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Abstract—We consider multiple unmanned aerial vehi-
cles (UAVs) serving a density of ground terminals (GTs)
as mobile base stations. The objective is to minimize the
outage probability of GT-to-UAV transmissions. In this
context, the optimal placement of UAVs under different
UAV altitude constraints and GT densities is studied. First,
using a random deployment argument, a general upper
bound on the optimal outage probability is found for any
density of GTs and any number of UAVs. Lower bounds
on the performance of optimal deployments are also deter-
mined. The upper and lower bounds are combined to show
that the optimal outage probability decays exponentially
with the number of UAVs for GT densities with finite
support. Next, the structure of optimal deployments are
studied when the common altitude constraint is large. In
this case, for a wide class of GT densities, it is shown
that all UAVs should be placed to the same location in
an optimal deployment. A design implication is that one
can use a single multi-antenna UAV as opposed to multiple
single-antenna UAVs without loss of optimality. Numerical
optimization of UAV deployments are carried out using
particle swarm optimization. Simulation results are also
presented to confirm the analytical findings.

Index Terms—UAV-aided communications, optimal
placement, outage probability.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have recently been
successively utilized in many diverse areas, including
wireless communications [1]. Several applications have
been mentioned for UAV-assisted communications in-
cluding UAVs acting as base stations [2], [3], and relays
[4]–[6]. The ability of UAVs acting as data collection
units [7], [8] makes them particularly appealing for Inter-
net of Things applications [1]. In fact, UAVs’ anywhere,
anytime relocation ability plays a significant role in their
success in improving the performance of various wireless
communications systems. In this context, UAVs can be
utilized to improve network power-efficiency [9], [10].

Despite their effectiveness in wireless communica-
tions, there are still several fundamental challenges in
UAV-based systems that have to be resolved. For ex-
ample, trajectory optimization and optimal placement
of UAVs is an important problem in designing UAV-
aided wireless communication systems. The problem of
optimal placement for UAVs, even in a scenario where
the location of users is known and fixed, is a nonconvex
optimization problem whose dimensionality increases
with the number of UAVs.

There have been several studies on the place-
ment/trajectory optimization of UAVs for different ob-
jectives. For example, static placement of UAVs as mo-

bile base stations to maximize network coverage [11]–
[13], and energy efficient placement of UAVs subject to
ground terminal (GT) coverage or rate constraints are
studied [14], [15]. The problem of interference-aware
joint trajectory and power control of multiple UAVs have
been explored [16]. In [17], the authors consider the
UAV trajectory planning problem under communication
security constraints. In [6], the authors propose a mobile
UAV relaying method and jointly optimize throughput,
trajectory and temporal power allocation. Power effi-
cient deployment of UAVs as relays is studied in [18]
for centralized and distributed UAV selection scenarios.
Trajectory control of UAVs for maximizing the worst
terrestrial user’s spectral efficiency is studied in [19]. The
deployment of UAVs for user-in-the-loop scenarios have
also been considered [20]. In this framework, the UAV
locations influence the ground user density as users will
tend to congregate to high coverage or high rate areas.

Most of the above works consider optimizing the
power or rate efficiency of the system or aim at max-
imizing the coverage. On the other hand, especially if
the UAVs are tasked to collect data from low-power
GTs, outage probability becomes an important perfor-
mance measure. Also, most previous works consider a
numerical approach to UAV location optimization, and
formal analytical results on the optimal placement and
the resulting performance is not available in general.
In this work, we consider the optimal placement of
UAVs serving as base stations to GTs with the goal
of minimizing the outage probability of GT transmis-
sions. We follow an analytical approach to find optimal
placement of UAVs, and derive upper bound and lower
bounds on the optimal outage probability. Using the
outage probability as a performance metric results in
a fundamentally different cost function as compared to
earlier literature on UAVs. Correspondingly, we also
obtain fundamentally different results. We also verify our
analysis with numerical simulations conducted using the
particle swarm optimization (PSO) algorithm [21].

