

rai botnet [4], which was largely composed of IoT devices

compromised due to weak credentials and used to launch
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massive DDoS attacks. This is not isolated to only attackers—

researchers have been breaking the home IoT devices since

their conception [8, 31, 38, 47, 59]. Notably, Fernandes et al.

outlined a number of challenges in Samsung SmartThings

devices, from their access control policy to their third-party

developer integration [22]. In response, researchers have built

systems to enable security properties in home IoT, such as

information flow tracking and sandboxing [23,33], improving

device authentication [54], and enabling auditing informa-

tion [55, 58]. Most recently, Alrawi et al. synthesized the

security of home IoT devices into a SoK, where they present

a systematization of attacks and defense on home IoT and

outline how to reason about home IoT risk [2].

Internet-Wide IoT Scanning There has been a wealth of

recent work that has used Internet-wide scanning for security

analysis, including analyzing embedded systems on the public

Internet (e.g., [4, 7, 18, 24, 28, 30, 36, 37, 40, 48, 52, 60]). In

contrast to these works, we focus on devices inside of homes

that are not visible through Internet-wide scanning.

7 Conclusion

In this paper, we conducted the first large-scale empirical anal-

ysis of IoT devices on real-world home networks. Leveraging

internal network scans of 83M IoT devices in 16M homes

worldwide, we find that IoT devices are widespread. In sev-

eral regions, the majority of homes now have at least one

networked IoT device. We analyzed the types and vendors

of commonly purchased devices and provided a landscape

of the global IoT ecosystem. We further analyzed the secu-

rity profile of these devices and networks and showed that a

significant fraction of devices use weak passwords on FTP

and Telnet, are vulnerable to known attacks, and use default

HTTP administration passwords that are left unchanged by

users. We hope our analysis will help the security community

develop solutions that are applicable to IoT devices already

in today’s homes.
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A Data Sharing Policy

The first panel in Figure 1 presents users with a text blurb about WiFi Inspector’s data sharing policy. For ease of reading, we

have copied that text below here:

Nearly every software product you use collects information about you. Search engines, games, everything. We do the

same. This allows us to provide better products and services for you. But we promise to respect your privacy. We also

promise that we will never publish or share any of your personal information outside Avast, nor allow anyone else to

use it to contact you for marketing purposes without your consent.

We do use the information that we collect to help us understand new and interesting trends. We may share this

information with third parties outside Avast. However, before we do that, we will remove anything that identifies you

personally. For more information, read our Privacy Policy.

If after installing this product, you’d prefer not to participate in data sharing with Avast and third parties, you can

opt-out at any time by unchecking the “participate in data-sharing” box in the settings.

USENIX Association 28th USENIX Security Symposium    1183



B Device Landscape

Routers Gaming Automation Storage Surveillance Work Assistant Media

N
.
A

m
er

ic
a 16.4 Arris 39.2 Microsoft 44.2 Nest 24.9 W Digital 12.1 Hikvision 38.8 HP 63.2 Amazon 17.4 Roku

8.1 Cisco 19.7 Nintendo 15.1 Belkin 14.1 Synology 7.3 Dahua 10.3 FoxConn 32.0 Google 10.2 Amazon

5.2 Sagemcom 11.6 Azurewave 14.4 Phillips 5.9 Seagate 6.3 D-Link 8.4 Amazon 1.7 Unknown 9.9 Samsung

4.6 Actiontec 9.4 Sony 9.8 ecobee 3.9 ICP 5.8 Suga 8.0 Epson 0.8 StreamUnlimited 5.9 Apple

4.3 TP-Link 9.0 FoxConn 2.7 Enphase 3.0 WD 5.3 Flir 7.5 Canon 0.4 Apple 5.8 Google

S
.
A

m
er

ic
a 22.2 TP-Link 43.7 Microsoft 33.5 Philips 25.0 W Digital 20.8 Hikvision 29.2 HP 39.1 Google 26.0 Samsung

