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1 Abstract

DNN has achieved state-of-the-art performance in MIMO detection problem.
However, the deep and large model is hard to deploy to resource constrained
platforms. In this work, we propose to provide a sparse DNN model using
permuted diagonal matrices. As a result, our model is with low complexity
and doesn’t have indexing overhead like other sparsity method. Experiment
shows that our method can achieve high sparsity while maintaining the model
performance.

2 Introduction

The demand of transferring big data has been increasing for many years. As
one of the solutions, the multiple-input multiple-output (MIMO) technology
is to increases the spatial bandwidth by adding more antennas [1]. For this
technology, a difficult challenge is the signal detection problem.

On the other hand, deep neural network (DNN) has gradually become a
powerful model which learns to address the problem where underlying data
characteristics are unknown. It is found that DNN is also applicable to MIMO
detection and has achieved state-of-the-art performance [2].

Although DNN has extraordinary performance in many applications, their
deep architecture comes with millions of parameters. It is a big challenge to
deploy the model into resource constrained platforms. A popular solution is to
generate sparse DNN models with low complexity. But such sparsity is heuristic
and irregular, incurring indexing overhead for nonzero model parameters [3].

In this work, we propose to use permuted diagonal matrices to generate
regularly sparse DNN model for MIMO detection problem. This method results
in regular sparsity so that indexing overhead can be avoided and the sparsity
can be controlled by configuring the model hyper-parameters.
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3 MIMO Detection

Let H ∈ CN×K be the channel matrix and y ∈ CN be the received vector. We
have X as input symbols and b as noise vector in Gaussian distribution with
zero mean and variance σ2. A linear MIMO model is formulated as below:

y = Hx + b. (1)

The goal is to detect x given H and y. The DNN based solution is to build a
network that learns model parameters W to give correct detection. The learning
process is through minimizing the distance between detection result and ground
truth x over given training data.

More specifically, DNN learns a function f(W) by stacking multiple non-
linear layers which is formulated as:

a = g(Wx), (2)

where g(·) is an non-linear activation function such as hyperbolic tangent and
W is the weight parameter for this layer. Here bias parameters are included
in W. Stacking means that output of a layer can be the input to the next
layer. Theoretically, stacking multiple layers allows DNN to approximate any
continuous function [4].

4 Proposed Method

In this section, we introduce the permuted diagonal matrix for DNN based
MIMO detection. Let W ∈ Rm×n be the weight matrix which can be divided
into small blocks in shape k × k. In total, there will be m/k × n/k blocks.
Let each block I(l) be a matrix generated by permuting a diagonal matrix and
the permutation is shifting from the main diagonal to the l-th diagonal. More
specifically, the representation of W is formulated as following:

W =

 I(l1,1) . . . I(l1,n/k)
...

. . .
...

I(lm/k,1) . . . I(lm/k,n/k)

 , (3)

where i = 1, . . . ,m/k and j = 1, . . . , n/k. Each I(li,j) is a matrix defined as:

I(li,j) =



0 0 . . . 0 1
1 0 . . . 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0 1 0



li,j

× diag([w
li,j
1 , . . . , w

li,j
k ]), (4)

and diag(·) function outputs a diagonal matrix for given vector. Those values

of w
li,j
p are weight parameters inside the sub-matrix for p = 1, . . . , k. Therefore,

the density of the block permuted diagonal matrix W is 1
k . The sparsity (1− 1

k )
is controlled via the setting of value k. With larger k, the matrix is more sparse.
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5 Experiment

Experiment is performed to explore the trade off between sparsity and bit error
rate (BER). In this work, we take the state-of-the-art DNN model DetNet [2] and
use the same configurations. Instead of using general dense matrices, we apply
our permuted diagonal matrices to the DNN model. Experiment is conducted
with Tensorflow [5] and Tesla V100 GPU.

We set different block size to achieve different sparsity and measure the
corresponding BER. More specifically, the block size setting is applied to all
weight matrices inside the model. For example, when k = 4, all weight matrices
are with 75% sparsity.

As shown in figure 1, we set block size as k = 2, 4, 8, 16 and measure cor-
responding bit error rate for BPSK. The baseline model is the original DetNet
with dense matrices. It can be seen that with large block size, although the
model gets more sparse, the bit error error will increase for all different SNR.
For k = 2, 4, 8, BER remains almost the same but decreases a lot when k gets
to 16.

Figure 1: Different Block Size Settings for BPSK MIMO Detection.

6 Conclusion

In this work, we propose to address the problem of deployment of DNN models
for MIMO detection by using permuted diagonal matrices. This method gener-
ates sparse DNN model but without indexing overhead. Experimental results
show that this method can output DNN model with low complexity while having
negligible BER increase.
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