A problem formulation that is similar to ours appears
in the context of optimal control of mobile sensors
[22], [23]. The objective of these two studies is to
find control laws that maximize the cumulative event
detection probabilities of the sensors. However, [22],
[23] do not present analytical results on the structure and
performance of optimal sensor deployments, and follow
a gradient descent based numerical solution.

The rest of this paper is organized as follows: In



Section II, we introduce the system model. In Section
III, we study the optimal outage probability for different
number of UAVs at a fixed altitude. In Section IV, we
study the optimal deployments of UAVs for different
altitude constraints. In Section V, we present numerical
simulation results. Finally, in Section VI, we draw our
main conclusions and discuss future work. Some of the
technical proofs are provided in the appendices.

II. SYSTEM MODEL

We consider multiple GTs at zero altitude and multiple
UAVs. Mathematically, we assume that all the GTs are
located at Rd, where d ∈ {1, 2}. The case d = 1 is
relevant when the GTs are located on a straight line on
the ground, e.g. on a highway. We also assume that the
GTs are distributed on Rd according to some probability
density function f : Rd → R.

In this paper, we consider a model where the UAVs
are subject to a common minimum altitude constraint
h ≥ 0 due to governmental regulations or environmental
constraints. In such a scenario, given that all the GTs
are located at zero altitude, decreasing the altitude of
any UAV decreases the GTs’ access distance to the UAV,
resulting in a better overall performance. We thus assume
that all UAVs are located at the fixed elevation h.

Let us now consider a GT at location x ∈ Rd. Also,
let ui ∈ Rd, i = 1, . . . , n denote the locations of the
UAVs projected to the ground (Hence, the actual location
of UAV i is given by [ui h] ∈ Rd+1). The GT can
communicate with any one of the UAVs, all of which act
as service providers. Fig. 1 illustrates the system model
for the special case of n = d = 2.

Fig. 1. A network of two UAVs serving a GT.

Suppose that the GT wishes to communicate with
rate ρ bits/sec/Hz and transmits with fixed power P .
Note that the distance between the GT at x and UAV
i is given by (‖x − ui‖2 + h2)

1
2 . Assuming Gaussian

noise with unit power at the receiver, the capacity of the
channel between the GT and UAV i is thus log2(1 +
(‖x− ui‖2 + h2)−

r
2 |hi|2P ) bits/sec/Hz, where r is the

path loss exponent, and hi denotes the fading coefficient
between the GT and UAV i. We assume h1, . . . , hn
are independent and identically distributed as circularly-
symmetric complex Gaussian random variable with unit
variance. The GT transmission will be successful if the
channel capacity is at least ρ. The probability of a failed
transmission from a GT at x to UAV i is then given by
the outage probability

POi(x, ui),P

(
log2

(
1+

|hi|2P
(‖x−ui‖2+h2)

r
2

)
≤ρ
)

(1)

= P

(
|hi|2 ≤

2ρ−1
P

(‖x−ui‖2+h2)
r
2

)
. (2)

Form now on, we set ρ = P = 1 without loss of
generality. Also, since |h1|2 is well-known to be an
exponential random variable with cumulative distribution
function F|hi|2(x) = 1− e−x, we obtain

POi(x, ui) = 1− g(x, ui), (3)

where

g(x, ui) , exp
(
−(‖x− ui‖2 + h2)

r
2

)
. (4)

The transmitted GT data cannot be received by any one
of the UAVs if an outage event occurs at all UAVs.
The overall outage probability of the system given the
deployment U = [u1 · · ·un] of UAVs is thus

PO(x, U) =
n∏
i=1

[1− g(x, ui)] . (5)

Averaging out the GT density function f , we obtain our
objective function

PO(U) =

∫ n∏
i=1

[1− g(x, ui)]f(x)dx. (6)

Throughout the paper, all unspecified integration do-
mains are Rd. The problem is then to find optimal
UAV locations U? , argminU PO(U) that minimize
the outage probability, and the corresponding minimum-
possible outage probability PO(U?). In the following, we
first consider the behavior of PO(U?) for different values
of the number of UAVs n for a fixed UAV altitude h.
We then consider the behavior of PO(U?) as a function
of the constraint h on the UAV altitudes.