7.7 Arris 13.6 Sony 13.0 Belkin 14.7 Sagemcom 16.3 Dahua 18.0 Epson 27.5 Amazon 13.6 Arcadyan

7.0 Technicolor 10.7 Azurewave 12.1 – 13.1 Synology 8.4 – 9.0 FoxConn 6.2 – 7.5 Google

6.5 Huawei 9.6 FoxConn 5.9 SMA 9.7 D-Link 8.2 Intelbras 7.1 Brother 3.7 TI 6.3 LG

4.6 Mitrastar 6.6 Nintendo 4.7 Enphase 8.5 Seagate 4.0 Cisco 5.7 Samsung 3.2 Dell 5.0 Intelbras

E
as

t
A

si
a 12.9 NEC 45.9 Nintendo 49.0 Philips 37.2 Synology 28.5 Hikvision 13.4 Canon 56.2 Google 8.6 Panasonic

11.9 Buffalo 21.9 Sony 7.0 Belkin 13.4 Buffalo 10.5 Dahua 11.1 Epson 32.6 Amazon 7.5 Amazon

8.4 TP-Link 8.9 FoxConn 4.8 Belkin 12.1 ICP 8.6 Dahua 10.6 Moimstone 2.1 Xiaomi 6.9 FoxConn

5.5 EFM 8.0 Azurewave 4.2 Gongjin Elec 8.8 I-OData 5.0 Panasonic 9.3 FoxConn 0.7 TCL 6.3 Google

4.4 Huawei 4.9 Microsoft 4.2 SMA 8.2 QNAP 2.4 Bilian 9.2 HP 0.7 Onkyo 5.9 Sony

C
en

tr
al

A
si

a 49.5 TP-Link 22.8 Microsoft 11.1 Fn-Link 37.4 Synology 43.2 Hikvision 23.7 HP 21.3 Amazon 37.2 Samsung

16.6 Huawei 20.9 FoxConn 11.1 Cambridge 14.0 D-Link 16.2 Dahua 10.0 Yealink 17.0 Amazon 28.6 LG

6.4 Cambridge 17.7 Azurewave 11.1 TP-Link 13.5 W Digital 11.0 Cisco 9.4 Canon 6.4 D-Link 6.9 FoxConn

5.3 D-Link 12.5 Sony – – 7.7 ICP 6.2 Cisco 7.5 Epson 4.3 M-Cube – –

3.0 ZTE 10.0 Liteon – – 4.1 QNAP 3.2 ICP 6.9 XEROX 4.3 TI – –

E
as

t
E

u
ro

p
e 23.9 TP-Link 37.3 Microsoft 40.3 Philips 26.7 Synology 20.6 Hikvision 27.7 HP 44.9 Google 30.8 Samsung

7.3 ZTE 14.7 Sony 25.1 Philips 15.9 W Digital 18.7 Dahua 10.8 FoxConn 23.7 Amazon 17.0 LG

7.1 Huawei 13.2 FoxConn 5.4 SMA 14.0 Sagemcom 12.0 Cisco 7.1 Canon 7.6 Amazon 5.4 FoxConn

6.6 D-Link 11.0 Azurewave 3.2 eQ-3 9.7 ICP 4.3 Cisco 5.6 Epson 2.4 TI 4.7 Google

3.8 Asus 9.5 Nintendo 3.2 Murata 7.6 QNAP 3.4 ICP 4.9 Samsung 2.3 Telemedia 3.3 Neweb

W
es

t
E

u
ro

p
e 18.0 Sagemcom 30.6 Microsoft 33.1 Philips 38.7 Synology 37.1 Free 39.0 HP 48.6 Amazon 15.7 Sagemcom

16.1 Free 22.5 Nintendo 17.7 Alertme.com 17.7 W Digital 8.0 Hikvision 11.6 Canon 37.2 Google 14.1 Samsung

5.7 AVM 14.9 Sony 6.1 eQ-3 7.2 ICP 7.0 Hikvision 9.2 FoxConn 6.4 Apple 9.3 Free

5.2 Huawei 11.5 FoxConn 5.7 Hager 5.7 Technicolor 6.3 Dahua 9.0 Epson 0.7 Apple 8.4 Google

3.8 TP-Link 8.3 Azurewave 4.8 SMA 4.5 QNAP 5.1 D-Link 4.1 Brother 0.6 Telemedia 6.2 Google

S
o
u
th

A
si

a 24.2 TP-Link 64.9 Microsoft 26.3 Philips 20.1 W Digital 34.3 Hikvision 33.1 HP 44.8 Google 17.1 FoxConn