III. OPTIMAL OUTAGE PROBABILITY FOR
DIFFERENT NUMBER OF UAVS

In this section, we study how the optimal outage
probability varies with respect to the number of UAVs for
a fixed h, and the corresponding optimal deployments. In
this context, finding the exact minimizers of (6) appears



to be a hopeless task for a general n. Even the case of
a single UAV n = 1 results in a non-trivial optimization
problem, for which there appears to be a no closed-
form solution in general. Still, one can find the optimal
positioning of a single UAV for unimodal densities that
are defined in the following.

Definition 1. We call a univariate density function
f : R → R unimodal with center µ ∈ R if f is
non-decreasing on (−∞, µ], and f is non-increasing on
[µ,∞). We call a bivariate density function f : R2 → R
unimodal with center µ = [ µ1

µ2 ] ∈ R2 if for all y, the
function f1(x) = f(x, y) is unimodal with center µ1,
and for all x, the function f2(y) = f(x, y) is unimodal
with center µ1.

A circularly-symmetric Gaussian random vector or
uniform random vectors are both examples of unimodal
densities. We have the following theorem.

Theorem 1. Let n = 1, and suppose that f is unimodal
with center µ. Then, for any h ≥ 0, an optimal deploy-
ment of the single UAV is given by U? = µ.

Proof. See Appendix A.

This verifies the intuition that if the density is “sym-
metric” around µ, then the optimal deployment of the
single UAV should be µ.

For the case of a general n ≥ 1, we provide general
upper and lower bounds on the outage probability that
hold for any number of UAVs and different GT den-
sities. The bounds allow us to obtain estimates on the
achievable outage probability without going through the
time-consuming numerical optimization methods. They
also allow us to obtain the asymptotic behavior of the
outage probability as n→∞.

We first present a general upper bound via the follow-
ing theorem. As defined in Section II, let PO(U?) denote
the minimum possible outage probability provided by an
optimal deployment. Let X represent a random variable
whose probability density equals the GT density f .

Theorem 2. The following upper bound holds for arbi-
trary random variables U1, . . . , Un:

PO(U
?)≤EX,U1,...,Un

[
n∏
i=1

(1− g(X,Ui))

]
. (7)

In particular, suppose U1, . . . , Un have the same density
as some random variable U , are mutually independent,
and also independent of X . Then, we have

PO(U
?) ≤

∫
(EU [1− g(x, U)])

n
f(x)dx. (8)

Proof. The proof (7) relies on the following random
deployment argument: We assume that the location of
UAV i is the random variable Ui. The expected outage

probability with this random deployment scenario is the
right side of (7). It is guaranteed that there exists at least
one deployment that achieves the expected performance,
and this proves (7). Result (8) follows immediately from
(7) by independence of random variables.

In particular, the theorem shows via (8) that in general,
the outage probability decays at least exponentially with
the number of available UAVs provided that the support
of f is finite.1 On the other hand, the upper bound in (8)
is not tight in general for a given finite n. An important
question in this context that we shall leave as future work
is the optimization of the upper bound (7) with respect
to the densities U1, . . . , Un, X for tighter upper bounds.

We now provide lower bounds. A very simple lower
bound that holds for arbitrary densities is the following:

Theorem 3. We have

PO(U
?) ≥ (1− e−h

r

)n. (9)

Proof. The bound follows once we use the estimate
g(x, ui)=exp(−(‖x−ui‖2+h2)

r
2 )≤exp(−hr) in (6).

The bound (9) is unfortunately not useful for the case
of unmanned ground vehicles (UGVs) h = 0. For this
scenario, using somewhat more sophisticated methods,
one can still obtain a lower bound with an exponential
rate of decay.

Theorem 4. Let h = 0. There is a constant c ≥ 0 such
that for any n, we have PO(U?) ≥ cn.

Proof. See Appendix B.

Theorems 2, 3, and 4 together show that for any fixed
h, the best-possible decay of the outage probability is
exponential with respect to the number of UAVs.

IV. OPTIMAL DEPLOYMENTS FOR DIFFERENT UAV
ALTITUDE CONSTRAINTS

We now consider the behavior of the optimal UAV
deployments and the corresponding optimal outage prob-
abilities for different UAV altitude constraints h. By
Theorem 1, we have shown that, for one UAV and a
unimodal GT density, the optimal UAV location is at
the center of the GT density. For example, for a uniform
distribution on [0, 1], the optimal UAV location is at 0.5
for every UAV altitude. With more UAVs, one would
expect the UAVs to be evenly distributed to [0, 1] to
provide an even coverage of the GT domain [0, 1]. This
is the case, indeed, if one wishes to place the UAVs
so as to minimize the average GT power consumption

1In fact, setting U = 0 to be deterministic, we have PO(U?) ≤
E[(1−g(X, 0))n] ≤ E[(1−e−‖X‖

r
)n]. Given that the support of f is

contained on a ball with radius R, we have PO(U?) ≤ (1−e−Rr )n.
A proof of the exponential decay of the outage probability for arbitrary
densities will be discussed elsewhere.



to guarantee zero-outage transmission [10], or in many
existing studies on UAV location optimization [1].

A counterintuitive phenomenon occurs in the case
of our objective function of minimizing the outage
probability. In fact, during our numerical experiments,
we have observed that after a certain finite altitude,
all UAVs collapse to a single location in an optimal
deployment. Here, we prove a slightly weaker claim
that, in an optimal deployment, all UAVs converge to a
common location as h → ∞. We write f(x) ∼ g(x)
as a shorthand notation for the asymptotic equality
limx→∞ f(x)/g(x) = 1.

Theorem 5. Let

u?(h) , argmax
u

∫
g(x, u)f(x)dx. (10)

As h→∞, we have the asymptotic equality

(1− PO(U?)) ∼ n
∫
g(x, u?(h))f(x)dx. (11)

An optimal deployment U? that achieves (11) is where
all the n UAVs are located at u?(h) for a given h.

Proof. See Appendix C.

The theorem provides a precise asymptotic formula for
the optimal outage probability as h→∞ and the optimal
UAV locations that achieve this outage probability. In
particular, placing all UAVs to the point limh→∞ u?(h)
is asymptotically optimal. The important design impli-
cation is that, for a large UAV altitude constraint, one
can just use a single UAV with multiple antennas (and
use selection diversity), as compared to multiple UAVs
with a single antenna. In fact, since it is physically
impossible to place multiple single-antenna UAVs to a
single location, one must use a multi-antenna UAV to
minimize the outage probability for a given maximum
number of selectable UAV antennas.

A special case is when the density f is unimodal with
center µ. In such a scenario, we have u?(h) = µ, ∀h, and
the UAV locations converge to µ as h→∞ by Theorem
5. For example, if f is one-dimensional Gaussian with
mean µ and variance σ2, the outage probability when all
UAVs are located at µ is given by

PO([µ · · ·µ])

=

∫
(1− g(x, µ))n 1√

2πσ2
e−

(x−µ)2

2σ2 dx (12)

=
n∑
k=0

(
n

k

)
(−1)ke−kh2

√
1+2kσ2

erf

(√
1+2kσ2

2σ2

)
. (13)

For large h, we expect (13) to be a good approximation
on the optimal outage probability. As a two-dimensional
example, for a uniform distribution on [0, 1]2, we have

PO([ 0.5 ··· 0.5
0.5 ··· 0.5 ])=1+

π

4

n∑
k=1

(
n

k

)
(−1)k

kekh2 erf
2(
√
k) (14)

to approximate the optimal outage probability at large h.

V. NUMERICAL RESULTS

In this section, we provide numerical simulation re-
sults that confirm our analytical findings. In order to
optimize the UAV locations, we have used the PSO
method, which is a population-based iterative algorithm
for solving non-linear optimization problems [21]. In
general, population-based optimization algorithms such
as PSO are known to outperform the simpler gradient
descent like approaches. In fact, the existence of multiple
candidate solutions (population members) help to avoid
locally optimal solutions. In the following, we compare
the optimal placement of UAVs and the corresponding
outage probabilities obtained using the PSO method with
those provided by our analytical results.