7.4 Huawei 8.7 FoxConn 24.1 SMA 14.5 Synology 18.4 Dahua 16.6 Canon 33.8 Amazon 16.9 Samsung

7.4 D-Link 5.7 Azurewave 14.0 Matrix 14.5 Synology 18.4 Dahua 8.1 FoxConn 2.7 HP 8.3 LG

7.3 Tenda 3.6 Sony 1.3 Espressif 10.6 Seagate 3.0 Cisco 6.0 Epson 2.5 Dell 6.1 Google

2.7 Haier 2.0 Nintendo 1.3 Xiaomi 10.3 WD 2.1 ICP 3.6 Ricoh 1.8 Intel 5.5 Neweb

S
.E

.
A

si
a

18.9 TP-Link 44.6 Microsoft 34.7 Inspur 36.4 Synology 24.7 Hikvision 15.4 HP 49.1 Google 19.7 Samsung

14.3 Huawei 11.6 Nintendo 18.9 Philips 19.4 W Digital 17.2 Dahua 13.9 FoxConn 21.7 Amazon 10.8 FoxConn

12.0 ZTE 11.5 FoxConn 18.6 Rf-Link 8.6 ICP 4.8 Cisco 9.7 Epson 2.7 TI 10.6 ZTE

5.3 Fiberhome 10.2 Azurewave 8.2 SMA 7.5 QNAP 4.0 ICP 9.5 Canon 2.6 HP 10.5 LG

4.3 Mikrotic 6.5 Sony 2.0 Belkin 6.6 D-Link 3.8 PLUS 7.3 Ricoh 2.3 Dell 4.1 Neweb

O
ce

an
ia

19.3 Technicolor 43.7 Microsoft 30.3 Philips 21.0 Synology 16.8 Hikvision 23.5 HP 85.3 Google 17.7 Google

15.4 Huawei 15.0 Nintendo 20.3 Belkin 15.9 HyBroad 13.9 Dahua 19.3 FoxConn 8.0 Amazon 12.2 Roku

12.1 Sagemcom 11.1 FoxConn 16.4 Lifi 13.1 W Digital 3.7 D-Link 14.1 Epson 1.3 Apple 10.0 Apple

7.6 TP-Link 10.3 Azurewave 10.1 Enphase 9.5 ICP 3.4 Baichuan 10.2 Canon 1.3 Apple 8.6 Samsung

4.7 Netcomm 9.3 Sony 6.2 SMA 6.5 Seagate 3.0 Yealink 6.5 Brother 0.6 Liteon 6.8 Sonos

N
.A

fr
ic

a,
M

E 25.6 Huawei 26.0 Microsoft 27.3 Philips 29.1 Askey 19.5 Hikvision 29.4 HP 27.6 Google 20.9 Samsung

23.2 TP-Link 18.7 FoxConn 10.6 SMA 19.2 W Digital 15.3 Dahua 9.7 FoxConn 21.3 Amazon 17.2 LG

8.4 ZTE 16.6 Sony 8.1 Lifi 9.7 ICP 5.4 Cisco 7.2 Canon 1.9 Dell 5.4 Vestel

6.1 D-Link 12.2 Azurewave 3.2 Sercomm 9.1 Synology 4.3 Topwell 4.3 Samsung 1.9 Apple 3.8 Sagemcom

4.7 Zyxel 7.7 Liteon 2.7 ZTE 7.7 VTech 4.0 ICP 3.9 Konika 1.8 HP 2.7 Apple

S
-S

A
fr

ic
a 19.7 Huawei 40.7 Microsoft 21.1 SMA 24.7 Synology 39.0 Hikvision 33.6 HP 33.8 Google 24.1 Samsung

12.0 TP-Link 14.5 FoxConn 17.6 TI 19.2 W Digital 16.3 Dahua 8.5 Canon 28.8 Amazon 7.4 LG

8.1 Ubiquiti 13.9 Sony 10.8 Philips 10.1 ICP 2.8 Cisco 8.4 Yealink 7.3 HP 7.4 LG

6.7 Mikrotic 9.7 Azurewave 3.9 HP 9.3 QNAP 2.2 ICP 6.3 FoxConn 2.9 Dell 5.8 Apple

6.5 D-Link 8.4 Nintendo 2.9 Hager 7.8 Seagate 1.7 PLUS 5.3 Ricoh 2.2 Apple 5.2 Sagemcom

Table 11: Most Popular Vendor per Region per Device Type—We show the five most popular vendors per device type across

the eleven regions in our dataset. We excluded two device types, wearable and home appliances, as they were barely present in

our dataset and splitting up their vendor distribution by region provided only a handful of devices in each region.
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FTP Telnet