In Fig. 2, we show the optimal outage probability
provided by the PSO algorithm in comparison with the
analytical formula (14) for different values of the UAV
altitudes h. We consider the choice of path loss exponent
r = 2. The horizontal axis represents the number of
UAVs, and the vertical axis represents the logarithm
of the optimal outage probability. We can observe that
the logarithm of the outage probability decays linearly
with the number of UAVs. Hence, the outage probability
decays exponentially with n, verifying Theorems 2,
3, and 4. We can also observe that, as h increases,
the analytical formula in (14) provides a very good
approximation on the optimal outage probability. In fact,
for h ∈ {0.5, 1}, the analysis is almost indistinguishable
from the simulations.
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Fig. 2. Outage probabilities for a uniform distribution on [0, 1]2.

In Fig. 3, we consider a standard normal distribution
for the GT density, and compare the outage probabili-
ties provided by the PSO algorithm with the analytical
formula in (13) for r = 3. We can similarly observe



the exponential decay of the outage probability with
respect to the number of UAVs. Also, for any number
of UAVs, the analysis matches the simulations perfectly
when h2 = 2. On the other hand, the mismatch for lower
altitudes is more pronounced compared to the case of
the uniform distribution in Fig. 2. As a result, we have
also included the upper bounds derived using (8). We
chose the random variable U to be a standard normal
distribution, which provided the best upper bound among
all other choices for U that we have considered for large
n. We can observe that the upper bound in (8) provides
a better prediction of the optimal performance when n
is large. Yet, there is still a gap between the estimated
and the actual performance. This shows the necessity of
better bounds on the outage probability, a topic that will
be considered as future work.
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Fig. 3. Outage probabilities for a standard normal GT density.

In Fig. 4, we illustrate the collapse of the optimal
UAV locations to a single location as the UAV altitude
constraint h increases. We have considered the choice
r = 2. The horizontal axis represents h, and the vertical
axis represents the optimal UAV locations. We can
observe that at h = 0, the optimal deployment is roughly
given by U? = [0.08 0.33 0.66 0.92]. As h is increased
to around 0.15, the four UAVs first collapse to two
distinct locations. After h ≥ 0.4, the optimal locations
for all four UAVs is equal to 0.5, as Theorem 5 suggests.
Note that Theorem 5 shows that the UAV locations will
converge to 0.5 as h→∞. Here, we observe the stronger
phenomenon that the UAVs should be located at 0.5 for
all sufficiently large altitudes.

VI. CONCLUSIONS

We have studied the optimal placement of UAVs
serving as mobile base stations to several GTs. Our
objective has been to minimize the outage probability
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Fig. 4. Optimal locations of 4 UAVs for a uniform density on [0, 1].

of the system. We have shown the optimal outage prob-
ability decays exponentially with the number of UAVs.
We have also proved that in an optimal deployment, all
UAVs collapse to a unique location at large altitudes. We
have used particle swarm optimization to numerically
optimize the UAV locations. As future work, we aim
to provide better bounds for general GT densities and
UAV altitudes. Also, we have only considered a static
deployment of UAVs; we plan to study the movement of
UAVs according to a time-varying GT density. Moreover,
our model has only utilized selection diversity for recep-
tion of the GT data by one of the UAVs. In principle,
it is possible to apply maximum ratio combining for a
better performance. Optimal placement of UAVs for this
scenario is an interesting direction for future work.
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APPENDIX A
PROOF OF THEOREM 1

We need to show that a global maximum of

h(u) ,
∫
g(x, u)f(x)dx (15)

is located at u = µ. We first provide a proof for the case
d = 1. We need the following properties of a unimodal
function. If f is a univariate unimodal density with center
µ, we have

f(µ+ c) = f(µ− c), ∀c ∈ R, (16)
f(µ+ c) ≥ f(µ+ d), d ≥ c ≥ 0, (17)
f(µ− c) ≥ f(µ− d), d ≥ c ≥ 0. (18)

These properties follow immediately from Definition 1.



We are now ready to prove the theorem for d = 1. We
will show that for any α ∈ R, we have h(µ) ≥ h(µ+α).
Equivalently, defining H , h(µ) − h(µ + α), we will
show that H ≥ 0. First, we consider α ≥ 0. We have

H =

∫
(g(x, µ)− g(x, µ+ α))f(x)dx (19)

Applying a change of variables t = x−µ− α
2 , we obtain

H =

∫
ζ(t)f(t+ µ+ α

2 )dt, (20)

where ζ(t) , g(t,−α2 )−g(t,
α
2 ). It can easily be verified

that ζ(t) = −ζ(−t) so that

H=

∫ 0

−∞
ζ(t)f(t+µ+ α

2 )dt+

∫ ∞
0

ζ(t)f(t+µ+ α
2 )dt (21)

=

∫ 0

−∞
ζ(t)(f(t+µ+ α

2 )−f(−t+µ+
α
2 ))dt. (22)

The equality follows from a change of variables t← −t,
and the fact that ζ(·) is an odd function.

Let us now partition the integration domain in (22) to
two subsets, namely, (−∞,−α2 ) and [−α2 , 0], and call
the resulting integrals H1 and H2, respectively. We have

H1=

∫ −α2
−∞

ζ(t)(f(t+µ+ α
2 )−f(−t+µ+

α
2 ))dt (23)

=

∫ −α2
−∞

ζ(t)(f(−t+µ− α
2 )−f(−t+µ+

α
2 ))dt. (24)

The equality follows from the symmetry (16) of f around
µ. Now, given t ≤ −α2 , we have 0 ≤ −α2 − t ≤

α
2 − t.

According to (17), we obtain

f(−t+ µ− α
2 ) ≥ f(−t+ µ+ α

2 ), t ≤ −
α

2
(25)

It can also be easily verified that

ζ(t) ≥ 0, ∀t ≤ 0. (26)

Applying the bounds (25) and (26) to (24), we obtain
H1 ≥ 0. Similarly, we can show the non-negativity of

H2=

∫ 0

−α2

ζ(t)(f(t+µ+ α
2 )−f(−t+µ+

α
2 ))dt. (27)

In fact, given t ∈ [−α2 , 0], we have the chain of
inequalities 0 ≤ t + α

2 ≤ −t +
α
2 . By (17), we obtain

f(µ+t+ α
2 ) ≥ f(µ−t+

α
2 ). Applying this bound to (27)

together with (26), we obtain H2 ≥ 0. Since H1 ≥ 0 as
already shown, we have H = H1 +H2 ≥ 0. Using the
same arguments, one can also show H ≥ 0 for α ≤ 0.
This concludes the proof for d = 1.

Now, suppose d = 2, µ = [ µ1
µ2 ]. To prove the theorem,

it is sufficient to show that (i) for every x and α ≥ 0,
we have h([ xµ2 ]) ≥ h([ x

µ2+α ]), and (ii) for every y and
α ≥ 0, we have h([ µ1

y ]) ≥ h([ µ1+α
y ]). Both claims can

be verified using the same arguments that we have used
for d = 1. This concludes the proof of the theorem.

APPENDIX B
PROOF OF THEOREM 4

We first consider the case d = 1 and a uniform
distribution on [0,M ]. Without loss of generality, assume
0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ M . Given j ∈
{1, . . . , n+ 1}, let Ij , [uj−1, uj ], with the convention
that u0 = 0 and un+1 = 1. We have

PO(U)=
n∑
j=1

∫
Ij

n∏
i=1

(1−exp(−(x−ui)r))
dx

M
(28)

For the jth term of the sum, instead of integrating over
all Ij = [uj−1, uj ], we integrate over

I ′j ,

[
uj−1 +

|Ij |
3
, uj −

|Ij |
3

]
, j ∈ {1, . . . , n}. (29)

By construction, for all j ∈ {1, . . . , n} and every x ∈ I ′j ,
we have |x−ui|≤ 1