Region Work Appliance Storage Surveillance Home Router Surveillance Home Router

N
.
A

m
er

ic
a 35.3 HP 40.1 ICP 49.8 Axis 63.8 TP-Link 42.9 Dahua 45.2 TP-Link

13.9 Ricoh 25.2 W Digital 13.4 Vivotek 9.6 ZTE 22.7 PLUS 40.5 Zyxel

9.3 FoxConn 10.0 QNAP 7.9 Trendnet 8.0 Mikrotic 9.3 Metrohm 4.4 –

8.4 Kyocera 6.7 TP-Link 4.6 D-link 4.3 – 4.8 – 4.1 Belkin

7.9 Sharp 5.5 WD 2.9 Creston 2.0 T&W 3.7 Cisco 0.7 Intelbras

S
.
A

m
er

ic
a 39.6 Ricoh 24.2 W Digital 43.3 Vivotek 40.3 Technicolor 51.4 PLUS 44.5 Intelbras

25.3 HP 20.2 ICP 30.6 Axis 28.5 TP-Link 10.3 Cisco 21.6 Huawei

22.8 Kyocera 12.9 QNAP 6.9 Level One 11.1 D-Link 9.8 Metrohm 12.0 BluCastle

3.3 Sharp 8.1 Cisco 6.5 D-Link 7.4 Mikrotic 8.8 Dahua 5.9 TP-Link

1.2 Xerox 7.3 La Cie 2.2 Trendnet 4.7 Cameo 3.3 Ralink 5.7 Loopcomm

E
as

t
A

si
a 39.9 Ricoh 49.0 I-O 44.3 Vivotek 62.4 TP-Link 43.8 PLUS 45.8 NEC

17.6 Sharp 25.4 ICP 27.8 Axis 14.1 I-O 11.9 Metrohm 18.6 Hitron

8.6 HP 7.9 QNAP 8.7 Logitec 6.9 DrayTek 10.8 Dahua 15.6 Huawei

7.4 Kyocera 7.7 EFM 4.3 Imi 2.9 corega 9.2 ICP 4.9 Buffalo

5.6 Xerox 1.7 inXtron 3.5 Buffalo 1.8 Mikrotic 4.3 Cisco 4.7 TP-Link

C
en

tr
al

A
si

a 66.4 HP 66.7 ICP 39.1 Axis 92.6 TP-Link 36.0 PLUS 52.3 D-Link

9.3 FoxConn 33.3 QNAP 17.4 Zhongxi 1.9 Huawei 16.9 Dahua 35.2 Huawei

11.5 Kyocera – – 13.0 Ezvis 1.5 ZTE 11.2 – 8.8 Cambridge

3.5 Ricoh – – 13.0 Vivotek 1.5 Mikrotic 10.1 Metrohm 2.4 TP-Link

3.1 Xerox – – 8.7 – 1.1 Asus 5.6 iStor 0.6 Eltex

E
as

t
E

u
ro

p
e 42.4 Kyocera 53.1 ICP 31.6 Axis 45.8 TP-Link 35.0 PLUS 60.5 D-Link

25.9 Ricoh 18.2 QNAP 20.3 Ezvis 14.6 ZTE 26.5 Dahua 18.9 Huawei

23.6 HP 12.5 W Digital 12.5 Vivotek 11.6 Technicolor 12.3 Metrohm 8.6 TP-Link

3.7 Sharp 3.0 WD 9.0 Zhongxi 8.3 Mikrotic 5.0 Cisco 2.8 Zyxel

2.4 FoxConn 1.7 La Cie 4.3 D-Link 7.5 Sagemcom 2.5 iStor 1.8 ZTE

W
es

t
E

u
ro

p
e 27.9 Kyocera 49.2 ICP 49.7 Axis 40.8 TP-Link 35.5 PLUS 65.6 Zyxel

22.2 HP 17.1 W Digital 11.0 Vivotek 20.6 Arcadyan 20.9 Dahua 15.1 TP-Link

18.8 Ricoh 8.5 QNAP 10.8 Advance Vision 12.4 Technicolor 14.0 Metrohm 13.2 ZTE

9.5 Sharp 4.1 WD 4.7 D-Link 6.9 AVM 5.8 iStor 0.9 –