3 |Ij |, ∀i ∈ {1, . . . , n}. It follows that

PO(U) ≥
n∑
j=1

∫
I′j

n∏
i=1

(1−exp(−(x−ui)r))
dx

M
(30)

≥
n∑
j=1

∫
I′j

n∏
i=1

(
1−exp (−|Ij |r/3r )

)dx
M

(31)

=
n∑
j=1

|I ′j |
M

(
1−exp (−|Ij |r/3r )

)n
(32)

=
n∑
j=1

|Ij |
3M

(
1−exp (−|Ij |r/3r )

)n
(33)

The second derivative of the function g(x) , 1 −
exp(−xr/3r) can be calculated to be

g′′(x)=r9−r exp(−xr/3r)xr−2(3r(r−1)−rxr), (34)

which means that g is convex whenever 0 ≤ x ≤
3(1− 1

r )
1/r. By the second derivative test, it is straight-

forward to show that the product of two non-decreasing
convex functions is convex. It follows that, with regards
to the second sum in (33), the function x 7→ x(1 −
exp(−xr/3r))n is convex whenever x ≤ 3(1− 1

r )
1/r.

Now, suppose there exists ` ∈ {1, . . . , n} such that
|I`| ≥ 3(1− 1

r )
1/r. We then have

PO(U) ≥ |I`|
3M

(
1−exp (−|I`|r/3r )

)n
(35)

≥
(1− 1

r )
1/r

M

(
1−exp

(
−1 + 1

r

))n
, (36)

and Theorem 4 follows. We can therefore assume |Ij | ≤
3(1 − 1

r )
1/r, ∀j ∈ {1, . . . , n}. We now recall Jensen’s

inequality: For an arbitrary convex function h, and arbi-
trary real numbers a1, . . . , an, we have 1

n

∑n
i=1 h(ai) ≥

h( 1n
∑n
i=1 ai). Applying to (33), we obtain

PO(U) ≥ 1

3

(
1−exp (−1/3r )

)n
. (37)



This concludes the proof for d = 1 and a uniform distri-
bution. The case of a uniform distribution on [0,M ]2

in d = 2 dimensions can be handled similarly by
choosing Ijs to be a sequence of disks that cover [0,M ]2.
Correspondingly, for each j, we choose I ′j to be the disk
that is concentric to Ij , but with one-third the radius.
The case of a non-uniform density can be handled by
considering a box where the density is bounded from
below by a positive constant and applying the results
already found for a uniform density. This concludes the
proof of the theorem in the general case.

APPENDIX C
PROOF OF THEOREM 5

We have the expansion

PO(U) =

∫ n∏
i=1

(1− g(x, ui))f(x)dx (38)

=

∫ [
1−

n∑
i=1

g(x, ui)+

n∑
k=2

(−1)k
∑

J∈Cn,k

∏
j∈J

g(x, uj)

]
f(x)dx, (39)

where Cn,k is the collection of all k-combinations
of the set {1, . . . , n} (For example, C3,2 =
{{1, 2}, {1, 3}, {2, 3}}). Now, note that

g(x, u) = exp
(
−(‖x−u‖2+h2) r2

)
≤ e−h

r

. (40)

Therefore, for any J ∈ Cn.k, we have∫ ∏
j∈J

g(x, uj)f(x)dx ≤ e−|J|h
r

. (41)

Using (41) and the bound (−1)k ≤ 1 in (39), we obtain

PO(U)≤1−
n∑
i=1

∫
g(x, ui)f(x)dx+

n∑
k=2

(
n

k

)
e−kh

r

(42)

≤1−
n∑
i=1

∫
g(x, ui)f(x)dx+ 2ne−2h

r

(43)

Taking the minimum over all deployments, we have

PO(U
?) ≤ 1−n

∫
g(x, u?(h))f(x)dx+2ne−2h

r

. (44)

A similar argument results in the converse estimate

PO(U
?)≥1−n

∫
g(x, u?(h))f(x)dx−2ne−2h

r

. (45)

The statement of the theorem follows from (44), (45),
and the dominated convergence theorem.
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