3.5 FoxConn 3.8 Synology 3.9 Hikvision 4.7 Mikrotic 5.0 – 0.8 Winstars

S
o
u
th

A
si

a 51.4 HP 32.4 W Digital 61.5 Matrix 34.7 ZTE 42.1 PLUS 40.3 Smartlink

19.6 Ricoh 17.6 QNAP 11.5 Axis 26.4 TP-Link 18.4 Dahua 34.7 D-Link

10.5 Canon 14.7 WD 10.3 D-Link 12.4 D-Link 11.3 Metrohm 5.4 Huawei

5.6 Kyocera 14.7 ICP 3.8 3DSP 6.8 Fiberhome 8.8 – 2.9 Fida

4.2 FoxConn 8.8 – 2.6 CardioMEMS 3.0 Binatone 4.6 Cisco 2.6 Zyxel

S
.E

.
A

si
a

46.6 Ricoh 39.9 ICP 45.1 Vivotek 62.3 TP-Link 45.7 PLUS 36.6 Huawei

19.5 HP 25.4 QNAP 39.6 Axis 16.6 Mikrotic 16.2 Metrohm 24.6 Zyxel

6.3 Sharp 11.6 W Digital 3.0 – 7.6 DrayTek 12.6 Dahua 12.3 TP-Link

6.3 Kyocera 6.5 WD 2.4 Matrix 3.3 Sagemcom 5.3 Cisco 7.5 ZTE

4.4 Xerox 4.3 I-O 1.2 Level One 1.8 D-Link 5.1 – 5.0 RicherLink

O
ce

an
ia

21.1 Kyocera 65.1 ICP 30.8 Axis 57.6 TP-Link 35.8 PLUS 91.4 TP-Link

18.3 HP 15.1 W Digital 30.8 – 32.4 NetComm 18.9 Dahua 2.7 D-Link

17.9 Ricoh 11.6 QNAP 30.8 Ezvis 3.6 D-Link 13.2 Metrohm 1.4 ZTE

14.3 Xeros 2.3 – 7.7
Adaptive

Recognition
1.8 Billion 9.4 – 0.9 NetComm

8.7 Sharp 2.3 Cisco 0.0 UTC F&S 1.8 Billion 1.1 – 0.9 –

N
.
A

fr
ic

a,
M

E 35.1 Kyocera 58.7 ICP 34.8 Axis 81.9 TP-Link 48.7 PLUS 38.9 TP-Link

24.1 HP 18.5 QNAP 19.1 Vivotek 5.7 ZTE 16.3 Metrohm 34.2 Zyxel

23.7 Ricoh 11.4 W Digital 10.3 D-Link 4.8 Askey 11.8 Dahua 19.0 Huawei

5.6 Sharp 4.9 WD 3.4 Level One 1.7 Boca 4.9 iStor 2.6 D-Link

5.0 FoxConn 1.6 Xerox 2.9 SMD 0.8 Cameo 3.6 Cisco 1.1 AirTies

S
-S

A
fr

ic
a 32.1 HP 43.5 ICP 72.5 Axis 30.7 TP-Link 43.4 PLUS 60.0 Zyxel

28.7 Kyocera 16.5 QNAP 16.7 Vivotek 28.0 D-Link 16.9 Dahua 17.4 Huawei

26 Ricoh 11.8 W Digital 2.9 Hikvision 22.3 Mikrotic 14.0 Metrohm 7.3 TP-Link

4.0 FoxConn 7.1 Xerox 2.0 Netcore 6.6 ZTE 5.9 – 4.9 Fida

3.0 Sharp 5.9 Seagate 2.0 Bosch 4.2 Billion 4.4 iStor 2.2 ZTE

Table 12: Vendors with Weak FTP and Telnet Credentials by Region—We show the top five vendors in each device type by

region that exhibit weak FTP or Telnet credentials. In most cases, a small handful of vendors are responsible for most of the

weak devices.
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